搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有Dzyaloshinskii-Moriya相互作用的XY模型的量子相干性

伊天成 丁悦然 任杰 王艺敏 尤文龙

引用本文:
Citation:

具有Dzyaloshinskii-Moriya相互作用的XY模型的量子相干性

伊天成, 丁悦然, 任杰, 王艺敏, 尤文龙

Quantum coherence of XY model with Dzyaloshinskii-Moriya interaction

Yi Tian-Cheng, Ding Yue-Ran, Ren Jie, Wang Yi-Min, You Wen-Long
PDF
导出引用
  • 研究了具有Dzyaloshinskii-Moriya(DM)相互作用的一维横场XY自旋链的量子相变和量子相干性.采用约旦-维格纳变换严格求解了哈密顿量,并描绘了体系的关联函数和相图,相图包含反铁磁相、顺磁相和螺旋相.利用相对熵和Jensen-Shannon熵讨论了XY模型的量子相干性.研究发现,相对熵与Jensen-Shannon熵所表现的行为都可以很好地表征该模型的量子相变.非螺旋相中量子相干性不依赖DM相互作用,而在螺旋相DM相互作用对量子相干性有显著影响.此外,指出了在带有DM相互作用的这一类反射对称破缺体系中关联函数计算的常见问题.
    In this paper, we study the quantum coherence of one-dimensional transverse XY model with Dzyaloshinskii-Moriya interaction, which is given by the following Hamiltonian:HXY=∑i=1N((1+γ/2) σixσi+1x+(1-γ/2) σiyσi+1y-hσiz) ∑i=1ND(σixσi+1y-σiyσi+1x).(8)Here, 0 ≤ γ ≤ 1 is the anisotropic parameter, h is the magnitude of the transverse magnetic field, D is the strength of Dzyaloshinskii-Moriya (DM) interaction along the z direction. The limiting cases such as γ=0 and 1 reduce to the isotropic XX model and the Ising model, respectively. We use the Jordan-Winger transform to map explicitly spin operators into spinless fermion operators, and then adopt the discrete Fourier transform and the Bogoliubov transform to solve the Hamiltonian Eq.(8) analytically. When the DM interactions appear, the excitation spectrum becomes asymmetric in the momentum space and is not always positive, and thus a gapless chiral phase is induced. Based on the exact solutions, three phases are identified by varying the parameters:antiferromagnetic phase, paramagnetic phase, and gapless chiral phase. The antiferromagnetic phase is characterized by the dominant x-component nearest correlation function, while the paramagnetic phase can be characterized by the z component of spin correlation function. The two-site correlation functions Grxy and Gryx (r is the distance between two sites) are nonvanishing in the gapless chiral phase, and they act as good order parameters to identify this phase. The critical lines correspond to h=1, γ=2D, and h=√4D2 -γ2 + 1 for γ>0. When γ=0, there is no antiferromagnetic phase. We also find that the correlation functions undergo a rapid change across the quantum critical points, which can be pinpointed by the first-order derivative. In addition, Grxy decreases oscillatingly with the increase of distance r. The correlation function Grxy for γ=0 oscillates more dramatically than for γ=1. The upper boundary of the envelope is approximated as Grxy~r-1/2, and the lower boundary is approximately Grxy~r-3/2, so the long-range order is absent in the gapless chiral phase. Besides, we study various quantum coherence measures to quantify the quantum correlations of Eq.(8). One finds that the relative entropy CRE and the Jensen-Shannon entropy CJS are able to capture the quantum phase transitions, and quantum critical points are readily discriminated by their first derivative. We conclude that both quantum coherence measures can well signify the second-order quantum phase transitions. Moreover, we also point out a few differences in deriving the correlation functions and the associated density matrix in systems with broken reflection symmetry.
      通信作者: 尤文龙, wlyou@suda.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11474211,61674110,11374043,11404407)资助的课题.
      Corresponding author: You Wen-Long, wlyou@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474211, 61674110, 11374043, 11404407).
    [1]

    Alexander S, Uttam S, Himadri S D, Manabendra N B, Gerardo A 2015 Phys. Rev. Lett. 115 020403

    [2]

    Alexander S, Gerardo A, Martin B P 2017 Rev. Mod. Phys. 89 041003

    [3]

    Amico L, Fazio R, Osterloh A, Vedral V 2008 Rev. Mod. Phys. 80 517

    [4]

    Shan C J, Man Z X, Xia Y J, Liu T K 2007 Int. J. Quant. Inform. 5 335

    [5]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [6]

    Wooters W K, Zurek W H 1982 Nature 299 802

    [7]

