搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sm3+,Sr2+共掺杂对CeO2基电解质性能影响的密度泛函理论+U计算

陈美娜 张蕾 高慧颖 宣言 任俊峰 林子敬

引用本文:
Citation:

Sm3+,Sr2+共掺杂对CeO2基电解质性能影响的密度泛函理论+U计算

陈美娜, 张蕾, 高慧颖, 宣言, 任俊峰, 林子敬

DFT+U calculation of Sm3+ and Sr2+ co-doping effect on performance of CeO2-based electrolyte

Chen Mei-Na, Zhang Lei, Gao Hui-Ying, Xuan Yan, Ren Jun-Feng, Lin Zi-Jing
PDF
导出引用
  • Sm3+,Sr2+共掺杂CeO2的离子电导率被证实可高达Sm3+掺杂CeO2离子电导率的近两倍,然而,共掺杂对CeO2电导率的作用机理尚不明确.本文利用第一性原理计算的密度泛函理论+U方法,对Sm3+和Sr2+共掺杂的CeO2进行了系统的研究,对比Sm3+或Sr2+单掺杂的CeO2体系,计算并分析了共掺杂体系的电子态密度、能带结构、氧空位形成能以及氧空位迁移能等微观属性.计算结果表明,Sm3+,Sr2+的共掺杂对CeO2基电解质性能的提高具有协同效应,二者的共掺杂不仅能协同抑制CeO2体系的电子电导率,还能在单掺杂CeO2的基础上进一步降低氧空位形成能,Sm3+的存在还有助于降低Sr2+对氧空位的俘获作用,而Sr2+的加入则能够在Sm3+掺杂CeO2的基础上进一步降低最低氧空位迁移能,爬坡式弹性能带方法计算表明共掺杂体系的氧空位迁移能最低可达0.314/0.295 eV,低于Sm3+掺杂CeO2的最低氧空位迁移能.研究揭示了Sm3+,Sr2+共掺杂对CeO2电导率的协同作用机理,对进一步研发其他高性能的共掺杂电解质材料具有重要的指导意义.
    Solid oxide fuel cells (SOFCs) have been attracting people's attention for their high energy conversion efficiency, good fuel compatibility, no precious metal catalysts, and pollution-free emissions. However, the high operating temperature (800-1200℃) of the traditional SOFC can reduce the long-term stability and cause the difficulties in either the selecting of material or the sealing of SOFC. Therefore, great efforts have been devoted to developing the intermediate temperature SOFC (IT-SOFC), which works at 600-800℃. In the IT-SOFC, the ionic conductivity of doped CeO2-based electrolyte has a significant advantage relative to that of the conventional yttria-stabilized zirconia (YSZ) electrolyte. For example, at 600℃, the ionic conductivity of Sm-doped CeO2 is 0.02 S/cm much higher than that of the traditional YSZ electrolyte (only 0.0032 S/cm). Therefore, the doped CeO2-based electrolyte is a very promising electrolyte for IT-SOFC.Recently, the co-doping of two different elements into CeO2 has become a hot research topic. The ionic conductivity of Sm3+ and Sr2+ co-doped CeO2 has proved to be nearly twice as high as that of Sm3+ doped CeO2 (SDC). However, the mechanism for the co-doping effect on the conductivity of CeO2 is not clear. In this paper, Sm3+ and Sr2+ co-doped CeO2 is systematically studied using the DFT+U method. The microscopic properties of the Sm3+ and Sr2+ co-doped CeO2 including electronic density of states, band structure, oxygen vacancy formation energy and oxygen vacancy migration energy and so on have been calculated and analyzed by comparing with those of the Sm3+ or Sr2+ single doped CeO2. The calculation results indicate that Sm3+ and Sr2+ co-doping has a synergistic effect on the performance improvement of CeO2-based electrolyte, which can not only suppress the electronic conductivity of doped CeO2 system, but also can reduce the oxygen vacancy formation energy on the basis of single doped CeO2. The existence of Sm3+ can help to reduce the trapping effect of Sr2+ on oxygen vacancies, meanwhile the addition of Sr2+ can further reduce the minimum oxygen vacancy migration energy on the basis of SDC. Calculations by the climbing image nudged elastic band (CINEB) method indicate that the oxygen vacancy migration energy of the co-doped system can reach as low as 0.314/0.295 eV, which is lower than the minimum oxygen vacancy migration energy of SDC. Our research reveals the synergistic mechanism for Sm3+ and Sr2+ co-doping effect on the conductivity of CeO2, which is of great instructive significance for the further research and development of other high-performance co-doped electrolyte materials in IT-SOFC.
      通信作者: 陈美娜, mnchen@sdnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51602183)、山东省自然科学基金(批准号:ZR2014BP003)、中国博士后科学基金(批准号:2015M572074)和山东师范大学本科生科研基金项目(批准号:2017BKSKY35)资助的课题.
      Corresponding author: Chen Mei-Na, mnchen@sdnu.edu.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 51602183), the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014BP003), the China Postdoctoral Science Foundation (Grant No. 2015M572074), and the Undergraduate Scientific Research Foundation of Shandong Normal University, China (Grant No. 2017BKSKY35).
    [1]

