搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁控溅射铂抑制镀银表面的二次电子发射

何鋆 俞斌 王琪 白春江 杨晶 胡天存 谢贵柏 崔万照

引用本文:
Citation:

磁控溅射铂抑制镀银表面的二次电子发射

何鋆, 俞斌, 王琪, 白春江, 杨晶, 胡天存, 谢贵柏, 崔万照

Suppressing secondary electron emission from silver-plated surface by magnetron sputtered platinum

He Yun, Yu Bin, Wang Qi, Bai Chun-Jiang, Yang Jing, Hu Tian-Cun, Xie Gui-Bai, Cui Wan-Zhao
PDF
导出引用
  • 降低表面的二次电子产额是抑制微波部件二次电子倍增效应和提升功率阈值的有效途径之一,目前主要采用在表面构造陷阱结构和沉积非金属薄膜的方法降低二次电子产额,其缺点是会改变部件的电性能.针对此问题,采用在表面沉积高功函数且化学惰性的金属薄膜来降低二次电子产额.首先,采用磁控溅射方法在铝合金镀银样片表面沉积100 nm铂,测量结果显示沉积铂后样片的二次电子产额最大值由2.40降至1.77,降幅达26%.其次,用相关唯象模型对二次电子发射特性测量数据进行了拟合,获得了在401500 eV能量范围内能够准确描述样片二次电子产额特性的Vaughan模型参数,以及在050 eV能量范围内能够很好地拟合二次电子能谱曲线的Chung-Everhart模型参数.最后,将获得的实验数据和相关拟合参数用于Ku频段阻抗变换器的二次电子倍增效应功率阈值仿真研究,结果表明通过沉积铂可将部件的功率阈值由7500 W提升至36000 W,证实了所提方法的有效性.研究结果为金属材料二次电子发射特性的研究提供实验数据参考,对抑制大功率微波部件二次电子倍增效应具有参考价值.
    The multipactor effect has to be dealt with seriously when designing and manufacturing high power microwave devices used in space, as it will cause inreversible damage to devices and hence the whole system fails to work. Lowering the secondary electron yield of device surface is an effective way to suppress multipactor effect, which can be realized by creating trapping structure or depositing nonmetallic materials with low secondary electron yield on the surface. However, these treatments will result in electrical performance changing even to an unacceptable extent in some cases. To solve this problem, the deposited materials with conductivity as good as metals' should be used, besides, they should be chemically inactive in air. Taking the above into account, the method of suppressing the secondary electron yield of silver plated surface of device by magnetron sputtering platinum is proposed and investigated in the present paper. Firstly, platinum film with a thickness of 100 nm is deposited on silver plated aluminum alloy substrates by magnetron sputtering, and secondary electron yields of substrates with and without deposited platinum film are measured with the bias current method. The experimental results indicate that the maximum value of secondary electron yield and the first cross energy of silver plated aluminum alloy sample are 2.40 and 30 eV, respectively. After depositing platinum film on sample, these values change to 1.77 and 70 eV, a reduction of 26% in maximum of secondary electron yield is achieved. Secondly, universal law, Vaughan model, Furman model and Scholtz model are used to fit the experimental data of secondary electron yield, and the results indicate that only Vaughan model accords well with the property of secondary electron yield in an energy range of 40-1500 eV, and corresponding parameters are also obtained. The Chung-Everhart model is used to fit the secondary electron spectrum curve, and the fitted work function is 9.9 eV. Finally, the simulation of multipactor threshold of Ku-band impedance transformer is carried out by using a software with utilizing the experimental data and fitted results of secondary electron emission of samples. The simulation results indicate that the multipactor thresholds by utilizing the data of samples with and without platinum are 7500 W and 36000 W, respectively, which means that the large increase of multipactor threshold of high power microwave device can be achieved by depositing platinum film on the surface. The method proposed and results obtained in the present work provide a reference not only for studying the secondary electron emission of metal, but also for suppressing the multipactor effect of high power microwave device.
      通信作者: 崔万照, cuiwanzhao@126.com
    • 基金项目: 国家自然科学基金(批准号:U1537211,11675278,51675421)资助的课题.
      Corresponding author: Cui Wan-Zhao, cuiwanzhao@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. U1537211, 11675278, 51675421).
    [1]

    Chung M S 1974 J. Appl. Phys. 45 707

    [2]

    Ding Z J, Tang X D, Shimizu R 2001 J. Appl. Phys. 89 718

    [3]