    Osterloh A, Amico L, Falci G, Fazio R 2002 Nature 416 608

    [8]

    Osborne T J, Nielsen M A 2002 Phys. Rev. A 66 032110

    [9]

    Gu S J, Lin H Q, Li Y Q 2003 Phys. Rev. A 68 042330

    [10]

    Vidal G, Latorre G I, Rico E, Kitaev A 2003 Phys. Rev. Lett. 90 227902

    [11]

    Vidal J, Palacios G, Mosseri R 2004 Phys. Rev. A 69 022107

    [12]

    Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901

    [13]

    Modi K, Brodutch A, Cable H, Paterek T, Vedral V 2012 Rev. Mod. Phys. 84 1655

    [14]

    You W L, Li Y W, Gu S J 2007 Phys. Rev. E 76 022101

    [15]

    Gu S J, Int J 2010 Mod. Phys. B 24 4371

    [16]

    Eisert J, Cramer M, Plenio M B 2010 Rev. Mod. Phys. 82 277

    [17]

    Lieb E, Schultz T, Mattis D 1961 Ann. Phys. 16 407

    [18]

    Lorenzo C V, Marco R 2010 Phys. Rev. A 81 060101

    [19]

    Kenzelmann M, Coldea R, Tennant D A, Visser D, Hofmann M, Smeibidl P, Tylczynski Z 2002 Phys. Rev. B 65 144432

    [20]

    Toskovic R, van-den Berg R, Spinelli A, Eliens I S, van-den Toorn B, Bryant B, Caux J S, Otte A F 2016 Nat. Phys. 12 656

    [21]

    Dzyaloshinskii I 1958 J. Phys. Chem. Solids 4 241

    [22]

    Moriya T 1960 Phys. Rev. Lett. 4 288

    [23]

    Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198

    [24]

    Adams T, Chacon A, Wagner M, Bauer A, Brandl G, Pedersen B, Berger H, Lemmens P, Pfleiderer C 2012 Phys. Rev. Lett. 108 237204

    [25]

    Yang J H, Li Z L, Lu X Z, Whangbo M H, Wei S H, Gong X G, Xiang H J 2012 Phys. Rev. Lett. 109 107203

    [26]

    Matsuda M, Fishman R S, Hong T, Lee C H, Ushiyama T, Yanagisawa Y, Tomioka Y, Ito T 2012 Phys. Rev. Lett. 109 067205

    [27]

    Povarov K Y, Smirnov A I, Starykh O A, Petrov S V, Shapiro A Y 2011 Phys. Rev. Lett. 107 037204

    [28]

    Zhang X F, Liu T Y, Flatté M E, Tang H X 2014 Phys. Rev. Lett. 113 037202

    [29]

    You W L, Dong Y L 2010 Eur. Phys. J. D 57 439

    [30]

    You W L, Dong Y L 2011 Phys. Rev. B 84 174426

    [31]

    You W L, Liu G H, Horsch P, Oleś A M 2014 Phys. Rev. B 90 094413

    [32]

    Shan C J, Cheng W W, Liu T K, Huang Y X, Li H 2008 Acta Phys. Sin. 57 2687 (in Chinese) [单传家, 程维文, 刘堂昆, 黄燕霞, 李宏 2008 物理学报 57 2687]

    [33]

    Zhong M, Xu H, Liu X X, Tong P Q 2013 Chin. Phys. B 22 090313

    [34]

    Song J L, Zhong M, Tong P Q 2017 Acta Phys. Sin. 66 180302 (in Chinese) [宋加丽, 钟鸣, 童培庆 2017 物理学报 66 180302]

    [35]

    Brockmann M, Klumper A, Ohanyan V 2013 Phys. Rev. B 87 054407

    [36]

    Derzhko O, Verkholyak T, Krokhmalskii T, Bttner H 2006 Phys. Rev. B 73 214407

    [37]

    Barouch E, McCoy B M 1970 Phys. Rev. A 2 1075

    [38]

    Barouch E, McCoy B M 1971 Phys. Rev. A 3 786

    [39]

    Its A R, Izergin A G, Korepin V E, Slavnov N A 1993 Phys. Rev. Lett. 70 1704

    [40]

    Bunder J E, McKenzie R H 1999 Phys. Rev. B 60 344

    [41]

    Vedral V 2002 Rev. Mod. Phys. 74 197

    [42]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [43]

    Modi K, Brodutch A, Cable H, Paterek T, Vedral V 2012 Rev. Mod. Phys. 84 1655

    [44]

