搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

采用快速升温烧结方法生长Tl-1223超导薄膜的研究

谢清连 苏玲玲 蒋艳玲 唐平英 刘丽芹 岳宏卫 陈名贤 黄国华

引用本文:
Citation:

采用快速升温烧结方法生长Tl-1223超导薄膜的研究

谢清连, 苏玲玲, 蒋艳玲, 唐平英, 刘丽芹, 岳宏卫, 陈名贤, 黄国华

Growth of Tl-1223 superconducting thin films by rapidly heating-up sintering technology

Xie Qing-Lian, Su Ling-Ling, Jiang Yan-Ling, Tang Ping-Ying, Liu Li-Qin, Yue Hong-Wei, Chen Ming-Xian, Huang Guo-Hua
PDF
导出引用
  • 报道了在铝酸镧(00l)衬底上生长Tl-1223超导薄膜的快速升温烧结方法以及铊(Tl)源陪烧靶的配比对Tl-1223薄膜晶体结构的影响.扫描电子显微镜观测表明,采用快速升温烧结方法生长的Tl-1223超导薄膜具有致密的晶体结构.X-射线衍射等测试表明,采用合适配比的陪烧靶在氩气环境下可以制备出纯c轴取向的Tl-1223超导薄膜,充氧退火后的薄膜具有较好的电学性能,其临界转变温度Tc onset达到116 K,临界电流密度达到1.5 MA/cm2(77 K,0 T).实验结果表明,采用这一新的烧结方法制备Tl系超导薄膜具有升降温时间和恒温时间短、生产成本低等特点.
    Owing to high critical temperature (125 K) and high upper critical field, TlBa2Ca2Cu3O9 (Tl-1223) superconductor is a kind of superconducting power transmission material working at liquefied natural gas temperature, and it has a great potential application value in the strong and weak electric field. In this work, the Tl-1223 superconducting films are fabricated by rapidly heating-up sintering technology (RHST) on (00l) lanthanum aluminate substrates. The Tl-Ba-Ca-Cu-O target is used as a sputtering source to deposit the precursor films by the radio-frequency magnetron sputtering technique. The Tl-contained pellets, named annealing targets, are fabricated by the solid-state reaction of stoichiometric quantities of Tl2O3, BaO2, CaO and CuO powders with an initial cation ratio of m Tl:Ba:Ca:Cu=0.4-1.8:2:2:3. The amorphous precursors together with the annealing target providing Tl source are sealed in a silver foil and annealed at 820℃ for 5 min in argon atmosphere, then converted into Tl-1223 superconducting phase. The heating rates are set at 2.5℃/s from room temperature to 350℃, 5℃/s from 350℃ to 650℃, and 35℃/s from 650℃ to 820℃, respectively. The prepared films are characterized by X-ray diffraction and scanning electron microscope. In the conventional low heating rate process, all of the precursor films sintered together with the annealing targets containing different Tl content are first converted into Tl-2212 superconducting phase. That is because the sample residence time in the phase transition temperature range of Tl-2212 is longer, while the phase-formed temperature of Tl-2212 is lower than that of Tl-1223. In the RHST, when the metal ion molar ratio of Tl to Ba in the annealing target is 1.8:2, the main phase of the film is (00l)-oriented Tl-2212. In addition, the film also contains a small number of Tl-2223 grains. On reducing the ratio to 1:2, the film is composed of Tl-1212, Tl-2212, Tl-1223 and Tl-2223 grains. As the ratio decreases to 0.8:2, the film contains the (00l)-oriented Tl-1223 grains and traces of Tl-2223 grains. With the ratio decreasing to 0.4:2, purely c-axis oriented Tl-1223 film is obtained. The critical transition temperature Tc onset of the as-grown film is only 103 K. The film annealed again in oxygen gas has a dense crystal structure and excellent electrical properties. The Tc onset of the sample is about 116 K, and the critical current density Jc is about 1.5 MA/cm2 (77 K, 0 T). The experimental results show that the new sintering process to grow Tl-based films has several advantages such as the short processing cycles, less raw-material consumption, and low production cost.
      通信作者: 蒋艳玲, gxjyl@126.com;chmx0088@sina.com ; 陈名贤, gxjyl@126.com;chmx0088@sina.com
    • 基金项目: 国家自然科学基金(批准号:51062001,11264009)、广西自然科学基金(批准号:2015jjDA10001)、广西教育厅科研基金(批准号:KY2015ZD076)和广西高校新型电功能材料重点实验室开放基金(批准号:DGN201702)资助的课题.
      Corresponding author: Jiang Yan-Ling, gxjyl@126.com;chmx0088@sina.com ; Chen Ming-Xian, gxjyl@126.com;chmx0088@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51062001, 11264009), the Natural Science Foundation of Guangxi, China (Grant No. 2015jjDA10001), the Scientific Research Foundation of the Education Department of Guangxi, China (Grant No. KY2015ZD076), and the Open Project of Key Laboratory of New Electric Functional Materials of Guangxi Colleges and Universities, China (Grant No. DGN201702).
    [1]