    Steele B 2000 Solid State Ionics 129 95

    [2]

    Maheshwari A, Wiemhfer H D 2015 Ceram. Int. 41 9122

    [3]

    Shi F 2010 Int. J. Hydrogen Energ. 35 10556

    [4]

    Baqu L, Caneiro A, Moreno M S, Serquis A 2008 Electrochem. Commun. 10 1905

    [5]

    Shi F, Song X P 2010 Int. J. Hydrogen Energ. 35 10620

    [6]

    Tao Z T, Ding H P, Chen X H, Hou G H, Zhang Q F, Tang M, Gu W 2016 J. Alloy. Compd. 663 750

    [7]

    Peng R R, Xia C R, Fu Q X, Meng G Y, Peng D K 2002 Mater. Lett. 56 1043

    [8]

    Shi F, Xiao H T 2013 Int. J. Hydrogen Energ. 38 2318

    [9]

    Chen L J, Tang Y H, Cui L X, Ouyang C Y, Shi S Q 2013 J. Power Sources 234 69

    [10]

    Cui L X, Tang Y H, Zhang H, Hector Jr L G, Ouyang C Y, Shi S Q, Li H, Chen L 2012 Chem. Chem. Phys. 14 1923

    [11]

    Shi S Q, Ke X Z, Ouyang C Y, Zhang H, Ding H C, Tang Y H, Zhou W W, Li P J, Lei M S, Tang W H 2009 J. Power Sources 194 830

    [12]

    Shi S Q, Tang Y H, Ouyang C Y, Cui L X, Xin X G, Li P J, Zhou W W, Zhang H, Lei M S, Chen L Q 2010 J. Phys. Chem. Solids 71 788

    [13]

    Tang Y H, Zhang H, Cui L X, Ouyang C Y, Shi S Q, Tang W H, Li H, Chen L Q 2012 J. Power Sources 197 28

    [14]

    Li P J, Zhou W W, Tang Y H, Zhang H, Shi S Q 2010 Acta Phys. Sin. 59 3426 (in Chinese)[李沛娟, 周薇薇, 唐元昊, 张华, 施思齐 2010 物理学报 59 3426]

    [15]

    Bowman W J, Zhu J, Sharma R, Crozier P A 2015 Solid State Ionics 272 9

    [16]

    Zha S W, Xia C R, Meng G Y 2003 J. Power Sources 115 44

    [17]

    Nilsson J O, Vekilova O Y, Hellman O, Klarbring J, Simak S I, Skorodumova N V 2016 Phys. Rev. B 93 024102

    [18]