    Liu B Q, Shao B, Li J G, Zou J, Wu L A 2011 Phys. Rev. A 83 052112

    [45]

    Radhakrishnan C, Ermakov I, Byrnes T 2017 Phys. Rev. A 96 012341

    [46]

    You W L, Qiu Y C, Oleś A M 2016 Phys. Rev. B 93 214417

    [47]

    You W L, Zhang C J, Ni W, Gong M, Oleś A M 2017 Phys. Rev. B 95 224404

    [48]

    Lei S, Tong P 2015 Physica B 463 1

    [49]

    Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401

    [50]

    Chen J, Cui J, Zhang Y, Fan H 2016 Phys. Rev. A 94 022112

    [51]

    Lamberti P W, Majtey A P, Borras A, Casas M, Plastino A 2008 Phys. Rev. A 77 052311

  • [1]

    Alexander S, Uttam S, Himadri S D, Manabendra N B, Gerardo A 2015 Phys. Rev. Lett. 115 020403

    [2]

    Alexander S, Gerardo A, Martin B P 2017 Rev. Mod. Phys. 89 041003

    [3]

    Amico L, Fazio R, Osterloh A, Vedral V 2008 Rev. Mod. Phys. 80 517

    [4]

    Shan C J, Man Z X, Xia Y J, Liu T K 2007 Int. J. Quant. Inform. 5 335

    [5]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [6]

    Wooters W K, Zurek W H 1982 Nature 299 802

    [7]

    Osterloh A, Amico L, Falci G, Fazio R 2002 Nature 416 608

    [8]

    Osborne T J, Nielsen M A 2002 Phys. Rev. A 66 032110

    [9]

    Gu S J, Lin H Q, Li Y Q 2003 Phys. Rev. A 68 042330

    [10]

    Vidal G, Latorre G I, Rico E, Kitaev A 2003 Phys. Rev. Lett. 90 227902

    [11]

    Vidal J, Palacios G, Mosseri R 2004 Phys. Rev. A 69 022107

    [12]

    Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901

    [13]

    Modi K, Brodutch A, Cable H, Paterek T, Vedral V 2012 Rev. Mod. Phys. 84 1655

    [14]

    You W L, Li Y W, Gu S J 2007 Phys. Rev. E 76 022101

    [15]

    Gu S J, Int J 2010 Mod. Phys. B 24 4371

    [16]

    Eisert J, Cramer M, Plenio M B 2010 Rev. Mod. Phys. 82 277

    [17]

    Lieb E, Schultz T, Mattis D 1961 Ann. Phys. 16 407

    [18]

    Lorenzo C V, Marco R 2010 Phys. Rev. A 81 060101

    [19]

    Kenzelmann M, Coldea R, Tennant D A, Visser D, Hofmann M, Smeibidl P, Tylczynski Z 2002 Phys. Rev. B 65 144432

    [20]

    Toskovic R, van-den Berg R, Spinelli A, Eliens I S, van-den Toorn B, Bryant B, Caux J S, Otte A F 2016 Nat. Phys. 12 656

    [21]

    Dzyaloshinskii I 1958 J. Phys. Chem. Solids 4 241

    [22]

    Moriya T 1960 Phys. Rev. Lett. 4 288

    [23]

    Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198

    [24]

    Adams T, Chacon A, Wagner M, Bauer A, Brandl G, Pedersen B, Berger H, Lemmens P, Pfleiderer C 2012 Phys. Rev. Lett. 108 237204

    [25]

    Yang J H, Li Z L, Lu X Z, Whangbo M H, Wei S H, Gong X G, Xiang H J 2012 Phys. Rev. Lett. 109 107203

    [26]

    Matsuda M, Fishman R S, Hong T, Lee C H, Ushiyama T, Yanagisawa Y, Tomioka Y, Ito T 2012 Phys. Rev. Lett. 109 067205

    [27]

    Povarov K Y, Smirnov A I, Starykh O A, Petrov S V, Shapiro A Y 2011 Phys. Rev. Lett. 107 037204

    [28]

    Zhang X F, Liu T Y, Flatté M E, Tang H X 2014 Phys. Rev. Lett. 113 037202

    [29]

    You W L, Dong Y L 2010 Eur. Phys. J. D 57 439

    [30]

    You W L, Dong Y L 2011 Phys. Rev. B 84 174426

    [31]

    You W L, Liu G H, Horsch P, Oleś A M 2014 Phys. Rev. B 90 094413

    [32]

    Shan C J, Cheng W W, Liu T K, Huang Y X, Li H 2008 Acta Phys. Sin. 57 2687 (in Chinese) [单传家, 程维文, 刘堂昆, 黄燕霞, 李宏 2008 物理学报 57 2687]

