搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Rydberg原子的超宽频带射频传感器

焦月春 赵建明 贾锁堂

引用本文:
Citation:

基于Rydberg原子的超宽频带射频传感器

焦月春, 赵建明, 贾锁堂

Broadband Rydberg atom-based radio-frequency field sensor

Jiao Yue-Chun, Zhao Jian-Ming, Jia Suo-Tang
PDF
导出引用
  • Rydberg原子具有极大的极化率和微波跃迁偶极矩,对外界电磁场非常敏感,可实现基于Rydberg原子的超宽频带射频电场的高分辨高灵敏测量.通过Rydberg原子的全光学无损的电磁感应透明探测手段,可以实现基于原子的快速免校准宽频带(0.01–1000 GHz)外电场的精密测量.对于频率大于1 GHz的微波场,由微波场耦合相邻Rydberg能级形成的Autler-Townes分裂进行测量;而对于频率小于1 GHz的长波射频场,由Rydberg能级的射频边带能级进行测量.这种方法是基于原子能级参数,可溯源到基本物理常量,不依赖于外界参考;且对电场无干扰,易于实现微型化和集成化,具有广泛的应用前景.本文主要综述了基于Rydberg原子的外电场测量的最新研究进展,重点介绍长波长射频场的测量,包括电场强度、频率以及极化方向的测量,详细介绍了其测量原理和探测灵敏度,并讨论了其应用前景及未来发展方向.
    Significant progress has been made in atom-based measurements of length, time, gravity and electromagnetic fields in recently years. Rydberg atom-based microwave electric field measurement, using electromagnetically induced transparency (EIT) in room temperature alkali-metal vapors, has been extensively investigated and aroused the broad interest. This approach may establish a new standard for the measurements of microwave (MW) and radio frequency (RF) electric fields.In this review, we describe the work on a new method of measuring electric fields based on quantum interference by using either cesium or rubidium atoms contained in a dielectric vapor cell. Rydberg atoms with principal quantum number n >>1 have large direct current (DC) polarizabilities and microwave transition dipole moments, thereby making them extremely sensitive to external electric fields. Using the Rydberg three-level EIT to detect the level splitting and shift that is induced by the external field, we can realize a rapid and robust self-calibration method of measuring the electric field in a frequency range from 0.01 GHz to 1000 GHz. For the MW electric field (frequency range > 1 GHz), the MW field causes the Rydberg states to split, known as an Autler-Townes splitting (A-T) effect when the applied microwave can resonate with adjacent Rydberg states. The MW coupled A-T splitting is proportional to the applied electric field strength, from which the field strength is measured. Using the EIT window, a high sensitivity of 3 μV·cm-1·Hz-1/2 and small electric field of 1 μV/cm are expected to be achieved with a modest setup, and the limitations of the sensitivity are also addressed in the review. For the RF field at frequency mj EIT lines, and avoided crossings formed with the fine-structure levels of equal mj and different J's, which is used to calibrate and measure the RF field amplitude. On the other hand, the dependence of the EIT-line strength on the RF field polarization provides a fast and robust polarization measurement of RF fields based on matching experimental data with a theoretical simulation. The measurements of minimum strengths and sensitivity of RF fields based on Rydberg atoms are one order magnitude below the values obtained by traditional antenna methods. The atom-based field measurement paves the way for determining fields through calibration-free, invariable atomic properties and miniaturization. We also propose its various potential applications in the future.
      通信作者: 赵建明, zhaojm@sxu.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2017YFA0304203)、国家自然科学基金(批准号:61475090,61675123,61775124)、长江学者和创新团队发展计划(批准号:IRT13076)、国家自然科学基金重点项目(批准号:11434007)和山西省“1331工程”重点学科建设计划经费资助的课题.
      Corresponding author: Zhao Jian-Ming, zhaojm@sxu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0304203), the National Natural Science Foundation of China (Grant Nos. 61475090, 61675123, 61775124), the Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT13076), the Key Program of the National Natural Science Foundation of China (Grant No. 11434007), and Shanxi "1331 Project" Key Subjects Construction.
    [1]