    Fiegelman M V, Geshkenbein V G, Larkin A I 1990 Physica C 167 177

    [2]

    Jergel M, Conde Gallardo A, Falcony Guajardo C, Strbik V 1996 Supercond. Sci. Technol. 9 427

    [3]

    Nabatame T, Saito Y, Aihara K, Kamo T, Matsuda S P 1996 Supercond. Sci. Technol. 9 17

    [4]

    Crisana A, Iyo A, Tanaka Y 2003 Appl. Phys. Lett. 83 506

    [5]

    Profulla C K 2014 Int. J. Engineer. Innovat. Res. 3 850

    [6]

    Gao X X, Xie W, Wang Z, Zhao X J, He M, Zhang X, Yan S L, Ji L 2014 J. Supercond. Nov. Magn. 27 1665

    [7]

    Xie Q L, Wang Z, Huang G H, Wang X H, You F, Ji L, Zhao X J, Fang L, Yan S L 2009 Acta Phys. Sin. 58 7958 (in Chinese) [谢清连, 王争, 黄国华, 王向红, 游峰, 季鲁, 赵新杰, 方兰, 阎少林 2009 物理学报 58 7958]

    [8]

    Xie Q L, You F, Meng Q H, Ji L, Zhou T G, Zhao X J, Fang L, Yan S L 2010 J. Synth. Cryst. 39 1539 (in Chinese) [谢清连, 游峰, 蒙庆华, 季鲁, 周铁戈, 赵新杰, 方兰, 阎少林 2010 人工晶体学报 39 1539]

    [9]

    Sundaresan A, Asada H, Crisan A, Nie J C, Kito H, Iyo A, Tanaka Y, Kusunoki M, Ohshima S 2003 IEEE Trans. Appl. Supercond. 13 2913

    [10]

    Ji L, Yan S L, Xie Q L, You S T, Zhou T G, He M, Zuo T, Zhang X, Li J L, Zhao X J, Fang L 2007 Supercond. Sci. Technol. 20 1173

    [11]

    Badica P, Sundaresan A, Crisan A, Nie J C, Hirai M, Fujiwara S, Kito H, Ihara H 2003 Physica C 383 482

    [12]

    Xuan H N, Beauquis S, Gales P, Chadouet P, Jimenez C, Weiss F, Decroux M, Therasse M, Strbk V, Polk M, Chromi S K 2006 J. Phys.: Conference Series 43 281

    [13]

    Prazuch J, Konig W T, Gritzner G, Przybylski K 2000 Physica C 331 227

    [14]

    Phok S, Galez Ph, Jorda J L, Supardi Z, Barros D D, Odier P, Sin A, Weiss F 2002 Physica C 372376 876

    [15]

    Bramley A P, Connor J D O, Grovenor C R M 1999 Supercond. Sci. Technol. 12 R57

    [16]

    Shakil A, Nawazish A K, Mumtaz M, Khurram A A 2015 Radiat. Phys. Chem. 112 145

    [17]

    Abou Aly A I, Ibrahim I H, Awad R, El-Harizy A, Khalaf A 2010 J. Supercond. Nov. Magn. 23 1325

    [18]

    You F, Ji L, Wang Z, Xie Q L, Zhao X J, Yue H W, Fang L, Yan S L 2010 Supercond. Sci. Technol. 23 065002

    [19]

    Siegal M P, Overmyer D L, Venturini E L, Newcomer P P, Dunn R, Dominguez F, Padilla R R, Sokolowski S S 1997 IEEE Trans. Appl. Supercond. 7 1881

    [20]

    Zhao X J, Ji L, Chen E, Zuo T, Zhou T G, Chen S, Yan S L, Fang L, Zuo X 2005 Chin. J. Low Temperature Phys. 27 629 (in Chinese) [赵新杰, 季鲁, 陈恩, 左涛, 周铁戈, 陈思, 阎少林, 方兰, 左旭 2005 低温物理学报 27 629]

  • [1]

    Fiegelman M V, Geshkenbein V G, Larkin A I 1990 Physica C 167 177

    [2]

    Jergel M, Conde Gallardo A, Falcony Guajardo C, Strbik V 1996 Supercond. Sci. Technol. 9 427

    [3]

    Nabatame T, Saito Y, Aihara K, Kamo T, Matsuda S P 1996 Supercond. Sci. Technol. 9 17

    [4]

    Crisana A, Iyo A, Tanaka Y 2003 Appl. Phys. Lett. 83 506

    [5]