    Guo C, Wei S X, Zhou S N, Zhang T, Wang Z J, Ng S P, Lu X P, Wu C M L, Guo W Y 2017 ACS Appl. Mater. Inter. 9 26107

    [19]

    Tang Y H, Zhang H, Guan C M, Shen J Q, Shi S Q, Tang W H 2012 Sci. Sin.-Phys. Mech. Astron. 42 914 (in Chinese)[唐元昊, 张华, 管春梅, 沈静琴, 施思齐, 唐为华 2012 中国科学:物理学 力学 天文学 42 914]

    [20]

    Fu Z M, Sun Q, Ma D W, Zhang N, An Y P, Yang Z X 2017 Appl. Phys. Lett. 111 023903

    [21]

    Mogensen M, Sammes N M, Tompsett G A 2000 Solid State Ionics 129 63

    [22]

    Tang Y H, Zhang H, Cui L X, Ouyang C Y, Shi S Q, Tang W H, Li H, Lee J S, Chen L Q 2010 Phys. Rev. B 82 125104

    [23]

    Xiong Y P, Yamaji K, Horita T, Sakai N, Yokokawa H 2004 J. Electrochem. Soc. 151 A407

    [24]

    Yoshida H, Inagaki T, Miura K, Inaba M, Ogumi Z 2003 Solid State Ionics 160 109

    [25]

    Zhang D S, Qian Y L, Shi L Y, Mai H L, Gao R H, Zhang J P, Yu W J, Cao W G 2012 Catal. Commun. 26 164

    [26]

    Zhang T S, Hing P, Huang H T, Kilner J 2002 J. Mater. Sci. 37 997

    [27]

    Singh P, Hegde M 2010 Cryst. Growth Des. 10 2995

    [28]

    Nakayama M, Martin M 2009 Phys. Chem. Chem. Phys. 11 3241

    [29]

    Yahiro H, Eguchi K, Arai H 1989 Solid State Ionics 36 71

    [30]

    Ou D R, Mori T, Ye F, Zou J, Auchterlonie G, Drennan J 2008 Phys. Rev. B 77 024108

    [31]

    Kashyap D, Patro P K, Lenka R K, Mahata T, Sinha P K 2014 Ceram. Int. 40 11869

    [32]

    Jaiswal N, Upadhyay S, Kumar D, Parkash O 2014 Int. J. Hydrogen Energ. 39 543

    [33]

    Yamamura H, Katoh E, Ichikawa M, Kakinuma K, Mori T, Haneda H 2000 Electrochemistry 68 455

    [34]

    Ji Y, Liu J, He T M, Wang J X, Su W H 2005 J. Alloy. Compd. 389 317

    [35]

    Banerjee S, Devi P S, Topwal D, Mandal S, Menon K 2007 Adv. Funct. Mater. 17 2847

    [36]

    Cioateră N, Parvulescu V, Rolle A, Vannier R 2009 Solid State Ionics 180 681

    [37]

    Kasse R M, Nino J C 2013 J. Alloy. Compd. 575 399

    [38]

    Yoshida H, Deguchi H, Miura K, Horiuchi M, Inagaki T 2001 Solid State Ionics 140 191

    [39]

    Burbano M, Nadin S, Marrocchelli D, Salanne M, Watson G W 2014 Phys. Chem. Chem. Phys. 16 8320

    [40]

    Andersson D A, Simak S I, Skorodumova N V, Abrikosov I A, Johansson B 2006 Proc. Natl. Acad. Sci. USA 103 3518

    [41]

    Alaydrus M, Sakaue M, Aspera S M, Wungu T D, Linh T P, Kasai H, Ishihara T, Mohri T 2013 J. Phys.:Condens. Mater. 25 225401

    [42]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [43]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [44]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [45]

    Nolan M, Grigoleit S, Sayle D C, Parker S C, Watson G W 2005 Surf. Sci. 576 217

    [46]

