搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于压缩感知的三维导体目标电磁散射问题的快速求解方法

丁亚辉 孙玉发 朱金玉

引用本文:
Citation:

一种基于压缩感知的三维导体目标电磁散射问题的快速求解方法

丁亚辉, 孙玉发, 朱金玉

Compressed sensing based fast method of solving the electromagnetic scattering problems for threedimensional conductor targets

Ding Ya-Hui, Sun Yu-Fa, Zhu Jin-Yu
PDF
导出引用
  • 提出了一种将压缩感知和特征基函数结合的方法来计算三维导体目标的雷达散射截面.利用压缩感知理论,将随机选择的矩量法阻抗矩阵作为测量矩阵,将激励电压视为测量值,然后再用恢复算法可实现二维或二维半目标感应电流的求解.对于三维导体目标,使用Rao-Wilton-Glisson基函数表示的感应电流在常用的离散余弦变换基、小波基等稀疏基上不稀疏.为此,本文将计算出的目标特征基函数作为稀疏基,用广义正交匹配追踪算法作为恢复算法来加速恢复过程,并应用到三维导体目标的雷达散射截面计算中.数值结果证明了本文方法的准确性与高效性.
    The method of moments is one of the most commonly used algorithms for analyzing the electromagnetic scattering problems of conductor targets. However, it is difficult to solve the matrix equation when analyzing the electromagnetic scattering problem of the electric large target. In recent years, the theory of the compressed sensing was introduced into the method of moments to improve the computation efficiency. The random selected impedance matrix is used as a measurement matrix, and the excitation voltage is used as a measurement value when using compressed sensing theory. The recovery algorithm is used to solve the induced current of target. The method can avoid the inverse problem of matrix equation and improve the computational efficiency of the method of moments, but it can be applied only to 2-dimensional or 2.5-dimensional target. The application of compressed sensing needs to know the sparse basis of the current in advance, but the induced current of three-dimensional target which is expressed by an Rao-Wilton-Glisson basis function is not sparse on the commonly used sparse basis, such as discrete cosine transform basis and discrete wavelet basis. To solve this problem, a method of combining compressed sensing with characteristic basis functions is proposed to analyze the electromagnetic scattering problem of three-dimensional conductor target in this paper. The characteristic basis function method is an improved method of moments. The target is divided into several subdomains, the main characteristic basis functions are comprised of current bases arising from the self-interactions within the subdomain, and the secondary characteristic basis functions are obtained from the mutual coupling effects of the rest of the subdomains. Then a reduction matrix is constructed to reduce the order of matrix equation, and the current can be expressed by the characteristic basis function and its weighting coefficient. In the method presented in this paper, the weighting coefficient is considered as a sparse vector to be solved when the characteristic basis function is used as sparse basis. The number of weighting coefficients is less than the number of unknown ones, so it can be obtained from the compressed sensing recovery algorithm. At the same time, the generalized orthogonal matching pursuit algorithm is used as the recovery algorithm to speed up the recovery process. Finally, the proposed method is used to calculate the radar cross sections of a PEC sphere, nine discrete PEC targets and a simple missile model. The numerical results validate the accuracy and efficiency of the method.
      通信作者: 孙玉发, yfsun@ahu.edu.cn
      Corresponding author: Sun Yu-Fa, yfsun@ahu.edu.cn
    [1]

    Gibson W C 2014 J. Electromagn. Waves Appl. 1 181

    [2]

    Andriulli F P, Cools K, Bagci H, Olyslager F, Buffa A, Christiansen S, Michelssen E 2012 IEEE Trans. Antennas Propag. 56 2398

    [3]

    Chen Y, Zuo S, Zhang Y, Zhao X, Zhang H 2017 IEEE Trans. Antennas Propag. 65 3782

    [4]

    Cand E J, Wakin M B 2008 IEEE Signal Process. Mag. 25 21

    [5]

    Ji S, Xue Y, Carin L 2008 IEEE Trans. Signal Process. 65 3782

    [6]

    Ender J H G 2010 IEEE Trans. Signal Process. 65 3782

    [7]

    Wang Z, Wang B Z 2014 Acta Phys. Sci. 63 120202 (in Chinese)[王哲, 王秉中 2014 物理学报 63 120202]

    [8]

    Chai S R, Guo L X, Li J, Li K 2015 Asia-Pacific Microwave Conference Nanjing, China Dec. 6-9, 2015 p1

    [9]