    Profulla C K 2014 Int. J. Engineer. Innovat. Res. 3 850

    [6]

    Gao X X, Xie W, Wang Z, Zhao X J, He M, Zhang X, Yan S L, Ji L 2014 J. Supercond. Nov. Magn. 27 1665

    [7]

    Xie Q L, Wang Z, Huang G H, Wang X H, You F, Ji L, Zhao X J, Fang L, Yan S L 2009 Acta Phys. Sin. 58 7958 (in Chinese) [谢清连, 王争, 黄国华, 王向红, 游峰, 季鲁, 赵新杰, 方兰, 阎少林 2009 物理学报 58 7958]

    [8]

    Xie Q L, You F, Meng Q H, Ji L, Zhou T G, Zhao X J, Fang L, Yan S L 2010 J. Synth. Cryst. 39 1539 (in Chinese) [谢清连, 游峰, 蒙庆华, 季鲁, 周铁戈, 赵新杰, 方兰, 阎少林 2010 人工晶体学报 39 1539]

    [9]

    Sundaresan A, Asada H, Crisan A, Nie J C, Kito H, Iyo A, Tanaka Y, Kusunoki M, Ohshima S 2003 IEEE Trans. Appl. Supercond. 13 2913

    [10]

    Ji L, Yan S L, Xie Q L, You S T, Zhou T G, He M, Zuo T, Zhang X, Li J L, Zhao X J, Fang L 2007 Supercond. Sci. Technol. 20 1173

    [11]

    Badica P, Sundaresan A, Crisan A, Nie J C, Hirai M, Fujiwara S, Kito H, Ihara H 2003 Physica C 383 482

    [12]

    Xuan H N, Beauquis S, Gales P, Chadouet P, Jimenez C, Weiss F, Decroux M, Therasse M, Strbk V, Polk M, Chromi S K 2006 J. Phys.: Conference Series 43 281

    [13]

    Prazuch J, Konig W T, Gritzner G, Przybylski K 2000 Physica C 331 227

    [14]

    Phok S, Galez Ph, Jorda J L, Supardi Z, Barros D D, Odier P, Sin A, Weiss F 2002 Physica C 372376 876

    [15]

    Bramley A P, Connor J D O, Grovenor C R M 1999 Supercond. Sci. Technol. 12 R57

    [16]

    Shakil A, Nawazish A K, Mumtaz M, Khurram A A 2015 Radiat. Phys. Chem. 112 145

    [17]

    Abou Aly A I, Ibrahim I H, Awad R, El-Harizy A, Khalaf A 2010 J. Supercond. Nov. Magn. 23 1325

    [18]

    You F, Ji L, Wang Z, Xie Q L, Zhao X J, Yue H W, Fang L, Yan S L 2010 Supercond. Sci. Technol. 23 065002

    [19]

    Siegal M P, Overmyer D L, Venturini E L, Newcomer P P, Dunn R, Dominguez F, Padilla R R, Sokolowski S S 1997 IEEE Trans. Appl. Supercond. 7 1881

    [20]

    Zhao X J, Ji L, Chen E, Zuo T, Zhou T G, Chen S, Yan S L, Fang L, Zuo X 2005 Chin. J. Low Temperature Phys. 27 629 (in Chinese) [赵新杰, 季鲁, 陈恩, 左涛, 周铁戈, 陈思, 阎少林, 方兰, 左旭 2005 低温物理学报 27 629]