    Kanda M, Orr R D 1986 IEEE Trans. Antenn. Propag. 35 33

    [2]

    Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 IEEE Trans. Antenn. Propag. 62 6169

    [3]

    Kanda M 1993 IEEE Trans. Antenn. Propag. 41 1349

    [4]

    Sriram S, Kingsley S A, Boyd J T 1993 US patent 5 267 336 [1993-11-30]

    [5]

    Kanda M 1994 IEEE Trans. Electromagn. Compat. 36 261

    [6]

    Hall J L 2006 Rev. Mod. Phys. 78 1279

    [7]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nat. 506 71

    [8]

    Savukov I M, Seltzer S J, Romalis M V, Sauer K L 2005 Phys. Rev. Lett. 95 063004

    [9]

    Patton B, Versolato O O, Hovde D C, Corsini E, Higbie J M, Budker D 2012 Appl. Phys. Lett. 101 083502

    [10]

    Huang W, Liang Z T, Du Y X, Yan H, Zhu S L 2015 Acta Phys. Sin. 64 160702 (in Chinese) [黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮 2015 物理学报 64 160702]

    [11]

    Fan H, Kumar S, Sedlacek J, Kubler H, Karimkash S, Shaffer J P 2015 J. Phys. B: At. Mol. Opt. Phys. 48 202001

    [12]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003

    [13]

    Zhang H, Zhang L, Wang L, Bao S, Zhao J, Jia S 2014 Phys. Rev. A 90 043849

    [14]

    Sedlacek J A, Schwettmann A, Kbler H, Lw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819

    [15]

    Li J K, Yang W G, Song Z F, Zhang H, Zhang L J, Zhao J M, Jia S T 2015 Acta Phys. Sin. 64 163201 (in Chinese) [李敬奎, 杨文广, 宋振飞, 张好, 张临杰, 赵建明, 贾锁堂 2015 物理学报 64 163201]

    [16]

    Anderson D A, Schwarzkopf A, Miller S A, Thaicharoen N, Raithel G 2014 Phys. Rev. A 90 043419

    [17]

    Kumar S, Fan H, Kbler H, Sheng J T, Shaffer J P 2017 Sci. Rep. 7 42981

    [18]

    Kumar S, Fan H, Kbler H, Jahangiri A J, Shaffer J P 2017 Opt. Exp. 25 8625

    [19]

    Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithe G 2017 J. Appl. Phys. 121 233106

    [20]

    Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102

    [21]

    Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104

    [22]

    Simons M T, Gordon J A, Holloway C L, Anderson D A, Miller S A, Raithel G 2016 Appl. Phys. Lett. 108 174101

    [23]

    Anderson D A, Raithel G 2017 Appl. Phys. Lett. 111 053504

    [24]

    Sedlacek J, Schwettmann A, Kbler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001

    [25]

    Fan H Q, Kumar S, Sheng J T, Shaffer J P 2015 Phys. Rev. Appl. 4 044015

    [26]

    Zhu X B, Zhang H, Feng Z G, Zhang L J, Li C Y, Zhao J M, Jia S T 2010 Acta Phys. Sin. 59 2401 (in Chinese) [朱兴波, 张好, 冯志刚, 张临杰, 李昌勇, 赵建明, 贾锁堂 2010 物理学报 59 2401]

    [27]

    Bason M G, Tanasittikoso M, Sargsyan A, Mohapatra A K, Sarkisyan D, Potvliege R M, Adams C S 2010 New J. Phys. 12 065015

    [28]

    Veit C, Epple G, Kbler H, Euser T G, Russell P St J, Lw R 2016 J. Phys. B: At. Mol. Opt. Phys. 49 134005

    [29]

    Yoshida S, Reinhold C O, Burgdörfer J, Ye S, Dunning F B 2012 Phys. Rev. A 86 043415

    [30]

    Miller S A, Anderson D A, Raithel G 2016 New J. Phys. 18 053017

    [31]