    Kong M, Chen M S, Wu B, Wu X 2017 IEEE Antennas Wirel. Propag. Lett. 1 99

    [10]

    Wang Z, Wang B Z, Wen Y Q, Wang R 2015 IEEE International Symposium on Antennas and Propagation Usnc/ursi National Radio Science Meeting Vancouver, BC, July 19-24, 2015 p1488

    [11]

    Chao X Y, Chen M S, Wu X L, Shen J 2013 Chin. J. Electron. 41 2361 (in Chinese)[曹欣远, 陈明生, 吴先良, 沈晶 2013 电子学报 41 2361]

    [12]

    Du H M, Chen M S, Wu X L 2012 International Conference on Microwave and Millimeter Wave Technology Shenzhen, China May 5-8, 2012 p1

    [13]

    Chai S R, Guo L X 2015 Acta Phys. Sin. 64 060301 (in Chinese)[柴水荣, 郭立新 2015 物理学报 64 060301]

    [14]

    Prakash V V S, Mittra R 2003 Microw. Opt. Technol. Lett. 36 95

    [15]

    Sun Y F, Chan C H, Mittra R, Tsang L 2003 Antennas and Propagation Society International Symposium Columbus, OH, USA June 22-27, 2003 p1068

    [16]

    Wang Z G 2014 Ph. D. Dissertation (Hefei:Anhui University) (in Chinese)[王仲根 2014 博士学位论文(合肥:安徽大学)]

    [17]

    Jian W, Kwon S, Shim B 2012 IEEE Trans. Signal Process. 60 6202

    [18]

    Tropp J A, Gilbert A C 2007 IEEE Trans. Inf. Theory 53 4665

    [19]

    Baraniuk R G, Cevher V, Duarte M F, Hegde C 2010 IEEE Trans. Inf. Theory 56 1982

    [20]

    Duarte M F, Eldar Y C 2011 IEEE Trans. Signal Process. 59 4053

  • [1]

    Gibson W C 2014 J. Electromagn. Waves Appl. 1 181

    [2]

    Andriulli F P, Cools K, Bagci H, Olyslager F, Buffa A, Christiansen S, Michelssen E 2012 IEEE Trans. Antennas Propag. 56 2398

    [3]

    Chen Y, Zuo S, Zhang Y, Zhao X, Zhang H 2017 IEEE Trans. Antennas Propag. 65 3782

    [4]

    Cand E J, Wakin M B 2008 IEEE Signal Process. Mag. 25 21

    [5]

    Ji S, Xue Y, Carin L 2008 IEEE Trans. Signal Process. 65 3782

    [6]

    Ender J H G 2010 IEEE Trans. Signal Process. 65 3782

    [7]

    Wang Z, Wang B Z 2014 Acta Phys. Sci. 63 120202 (in Chinese)[王哲, 王秉中 2014 物理学报 63 120202]

    [8]

    Chai S R, Guo L X, Li J, Li K 2015 Asia-Pacific Microwave Conference Nanjing, China Dec. 6-9, 2015 p1

    [9]

    Kong M, Chen M S, Wu B, Wu X 2017 IEEE Antennas Wirel. Propag. Lett. 1 99

    [10]

    Wang Z, Wang B Z, Wen Y Q, Wang R 2015 IEEE International Symposium on Antennas and Propagation Usnc/ursi National Radio Science Meeting Vancouver, BC, July 19-24, 2015 p1488

    [11]

    Chao X Y, Chen M S, Wu X L, Shen J 2013 Chin. J. Electron. 41 2361 (in Chinese)[曹欣远, 陈明生, 吴先良, 沈晶 2013 电子学报 41 2361]

    [12]

    Du H M, Chen M S, Wu X L 2012 International Conference on Microwave and Millimeter Wave Technology Shenzhen, China May 5-8, 2012 p1

    [13]

    Chai S R, Guo L X 2015 Acta Phys. Sin. 64 060301 (in Chinese)[柴水荣, 郭立新 2015 物理学报 64 060301]

    [14]

    Prakash V V S, Mittra R 2003 Microw. Opt. Technol. Lett. 36 95

    [15]

    Sun Y F, Chan C H, Mittra R, Tsang L 2003 Antennas and Propagation Society International Symposium Columbus, OH, USA June 22-27, 2003 p1068

    [16]

    Wang Z G 2014 Ph. D. Dissertation (Hefei:Anhui University) (in Chinese)[王仲根 2014 博士学位论文(合肥:安徽大学)]

    [17]

    Jian W, Kwon S, Shim B 2012 IEEE Trans. Signal Process. 60 6202

    [18]