  • [1] 夏长明, 卢家澳, 黄卓元, 刘建涛, 侯峙云, 周桂耀. 掺铥镧铝硅酸盐玻璃光子晶体光纤制备及光学特性. 物理学报, 2023, 72(20): 204206. doi: 10.7498/aps.72.20230766
    [2] 王丽敏, 段丙皇, 许献国, 李昊, 陈治军, 杨坤杰, 张硕. 基于蒙特卡罗模拟研究锆钛酸铅镧材料的中子辐照损伤. 物理学报, 2022, 71(7): 076101. doi: 10.7498/aps.71.20212041
    [3] 费潇, 罗炳成, 金克新, 陈长乐. 镧掺杂BaSnO3薄膜的电学和光学特性. 物理学报, 2015, 64(20): 207303. doi: 10.7498/aps.64.207303
    [4] 王建波, 钱进, 殷聪, 石春英, 雷鸣. 原子光刻中驻波场与基片距离的判定方法研究. 物理学报, 2012, 61(19): 190601. doi: 10.7498/aps.61.190601
    [5] 黄旭东, 冯玉军, 唐帅. 掺镧锆锡钛酸铅陶瓷极化强度变化量对电子发射电流强度的影响. 物理学报, 2012, 61(8): 087702. doi: 10.7498/aps.61.087702
    [6] 游峰, 季鲁, 谢清连, 王争, 岳宏卫, 赵新杰, 方兰, 阎少林. 蓝宝石基片上制备大面积Tl2Ba2CaCu2O8超导薄膜. 物理学报, 2010, 59(7): 5035-5043. doi: 10.7498/aps.59.5035
    [7] 王争, 岳宏卫, 周铁戈, 赵新杰, 何明, 谢清连, 方兰, 阎少林. SrTiO3基片上Tl-2212双晶约瑟夫森结的动态特性及噪声影响研究. 物理学报, 2009, 58(10): 7216-7221. doi: 10.7498/aps.58.7216
    [8] 李小燕, 郑志强, 冯卓宏, 刘 璟, 姜翠华, 孔令凯, 明 海. 掺铒锆钛酸铅镧陶瓷的上转换动力学分析. 物理学报, 2008, 57(5): 3244-3248. doi: 10.7498/aps.57.3244
    [9] 刘 明, 刘志文, 谷建峰, 秦福文, 马春雨, 张庆瑜. 蓝宝石基片的处理方法对ZnO薄膜生长行为的影响. 物理学报, 2008, 57(2): 1133-1140. doi: 10.7498/aps.57.1133
    [10] 谢清连, 阎少林, 赵新杰, 方 兰, 季 鲁, 张玉婷, 游石头, 李加蕾, 张 旭, 周铁戈, 左 涛, 岳宏卫. 高温退火对蓝宝石基片的表面形貌和对CeO2缓冲层以及Tl-2212超导薄膜生长的影响. 物理学报, 2008, 57(1): 519-525. doi: 10.7498/aps.57.519
    [11] 谷建峰, 刘志文, 刘 明, 付伟佳, 马春雨, 张庆瑜. Si(001)基片上反应射频磁控溅射ZnO薄膜的两步生长方法. 物理学报, 2007, 56(4): 2369-2376. doi: 10.7498/aps.56.2369
    [12] 曾雄辉, 赵广军, 张连翰, 何晓明, 杭 寅, 李红军, 徐 军. 铝酸镧单晶体中Ce3+的能级结构和荧光特性. 物理学报, 2005, 54(2): 612-616. doi: 10.7498/aps.54.612
    [13] 胡 颖, 张存林, 沈京玲, 张希成. (100)MgO和(100)LaAlO3高温超导基片材料THz时域光谱研究. 物理学报, 2004, 53(6): 1772-1776. doi: 10.7498/aps.53.1772
    [14] 伊长虹, 胡芳仁, 张庆刚, 陈莺飞, 徐小平, 郑东宁. 密封容器中后处理制备Tl2Ba2CaCu2Oy高温超导薄膜及其性能研究. 物理学报, 2004, 53(10): 3525-3529. doi: 10.7498/aps.53.3525
    [15] 陈一匡, 林揆训, 罗 志, 梁锐生, 周甫方. 铝诱导非晶硅薄膜的场致低温快速晶化及其结构表征. 物理学报, 2004, 53(2): 582-586. doi: 10.7498/aps.53.582
    [16] 王 强, 沈明荣, 侯 芳, 甘肇强. 烘烤温度对溶胶-凝胶法制备镧掺杂钛酸铋薄膜结构与铁电性质的影响. 物理学报, 2004, 53(7): 2373-2377. doi: 10.7498/aps.53.2373
    [17] 宋志棠, 任巍, 张良莹, 姚熹. 由Pb过量引起的镧钛酸铅铁电薄膜性能异常的研究. 物理学报, 1997, 46(9): 1849-1862. doi: 10.7498/aps.46.1849
    [18] 李阳, 曹国辉, 王耘波, 马庆珠, 熊小涛, 马如璋, 陈宁, 郭应焕, 许祝安, 张晓俊, 王劲松, 焦正宽, 彭获田, 周思海. 铁掺杂Tl-1223超导相的额外氧缺陷研究. 物理学报, 1996, 45(9): 1570-1577. doi: 10.7498/aps.45.1570
    [19] 陈祖耀, 唐凯斌, 钱逸泰, 盛正直, 王鲁闽. 新型1223相高Tc超导层型铜氧化物(Tl,M)(Sr,Ba)2Ca2Cu3Oz(M=Cr,V). 物理学报, 1995, 44(5): 795-805. doi: 10.7498/aps.44.795
    [20] 蔡伟, 吴自勤. Ag-Sn金属薄膜在升温过程中的结构变化. 物理学报, 1982, 31(10): 1380-1386. doi: 10.7498/aps.31.1380
计量
  • 文章访问数:  5617
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-27
  • 修回日期:  2018-04-18
  • 刊出日期:  2018-07-05

/

返回文章
返回