    Xie A G, Zhang J, Liu B, Wang T B 2012 High Power Laser and Particle Beams 24 481 (in Chinese)[谢爱根, 张健, 刘斌, 王铁邦 2012 强激光与粒子束 24 481]

    [4]

    Chang T H, Zheng J R 2012 Acta Phys. Sin. 61 241401 (in Chinese)[常天海, 郑俊荣 2012 物理学报 61 241401]

    [5]

    Cheng S B, Deng S Q, Yuan W J, Yan Y J, Li J, Li J Q, Zhu J 2015 Appl. Phys. Lett. 107 032901

    [6]

    Yang J, Cui W Z, Li Y, Xie G B, Zhang N, Wang R, Hu T C, Zhang H T 2016 Appl. Surf. Sci. 382 88

    [7]

    Lin Y H, David C J 2005 Surf. Interface Anal. 37 895

    [8]

    Cazaux J 2010 Ultramicroscopy 110 242

    [9]

    Cazaux J 2012 J. Electron Microsc. 61 261

    [10]

    Cheng H, Jiang J P 1986 Cathode Electronics (Xian:Northwest Telecommunication Engineering Institute Press) p164 (in Chinese)[承欢, 江剑平1986 阴极电子学(西安:西北电讯工程学院出版) 第164页]

    [11]

    Stratakis D, Gallardo J C, Palmer R B 2010 Nucl. Instrum. Meth. A 620 147

    [12]

    Ding M Q, Huang M G, Feng J J, Bai G D, Li X H, Zhao Q P, Liu M H, Gao Y J, Chen Q L 2009 Chin. J. Vac. Sci. Technol. 29 247 (in Chinese)[丁明清, 黄明光, 冯进军, 白国栋, 李兴辉, 赵青平, 刘明辉, 高玉娟, 陈其略 2009 真空科学与技术学报 29 247]

    [13]

    Zhang N, Cui W Z, Hu T C, Wang X B 2011 Space Elec. Tech. 08 38 (in Chinese)[张娜, 崔万照, 胡天存, 王新波 2011 空间电子技术 08 38]

    [14]

    Ye M, He Y N, Hu S G, Wang R, Hu T C, Yang J, Cui W Z 2013 J. Appl. Phys. 113 074904

    [15]

    Nistora V, Gonzleza L A, Aguilera L, Montero I, Galn L, Wochner U, Raboso D 2014 Appl. Surf. Sci. 315 445

    [16]

    Ye M, He Y N, Wang R, Hu T C, Zhang N, Yang J, Cui W Z, Zhang Z B 2014 Acta Phys. Sin. 63 147901 (in Chinese)[叶鸣, 贺永宁, 王瑞, 胡天存, 张娜, 杨晶, 崔万照, 张忠兵 2014 物理学报 63 147901]

    [17]

    Montero I, Aguilera L, Dvilaa M E, Nistor V C, Gonzlez L A, Galn L, Raboso D, Ferrittoet R 2014 Appl. Surf. Sci. 291 74

    [18]

    Cao M, Zhang X S, Liu W H, Wang H G, Li Y D 2017 Diam. Relat. Mater. 73 199

    [19]

    Cazaux J 2010 Appl. Surf. Sci. 257 1002

    [20]

    Zhang N, Cao M, Cui W Z, Zhang H B 2014 Chin. J. Vac. Sci. Technol. 34 554 (in Chinese)[张娜, 曹猛, 崔万照, 张海波 2014 真空科学与技术学报 34 554]

    [21]

    Li Y, Cui W Z, Wang H G 2015 Phys. Plasmas 22 053108

    [22]

    Young J R 1957 J. Appl. Phys. 28 524

    [23]

    Lye R G, Dekker A J 1957 Phys. Rev. 107 977

    [24]

    Vaughan J R M 1993 IEEE Trans. Electron Dev. 40 830

    [25]

    Furman M A, Pivi M T F 2002 Phys. Rev. Top-AC 5 124404

    [26]

    Scholtz J J, Dijkkamp D, Schmitz R W A 1996 Philips J. Res. 50 375

    [27]

    Lane R O, Zaffarano D I 1954 Phys. Rev. 94 960

    [28]

    Zhang H B, Hu X C, Cao M, Zhang N, Cui W Z 2014 Vacuum 102 12

  • [1]

    Chung M S 1974 J. Appl. Phys. 45 707

    [2]

    Ding Z J, Tang X D, Shimizu R 2001 J. Appl. Phys. 89 718

    [3]

    Xie A G, Zhang J, Liu B, Wang T B 2012 High Power Laser and Particle Beams 24 481 (in Chinese)[谢爱根, 张健, 刘斌, 王铁邦 2012 强激光与粒子束 24 481]