    Jiao Y C, Han X X, Yang Z W, Li J K, Raithel G, Zhao J M, Jia S T 2016 Phys. Rev. A 94 023832

    [32]

    Yang Z W, Jiao Y C, Han X X, Zhao J M, Jia S T 2017 Acta Phys. Sin. 66 093202 (in Chinese) [杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂 2017 物理学报 66 093202]

    [33]

    Jiao Y C, Hao L P, Han X X, Bai S Y, Raithel G, Zhao J M, Jia S T 2017 Phys. Rev. Appl. 8 014028

    [34]

    Kitching J, Knappe S, Donley E A 2011 IEEE Sens. J. 11 1749

    [35]

    Kbler H, Shaffer J P, Baluksian T, Lw R, Pfau T 2010 Nat. Photon. 4 112

    [36]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) pp38-49

    [37]

    Osterwalder A, Merkt F 1999 Phys. Rev. Lett. 82 1831

    [38]

    Mack M, Karlewski F, Hattermann H, Hockh S, Jessen F, Cano D, Fortagh J 2011 Phys. Rev. A 83 052515

  • [1]

    Kanda M, Orr R D 1986 IEEE Trans. Antenn. Propag. 35 33

    [2]

    Holloway C L, Gordon J A, Jefferts S, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 IEEE Trans. Antenn. Propag. 62 6169

    [3]

    Kanda M 1993 IEEE Trans. Antenn. Propag. 41 1349

    [4]

    Sriram S, Kingsley S A, Boyd J T 1993 US patent 5 267 336 [1993-11-30]

    [5]

    Kanda M 1994 IEEE Trans. Electromagn. Compat. 36 261

    [6]

    Hall J L 2006 Rev. Mod. Phys. 78 1279

    [7]

    Bloom B J, Nicholson T L, Williams J R, Campbell S L, Bishof M, Zhang X, Zhang W, Bromley S L, Ye J 2014 Nat. 506 71

    [8]

    Savukov I M, Seltzer S J, Romalis M V, Sauer K L 2005 Phys. Rev. Lett. 95 063004

    [9]

    Patton B, Versolato O O, Hovde D C, Corsini E, Higbie J M, Budker D 2012 Appl. Phys. Lett. 101 083502

    [10]

    Huang W, Liang Z T, Du Y X, Yan H, Zhu S L 2015 Acta Phys. Sin. 64 160702 (in Chinese) [黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮 2015 物理学报 64 160702]

    [11]

    Fan H, Kumar S, Sedlacek J, Kubler H, Karimkash S, Shaffer J P 2015 J. Phys. B: At. Mol. Opt. Phys. 48 202001

    [12]

    Mohapatra A K, Jackson T R, Adams C S 2007 Phys. Rev. Lett. 98 113003

    [13]

    Zhang H, Zhang L, Wang L, Bao S, Zhao J, Jia S 2014 Phys. Rev. A 90 043849

    [14]

    Sedlacek J A, Schwettmann A, Kbler H, Lw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819

    [15]

    Li J K, Yang W G, Song Z F, Zhang H, Zhang L J, Zhao J M, Jia S T 2015 Acta Phys. Sin. 64 163201 (in Chinese) [李敬奎, 杨文广, 宋振飞, 张好, 张临杰, 赵建明, 贾锁堂 2015 物理学报 64 163201]

    [16]

    Anderson D A, Schwarzkopf A, Miller S A, Thaicharoen N, Raithel G 2014 Phys. Rev. A 90 043419

    [17]

    Kumar S, Fan H, Kbler H, Sheng J T, Shaffer J P 2017 Sci. Rep. 7 42981

    [18]

    Kumar S, Fan H, Kbler H, Jahangiri A J, Shaffer J P 2017 Opt. Exp. 25 8625

    [19]

    Holloway C L, Simons M T, Gordon J A, Dienstfrey A, Anderson D A, Raithe G 2017 J. Appl. Phys. 121 233106

    [20]

    Holloway C L, Gordon J A, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 104 244102

    [21]