    Feng J, Xiao B, Wan C, Qu Z, Huang Z, Chen J, Zhou R, Pan W 2011 Acta Mater. 59 1742

    [47]

    Henkelman G, Uberuaga B P, Jnsson H 2000 J. Chem. Phys. 113 9901

    [48]

    Gerward L, Olsen J S, Petit L, Vaitheeswaran G, Kanchana V, Svane A 2005 J. Alloy. Compd. 400 56

    [49]

    Lucid A K, Keating P R, Allen J P, Watson G W 2016 J. Phys. Chem. C 120 23430

  • [1]

    Steele B 2000 Solid State Ionics 129 95

    [2]

    Maheshwari A, Wiemhfer H D 2015 Ceram. Int. 41 9122

    [3]

    Shi F 2010 Int. J. Hydrogen Energ. 35 10556

    [4]

    Baqu L, Caneiro A, Moreno M S, Serquis A 2008 Electrochem. Commun. 10 1905

    [5]

    Shi F, Song X P 2010 Int. J. Hydrogen Energ. 35 10620

    [6]

    Tao Z T, Ding H P, Chen X H, Hou G H, Zhang Q F, Tang M, Gu W 2016 J. Alloy. Compd. 663 750

    [7]

    Peng R R, Xia C R, Fu Q X, Meng G Y, Peng D K 2002 Mater. Lett. 56 1043

    [8]

    Shi F, Xiao H T 2013 Int. J. Hydrogen Energ. 38 2318

    [9]

    Chen L J, Tang Y H, Cui L X, Ouyang C Y, Shi S Q 2013 J. Power Sources 234 69

    [10]

    Cui L X, Tang Y H, Zhang H, Hector Jr L G, Ouyang C Y, Shi S Q, Li H, Chen L 2012 Chem. Chem. Phys. 14 1923

    [11]

    Shi S Q, Ke X Z, Ouyang C Y, Zhang H, Ding H C, Tang Y H, Zhou W W, Li P J, Lei M S, Tang W H 2009 J. Power Sources 194 830

    [12]

    Shi S Q, Tang Y H, Ouyang C Y, Cui L X, Xin X G, Li P J, Zhou W W, Zhang H, Lei M S, Chen L Q 2010 J. Phys. Chem. Solids 71 788

    [13]

    Tang Y H, Zhang H, Cui L X, Ouyang C Y, Shi S Q, Tang W H, Li H, Chen L Q 2012 J. Power Sources 197 28

    [14]

    Li P J, Zhou W W, Tang Y H, Zhang H, Shi S Q 2010 Acta Phys. Sin. 59 3426 (in Chinese)[李沛娟, 周薇薇, 唐元昊, 张华, 施思齐 2010 物理学报 59 3426]

    [15]

    Bowman W J, Zhu J, Sharma R, Crozier P A 2015 Solid State Ionics 272 9

    [16]

    Zha S W, Xia C R, Meng G Y 2003 J. Power Sources 115 44

    [17]

    Nilsson J O, Vekilova O Y, Hellman O, Klarbring J, Simak S I, Skorodumova N V 2016 Phys. Rev. B 93 024102

    [18]

    Guo C, Wei S X, Zhou S N, Zhang T, Wang Z J, Ng S P, Lu X P, Wu C M L, Guo W Y 2017 ACS Appl. Mater. Inter. 9 26107

    [19]

    Tang Y H, Zhang H, Guan C M, Shen J Q, Shi S Q, Tang W H 2012 Sci. Sin.-Phys. Mech. Astron. 42 914 (in Chinese)[唐元昊, 张华, 管春梅, 沈静琴, 施思齐, 唐为华 2012 中国科学:物理学 力学 天文学 42 914]

    [20]

    Fu Z M, Sun Q, Ma D W, Zhang N, An Y P, Yang Z X 2017 Appl. Phys. Lett. 111 023903

    [21]

    Mogensen M, Sammes N M, Tompsett G A 2000 Solid State Ionics 129 63

    [22]