    [4]

    Chang T H, Zheng J R 2012 Acta Phys. Sin. 61 241401 (in Chinese)[常天海, 郑俊荣 2012 物理学报 61 241401]

    [5]

    Cheng S B, Deng S Q, Yuan W J, Yan Y J, Li J, Li J Q, Zhu J 2015 Appl. Phys. Lett. 107 032901

    [6]

    Yang J, Cui W Z, Li Y, Xie G B, Zhang N, Wang R, Hu T C, Zhang H T 2016 Appl. Surf. Sci. 382 88

    [7]

    Lin Y H, David C J 2005 Surf. Interface Anal. 37 895

    [8]

    Cazaux J 2010 Ultramicroscopy 110 242

    [9]

    Cazaux J 2012 J. Electron Microsc. 61 261

    [10]

    Cheng H, Jiang J P 1986 Cathode Electronics (Xian:Northwest Telecommunication Engineering Institute Press) p164 (in Chinese)[承欢, 江剑平1986 阴极电子学(西安:西北电讯工程学院出版) 第164页]

    [11]

    Stratakis D, Gallardo J C, Palmer R B 2010 Nucl. Instrum. Meth. A 620 147

    [12]

    Ding M Q, Huang M G, Feng J J, Bai G D, Li X H, Zhao Q P, Liu M H, Gao Y J, Chen Q L 2009 Chin. J. Vac. Sci. Technol. 29 247 (in Chinese)[丁明清, 黄明光, 冯进军, 白国栋, 李兴辉, 赵青平, 刘明辉, 高玉娟, 陈其略 2009 真空科学与技术学报 29 247]

    [13]

    Zhang N, Cui W Z, Hu T C, Wang X B 2011 Space Elec. Tech. 08 38 (in Chinese)[张娜, 崔万照, 胡天存, 王新波 2011 空间电子技术 08 38]

    [14]

    Ye M, He Y N, Hu S G, Wang R, Hu T C, Yang J, Cui W Z 2013 J. Appl. Phys. 113 074904

    [15]

    Nistora V, Gonzleza L A, Aguilera L, Montero I, Galn L, Wochner U, Raboso D 2014 Appl. Surf. Sci. 315 445

    [16]

    Ye M, He Y N, Wang R, Hu T C, Zhang N, Yang J, Cui W Z, Zhang Z B 2014 Acta Phys. Sin. 63 147901 (in Chinese)[叶鸣, 贺永宁, 王瑞, 胡天存, 张娜, 杨晶, 崔万照, 张忠兵 2014 物理学报 63 147901]

    [17]

    Montero I, Aguilera L, Dvilaa M E, Nistor V C, Gonzlez L A, Galn L, Raboso D, Ferrittoet R 2014 Appl. Surf. Sci. 291 74

    [18]

    Cao M, Zhang X S, Liu W H, Wang H G, Li Y D 2017 Diam. Relat. Mater. 73 199

    [19]

    Cazaux J 2010 Appl. Surf. Sci. 257 1002

    [20]

    Zhang N, Cao M, Cui W Z, Zhang H B 2014 Chin. J. Vac. Sci. Technol. 34 554 (in Chinese)[张娜, 曹猛, 崔万照, 张海波 2014 真空科学与技术学报 34 554]

    [21]

    Li Y, Cui W Z, Wang H G 2015 Phys. Plasmas 22 053108

    [22]

    Young J R 1957 J. Appl. Phys. 28 524

    [23]

    Lye R G, Dekker A J 1957 Phys. Rev. 107 977

    [24]

    Vaughan J R M 1993 IEEE Trans. Electron Dev. 40 830

    [25]

    Furman M A, Pivi M T F 2002 Phys. Rev. Top-AC 5 124404

    [26]

    Scholtz J J, Dijkkamp D, Schmitz R W A 1996 Philips J. Res. 50 375

    [27]

    Lane R O, Zaffarano D I 1954 Phys. Rev. 94 960

    [28]