    Tropp J A, Gilbert A C 2007 IEEE Trans. Inf. Theory 53 4665

    [19]

    Baraniuk R G, Cevher V, Duarte M F, Hegde C 2010 IEEE Trans. Inf. Theory 56 1982

    [20]

    Duarte M F, Eldar Y C 2011 IEEE Trans. Signal Process. 59 4053

  • [1] 王攀, 王仲根, 孙玉发, 聂文艳. 新型压缩感知计算模型分析三维电大目标电磁散射特性. 物理学报, 2023, 72(3): 030202. doi: 10.7498/aps.72.20221532
    [2] 陈炜, 郭媛, 敬世伟. 基于深度学习压缩感知与复合混沌系统的通用图像加密算法. 物理学报, 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [3] 王仲根, 沐俊文, 林涵, 聂文艳. 新型缩减矩阵构造加快特征基函数法迭代求解. 物理学报, 2019, 68(17): 170201. doi: 10.7498/aps.68.20190572
    [4] 冷雪冬, 王大鸣, 巴斌, 王建辉. 基于渐进添边的准循环压缩感知时延估计算法. 物理学报, 2017, 66(9): 090703. doi: 10.7498/aps.66.090703
    [5] 李少东, 陈永彬, 刘润华, 马晓岩. 基于压缩感知的窄带高速自旋目标超分辨成像物理机理分析. 物理学报, 2017, 66(3): 038401. doi: 10.7498/aps.66.038401
    [6] 李慧, 赵琳, 李亮. 基于贝叶斯压缩感知的周跳探测与修复方法. 物理学报, 2016, 65(24): 249101. doi: 10.7498/aps.65.249101
    [7] 时洁, 杨德森, 时胜国, 胡博, 朱中锐. 基于压缩感知的矢量阵聚焦定位方法. 物理学报, 2016, 65(2): 024302. doi: 10.7498/aps.65.024302
    [8] 庄佳衍, 陈钱, 何伟基, 冒添逸. 基于压缩感知的动态散射成像. 物理学报, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [9] 李广明, 吕善翔. 混沌信号的压缩感知去噪. 物理学报, 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [10] 柴水荣, 郭立新. 基于压缩感知的一维海面与二维舰船复合后向电磁散射快速算法研究. 物理学报, 2015, 64(6): 060301. doi: 10.7498/aps.64.060301
    [11] 康荣宗, 田鹏武, 于宏毅. 一种基于选择性测量的自适应压缩感知方法. 物理学报, 2014, 63(20): 200701. doi: 10.7498/aps.63.200701
    [12] 张新鹏, 胡茑庆, 程哲, 钟华. 基于压缩感知的振动数据修复方法. 物理学报, 2014, 63(20): 200506. doi: 10.7498/aps.63.200506
    [13] 李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰. 基于压缩感知超分辨鬼成像. 物理学报, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [14] 于涛, 尹成友, 刘汉. 基于特征基函数的球面共形微带天线阵列分析. 物理学报, 2014, 63(23): 230701. doi: 10.7498/aps.63.230701
    [15] 陈明生, 王时文, 马韬, 吴先良. 基于压缩感知的目标频空电磁散射特性快速分析. 物理学报, 2014, 63(17): 170301. doi: 10.7498/aps.63.170301
    [16] 王哲, 王秉中. 压缩感知理论在矩量法中的应用. 物理学报, 2014, 63(12): 120202. doi: 10.7498/aps.63.120202
    [17] 宁方立, 何碧静, 韦娟. 基于lp范数的压缩感知图像重建算法研究. 物理学报, 2013, 62(17): 174212. doi: 10.7498/aps.62.174212
    [18] 冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜. 基于压缩感知理论的非线性γ谱分析方法. 物理学报, 2013, 62(11): 112901. doi: 10.7498/aps.62.112901
    [19] 白旭, 李永强, 赵生妹. 基于压缩感知的差分关联成像方案研究. 物理学报, 2013, 62(4): 044209. doi: 10.7498/aps.62.044209
    [20] 王仲根, 孙玉发, 王国华. 应用改进的特征基函数法和自适应交叉近似算法快速分析导体目标电磁散射特性. 物理学报, 2013, 62(20): 204102. doi: 10.7498/aps.62.204102
计量
  • 文章访问数:  6575
  • PDF下载量:  298
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-28
  • 修回日期:  2018-03-22
  • 刊出日期:  2019-05-20

/

返回文章
返回