    Tang Y H, Zhang H, Cui L X, Ouyang C Y, Shi S Q, Tang W H, Li H, Lee J S, Chen L Q 2010 Phys. Rev. B 82 125104

    [23]

    Xiong Y P, Yamaji K, Horita T, Sakai N, Yokokawa H 2004 J. Electrochem. Soc. 151 A407

    [24]

    Yoshida H, Inagaki T, Miura K, Inaba M, Ogumi Z 2003 Solid State Ionics 160 109

    [25]

    Zhang D S, Qian Y L, Shi L Y, Mai H L, Gao R H, Zhang J P, Yu W J, Cao W G 2012 Catal. Commun. 26 164

    [26]

    Zhang T S, Hing P, Huang H T, Kilner J 2002 J. Mater. Sci. 37 997

    [27]

    Singh P, Hegde M 2010 Cryst. Growth Des. 10 2995

    [28]

    Nakayama M, Martin M 2009 Phys. Chem. Chem. Phys. 11 3241

    [29]

    Yahiro H, Eguchi K, Arai H 1989 Solid State Ionics 36 71

    [30]

    Ou D R, Mori T, Ye F, Zou J, Auchterlonie G, Drennan J 2008 Phys. Rev. B 77 024108

    [31]

    Kashyap D, Patro P K, Lenka R K, Mahata T, Sinha P K 2014 Ceram. Int. 40 11869

    [32]

    Jaiswal N, Upadhyay S, Kumar D, Parkash O 2014 Int. J. Hydrogen Energ. 39 543

    [33]

    Yamamura H, Katoh E, Ichikawa M, Kakinuma K, Mori T, Haneda H 2000 Electrochemistry 68 455

    [34]

    Ji Y, Liu J, He T M, Wang J X, Su W H 2005 J. Alloy. Compd. 389 317

    [35]

    Banerjee S, Devi P S, Topwal D, Mandal S, Menon K 2007 Adv. Funct. Mater. 17 2847

    [36]

    Cioateră N, Parvulescu V, Rolle A, Vannier R 2009 Solid State Ionics 180 681

    [37]

    Kasse R M, Nino J C 2013 J. Alloy. Compd. 575 399

    [38]

    Yoshida H, Deguchi H, Miura K, Horiuchi M, Inagaki T 2001 Solid State Ionics 140 191

    [39]

    Burbano M, Nadin S, Marrocchelli D, Salanne M, Watson G W 2014 Phys. Chem. Chem. Phys. 16 8320

    [40]

    Andersson D A, Simak S I, Skorodumova N V, Abrikosov I A, Johansson B 2006 Proc. Natl. Acad. Sci. USA 103 3518

    [41]

    Alaydrus M, Sakaue M, Aspera S M, Wungu T D, Linh T P, Kasai H, Ishihara T, Mohri T 2013 J. Phys.:Condens. Mater. 25 225401

    [42]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [43]

    Blchl P E 1994 Phys. Rev. B 50 17953

    [44]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [45]

    Nolan M, Grigoleit S, Sayle D C, Parker S C, Watson G W 2005 Surf. Sci. 576 217

    [46]

    Feng J, Xiao B, Wan C, Qu Z, Huang Z, Chen J, Zhou R, Pan W 2011 Acta Mater. 59 1742

    [47]

    Henkelman G, Uberuaga B P, Jnsson H 2000 J. Chem. Phys. 113 9901

    [48]

    Gerward L, Olsen J S, Petit L, Vaitheeswaran G, Kanchana V, Svane A 2005 J. Alloy. Compd. 400 56

    [49]