    Zhang H B, Hu X C, Cao M, Zhang N, Cui W Z 2014 Vacuum 102 12

  • [1] 胡笑钏, 刘样溪, 楚坤, 段潮锋. 非晶态碳薄膜对金属二次电子发射的影响. 物理学报, 2024, 73(4): 047901. doi: 10.7498/aps.73.20231604
    [2] 董烨, 刘庆想, 庞健, 周海京, 董志伟. 二次电子倍增对射频平板腔建场过程的影响. 物理学报, 2018, 67(17): 177902. doi: 10.7498/aps.67.20180656
    [3] 董烨, 刘庆想, 庞健, 周海京, 董志伟. 材料二次电子产额对腔体双边二次电子倍增的影响. 物理学报, 2018, 67(3): 037901. doi: 10.7498/aps.67.20172119
    [4] 董烨, 刘庆想, 庞健, 周海京, 董志伟. 腔体双边二次电子倍增一阶与三阶模式瞬态特性对比. 物理学报, 2017, 66(20): 207901. doi: 10.7498/aps.66.207901
    [5] 翁明, 胡天存, 曹猛, 徐伟军. 电子入射角度对聚酰亚胺二次电子发射系数的影响. 物理学报, 2015, 64(15): 157901. doi: 10.7498/aps.64.157901
    [6] 李爽, 常超, 王建国, 刘彦升, 朱梦, 郭乐田, 谢佳玲. 横磁模下介质表面二次电子倍增的抑制. 物理学报, 2015, 64(13): 137701. doi: 10.7498/aps.64.137701
    [7] 张娜, 曹猛, 崔万照, 胡天存, 王瑞, 李韵. 金属规则表面形貌影响二次电子产额的解析模型. 物理学报, 2015, 64(20): 207901. doi: 10.7498/aps.64.207901
    [8] 叶鸣, 贺永宁, 王瑞, 胡天存, 张娜, 杨晶, 崔万照, 张忠兵. 基于微陷阱结构的金属二次电子发射系数抑制研究. 物理学报, 2014, 63(14): 147901. doi: 10.7498/aps.63.147901
    [9] 余森江. 硅油基底上受限金属薄膜自组装褶皱的原子力显微镜研究. 物理学报, 2014, 63(11): 116801. doi: 10.7498/aps.63.116801
    [10] 杨文晋, 李永东, 刘纯亮. 高入射能量下的金属二次电子发射模型. 物理学报, 2013, 62(8): 087901. doi: 10.7498/aps.62.087901
    [11] 马凤英, 陈明, 刘晓莉, 刘建立, 池泉, 杜艳丽, 郭茂田, 袁斌. 太赫兹波段微腔器件的设计及其特性研究. 物理学报, 2012, 61(11): 114205. doi: 10.7498/aps.61.114205
    [12] 李鹏, 许州, 黎明, 杨兴繁. 金刚石薄膜中二次电子输运的蒙特卡罗模拟. 物理学报, 2012, 61(7): 078503. doi: 10.7498/aps.61.078503
    [13] 常天海, 郑俊荣. 固体金属二次电子发射的Monte-Carlo模拟. 物理学报, 2012, 61(24): 241401. doi: 10.7498/aps.61.241401
    [14] 许俊敏, 胡小会, 孙立涛. 铂掺杂扶手椅型石墨烯纳米带的电学特性研究. 物理学报, 2012, 61(2): 027104. doi: 10.7498/aps.61.027104
    [15] 张忠兵, 欧阳晓平, 夏海鸿, 陈亮, 王群书, 王兰, 马彦良, 潘洪波, 刘林月. 高能质子束流强度绝对测量的二次电子补偿原理研究. 物理学报, 2010, 59(8): 5369-5373. doi: 10.7498/aps.59.5369
    [16] 吴英才, 顾铮. 激励表面等离子共振的金属薄膜最佳厚度分析. 物理学报, 2008, 57(4): 2295-2299. doi: 10.7498/aps.57.2295
    [17] 李明宇, 顾培夫, 张锦龙, 郑臻荣, 刘 旭. 金属薄膜亚波长近场成像特性研究. 物理学报, 2008, 57(7): 4564-4569. doi: 10.7498/aps.57.4564
    [18] 汪 渊, 宋忠孝, 徐可为. 体心立方金属W薄膜晶体取向的膜厚尺寸效应及其表面映射. 物理学报, 2007, 56(12): 7248-7254. doi: 10.7498/aps.56.7248
    [19] 伍瑞新, 王相元, 钱 鉴, 张明雪, 朱航飞, 徐培华. 影响Salisbury屏高频响应的若干因数. 物理学报, 2004, 53(3): 745-749. doi: 10.7498/aps.53.745
    [20] 杜磊, 庄奕琪, 薛丽君. 金属薄膜电迁移1/f噪声与1/f2噪声统一模型. 物理学报, 2002, 51(12): 2836-2841. doi: 10.7498/aps.51.2836
计量
  • 文章访问数:  7634
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-26
  • 修回日期:  2018-02-07
  • 刊出日期:  2019-04-20

/

返回文章
返回