    Gordon J A, Holloway C L, Schwarzkopf A, Anderson D A, Miller S A, Thaicharoen N, Raithel G 2014 Appl. Phys. Lett. 105 024104

    [22]

    Simons M T, Gordon J A, Holloway C L, Anderson D A, Miller S A, Raithel G 2016 Appl. Phys. Lett. 108 174101

    [23]

    Anderson D A, Raithel G 2017 Appl. Phys. Lett. 111 053504

    [24]

    Sedlacek J, Schwettmann A, Kbler H, Shaffer J P 2013 Phys. Rev. Lett. 111 063001

    [25]

    Fan H Q, Kumar S, Sheng J T, Shaffer J P 2015 Phys. Rev. Appl. 4 044015

    [26]

    Zhu X B, Zhang H, Feng Z G, Zhang L J, Li C Y, Zhao J M, Jia S T 2010 Acta Phys. Sin. 59 2401 (in Chinese) [朱兴波, 张好, 冯志刚, 张临杰, 李昌勇, 赵建明, 贾锁堂 2010 物理学报 59 2401]

    [27]

    Bason M G, Tanasittikoso M, Sargsyan A, Mohapatra A K, Sarkisyan D, Potvliege R M, Adams C S 2010 New J. Phys. 12 065015

    [28]

    Veit C, Epple G, Kbler H, Euser T G, Russell P St J, Lw R 2016 J. Phys. B: At. Mol. Opt. Phys. 49 134005

    [29]

    Yoshida S, Reinhold C O, Burgdörfer J, Ye S, Dunning F B 2012 Phys. Rev. A 86 043415

    [30]

    Miller S A, Anderson D A, Raithel G 2016 New J. Phys. 18 053017

    [31]

    Jiao Y C, Han X X, Yang Z W, Li J K, Raithel G, Zhao J M, Jia S T 2016 Phys. Rev. A 94 023832

    [32]

    Yang Z W, Jiao Y C, Han X X, Zhao J M, Jia S T 2017 Acta Phys. Sin. 66 093202 (in Chinese) [杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂 2017 物理学报 66 093202]

    [33]

    Jiao Y C, Hao L P, Han X X, Bai S Y, Raithel G, Zhao J M, Jia S T 2017 Phys. Rev. Appl. 8 014028

    [34]

    Kitching J, Knappe S, Donley E A 2011 IEEE Sens. J. 11 1749

    [35]

    Kbler H, Shaffer J P, Baluksian T, Lw R, Pfau T 2010 Nat. Photon. 4 112

    [36]

    Gallagher T F 1994 Rydberg Atoms (Cambridge: Cambridge University Press) pp38-49

    [37]

    Osterwalder A, Merkt F 1999 Phys. Rev. Lett. 82 1831

    [38]

    Mack M, Karlewski F, Hattermann H, Hockh S, Jessen F, Cano D, Fortagh J 2011 Phys. Rev. A 83 052515