    Lucid A K, Keating P R, Allen J P, Watson G W 2016 J. Phys. Chem. C 120 23430

  • [1] 谢佳苗, 李京阳, 周佳逸, 郝文乾. 含有预裂纹的固体氧化物燃料电池的电极裂纹扩展分析. 物理学报, 2024, 73(23): . doi: 10.7498/aps.73.20241176
    [2] 李高芳, 殷文, 黄敬国, 崔昊杨, 叶焓静, 高艳卿, 黄志明, 褚君浩. 太赫兹时域光谱技术研究S掺杂GaSe晶体的电导率特性. 物理学报, 2023, 72(4): 047801. doi: 10.7498/aps.72.20221548
    [3] 申双林, 张小坤, 万兴文, 郑克晴, 凌意瀚, 王绍荣. 固体氧化物燃料电池温升模拟中入口异常高温度梯度研究. 物理学报, 2022, 71(16): 164401. doi: 10.7498/aps.71.20220031
    [4] 徐晗, 张璐. 空间电荷层效应对固体氧化物燃料电池三相界面附近氧空位传输的影响. 物理学报, 2021, 70(12): 128801. doi: 10.7498/aps.70.20210012
    [5] 徐晗, 张璐, 党政. 固体氧化物燃料电池模式阳极内传输与电化学反应耦合机理. 物理学报, 2020, 69(9): 098801. doi: 10.7498/aps.69.20191697
    [6] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究. 物理学报, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [7] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [8] 曲灵丰, 侯清玉, 许镇潮, 赵春旺. Ti掺杂ZnO光电性能的第一性原理研究. 物理学报, 2016, 65(15): 157201. doi: 10.7498/aps.65.157201
    [9] 付志坚, 贾丽君, 夏继宏, 唐可, 李召红, 权伟龙, 陈其峰. 温稠密钛电导率计算. 物理学报, 2016, 65(6): 065201. doi: 10.7498/aps.65.065201
    [10] 张召富, 周铁戈, 左旭. 氧、硫掺杂六方氮化硼单层的第一性原理计算. 物理学报, 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [11] 王平, 郭立新, 杨银堂, 张志勇. 铝氮共掺杂氧化锌纳米管电子结构的第一性原理研究. 物理学报, 2013, 62(5): 056105. doi: 10.7498/aps.62.056105
    [12] 侯清玉, 马文, 迎春. Ga/N高共掺浓度对ZnO导电性能和红移影响的第一性原理研究. 物理学报, 2012, 61(1): 017103. doi: 10.7498/aps.61.017103
    [13] 侯清玉, 赵春旺, 李继军, 王钢. Al高掺杂浓度对ZnO导电性能影响的第一性原理研究. 物理学报, 2011, 60(4): 047104. doi: 10.7498/aps.60.047104
    [14] 刘建军. (Zn,Al)O电子结构第一性原理计算及电导率的分析. 物理学报, 2011, 60(3): 037102. doi: 10.7498/aps.60.037102
    [15] 侯清玉, 赵春旺, 金永军, 关玉琴, 林琳, 李继军. ZnO高掺杂Ga的浓度对导电性能和红移效应影响的第一性原理研究. 物理学报, 2010, 59(6): 4156-4161. doi: 10.7498/aps.59.4156
    [16] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [17] 侯清玉, 赵春旺, 金永军. Al-2N高共掺浓度对ZnO半导体导电性能影响的第一性原理研究. 物理学报, 2009, 58(10): 7136-7140. doi: 10.7498/aps.58.7136
    [18] 蒋吉昊, 王桂吉, 杨 宇. 一种测量金属电爆炸过程中电导率的新方法. 物理学报, 2008, 57(2): 1123-1127. doi: 10.7498/aps.57.1123
    [19] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算. 物理学报, 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
    [20] 徐任信, 陈 文, 周 静. 聚合物电导率对0-3型压电复合材料极化性能的影响. 物理学报, 2006, 55(8): 4292-4297. doi: 10.7498/aps.55.4292
计量
  • 文章访问数:  7845
  • PDF下载量:  207
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-26
  • 修回日期:  2018-02-02
  • 刊出日期:  2019-04-20

/

返回文章
返回