  • [1] 韩玉龙, 刘邦, 张侃, 孙金芳, 孙辉, 丁冬生. 射频电场缀饰下铯Rydberg原子的电磁感应透明光谱. 物理学报, 2024, 73(11): 113201. doi: 10.7498/aps.73.20240355
    [2] 武博, 林沂, 吴逢川, 陈孝樟, 安强, 刘燚, 付云起. 基于平行板谐振器的量子微波电场测量技术. 物理学报, 2023, 72(3): 034204. doi: 10.7498/aps.72.20221582
    [3] 薛咏梅, 郝丽萍, 樊佳蓓, 焦月春, 赵建明. Rydberg原子nS1/2→(n + 1)S1/2双光子激发EIT-AT光谱. 物理学报, 2022, 71(4): 043202. doi: 10.7498/aps.71.20211458
    [4] 吴逢川, 林沂, 武博, 付云起. 里德伯原子的射频脉冲响应特性. 物理学报, 2022, 71(20): 207402. doi: 10.7498/aps.71.20220972
    [5] 薛咏梅, 郝丽萍, 樊佳蓓, 焦月春, 赵建明. Rydberg原子nS1/2→(n+1)S1/2双光子激发EIT-AT光谱. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211458
    [6] 陈志文, 佘圳跃, 廖开宇, 黄巍, 颜辉, 朱诗亮. 基于Rydberg原子天线的太赫兹测量. 物理学报, 2021, 70(6): 060702. doi: 10.7498/aps.70.20201870
    [7] 刘强, 何军, 王军民. 室温铯原子气室窄线宽相干布居振荡光谱. 物理学报, 2021, 70(16): 163202. doi: 10.7498/aps.70.20210405
    [8] 樊佳蓓, 郝丽萍, 白景旭, 焦月春, 赵建明, 贾锁堂. 基于Rydberg原子的高灵敏微波探测与通信. 物理学报, 2021, 70(6): 063201. doi: 10.7498/aps.70.20201401
    [9] 樊佳蓓, 焦月春, 郝丽萍, 薛咏梅, 赵建明, 贾锁堂. Rydberg原子的微波电磁感应透明-Autler-Townes光谱. 物理学报, 2018, 67(9): 093201. doi: 10.7498/aps.67.20172645
    [10] 闫丽云, 刘家晟, 张好, 张临杰, 肖连团, 贾锁堂. 基于量子相干效应的无芯射频识别标签的空间散射场测量. 物理学报, 2017, 66(24): 243201. doi: 10.7498/aps.66.243201
    [11] 薛咏梅, 郝丽萍, 焦月春, 韩小萱, 白素英, 赵建明, 贾锁堂. 超冷铯Rydberg原子的Autler-Townes分裂. 物理学报, 2017, 66(21): 213201. doi: 10.7498/aps.66.213201
    [12] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 弱射频场中Rydberg原子的电磁感应透明. 物理学报, 2017, 66(9): 093202. doi: 10.7498/aps.66.093202
    [13] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 调制激光场中Rydberg原子的电磁感应透明. 物理学报, 2016, 65(10): 103201. doi: 10.7498/aps.65.103201
    [14] 王丽梅, 张好, 李昌勇, 赵建明, 贾锁堂. 铯Rydberg原子Stark态的避免交叉. 物理学报, 2013, 62(1): 013201. doi: 10.7498/aps.62.013201
    [15] 王勇, 张好, 陈杰, 王丽梅, 张临杰, 李昌勇, 赵建明, 贾锁堂. 超冷nS Rydberg原子的态转移. 物理学报, 2013, 62(9): 093201. doi: 10.7498/aps.62.093201
    [16] 车俊岭, 张好, 冯志刚, 张临杰, 赵建明, 贾锁堂. 70S超冷Cs Rydberg原子的动力学演化. 物理学报, 2012, 61(4): 043205. doi: 10.7498/aps.61.043205
    [17] 冯志刚, 张好, 张临杰, 李昌勇, 赵建明, 贾锁堂. 超冷铯Rydberg原子寿命的测量. 物理学报, 2011, 60(7): 073202. doi: 10.7498/aps.60.073202
    [18] 朱兴波, 张好, 冯志刚, 张临杰, 李昌勇, 赵建明, 贾锁堂. Cs 39D态Rydberg原子Stark光谱的实验研究. 物理学报, 2010, 59(4): 2401-2405. doi: 10.7498/aps.59.2401
    [19] 孟慧艳, 康 帅, 史庭云, 詹明生. 平行电磁场中的Rydberg锂原子吸收谱的模型势计算. 物理学报, 2007, 56(6): 3198-3204. doi: 10.7498/aps.56.3198
    [20] 贺黎明, 杨 樾, 陆 慧. 原子实极化效应和钠原子s系列高Rydberg态能级寿命的计算. 物理学报, 2003, 52(6): 1385-1389. doi: 10.7498/aps.52.1385
计量
  • 文章访问数:  8282
  • PDF下载量:  340
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-12
  • 修回日期:  2018-02-05
  • 刊出日期:  2018-04-05

/

返回文章
返回