    [33]

    Zhong M, Xu H, Liu X X, Tong P Q 2013 Chin. Phys. B 22 090313

    [34]

    Song J L, Zhong M, Tong P Q 2017 Acta Phys. Sin. 66 180302 (in Chinese) [宋加丽, 钟鸣, 童培庆 2017 物理学报 66 180302]

    [35]

    Brockmann M, Klumper A, Ohanyan V 2013 Phys. Rev. B 87 054407

    [36]

    Derzhko O, Verkholyak T, Krokhmalskii T, Bttner H 2006 Phys. Rev. B 73 214407

    [37]

    Barouch E, McCoy B M 1970 Phys. Rev. A 2 1075

    [38]

    Barouch E, McCoy B M 1971 Phys. Rev. A 3 786

    [39]

    Its A R, Izergin A G, Korepin V E, Slavnov N A 1993 Phys. Rev. Lett. 70 1704

    [40]

    Bunder J E, McKenzie R H 1999 Phys. Rev. B 60 344

    [41]

    Vedral V 2002 Rev. Mod. Phys. 74 197

    [42]

    Horodecki R, Horodecki P, Horodecki M, Horodecki K 2009 Rev. Mod. Phys. 81 865

    [43]

    Modi K, Brodutch A, Cable H, Paterek T, Vedral V 2012 Rev. Mod. Phys. 84 1655

    [44]

    Liu B Q, Shao B, Li J G, Zou J, Wu L A 2011 Phys. Rev. A 83 052112

    [45]

    Radhakrishnan C, Ermakov I, Byrnes T 2017 Phys. Rev. A 96 012341

    [46]

    You W L, Qiu Y C, Oleś A M 2016 Phys. Rev. B 93 214417

    [47]

    You W L, Zhang C J, Ni W, Gong M, Oleś A M 2017 Phys. Rev. B 95 224404

    [48]

    Lei S, Tong P 2015 Physica B 463 1

    [49]

    Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401

    [50]

    Chen J, Cui J, Zhang Y, Fan H 2016 Phys. Rev. A 94 022112

    [51]

    Lamberti P W, Majtey A P, Borras A, Casas M, Plastino A 2008 Phys. Rev. A 77 052311

  • [1] 赵秀琴, 张文慧, 王红梅. 非线性相互作用引起的双模Dicke模型的新奇量子相变. 物理学报, 2024, 73(16): 160302. doi: 10.7498/aps.73.20240665
    [2] 孙振辉, 胡丽贞, 徐玉良, 孔祥木. 准一维混合自旋(1/2, 5/2) Ising-XXZ模型的量子相干和互信息. 物理学报, 2023, 72(13): 130301. doi: 10.7498/aps.72.20230381
    [3] 蔚娟, 张岩, 吴银花, 杨文海, 闫智辉, 贾晓军. 双模压缩态量子相干性演化的实验研究. 物理学报, 2023, 72(3): 034202. doi: 10.7498/aps.72.20221923
    [4] 陈西浩, 夏继宏, 李孟辉, 翟福强, 朱广宇. 自旋-1/2量子罗盘链的量子相与相变. 物理学报, 2022, 71(3): 030302. doi: 10.7498/aps.71.20211433
    [5] 董曜, 纪爱玲, 张国锋. 关联退极化量子信道中qutrit-qutrit系统的量子相干性演化. 物理学报, 2022, 71(7): 070303. doi: 10.7498/aps.71.20212067
    [6] 尤冰凌, 刘雪莹, 成书杰, 王晨, 高先龙. Jaynes-Cummings晶格模型和Rabi晶格模型的量子相变. 物理学报, 2021, 70(10): 100201. doi: 10.7498/aps.70.20202066
    [7] 陈西浩, 夏继宏, 李孟辉, 翟福强, 朱广宇. 自旋-1/2量子罗盘链的量子相与相变. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211433
    [8] 刘彪, 周晓凡, 陈刚, 贾锁堂. 交错跃迁Hofstadter梯子的量子流相. 物理学报, 2020, 69(8): 080501. doi: 10.7498/aps.69.20191964
    [9] 陈爱民, 刘东昌, 段佳, 王洪雷, 相春环, 苏耀恒. 含有Dzyaloshinskii-Moriya相互作用的自旋1键交替海森伯模型的量子相变和拓扑序标度. 物理学报, 2020, 69(9): 090302. doi: 10.7498/aps.69.20191773
    [10] 黄珊, 刘妮, 梁九卿. 光腔中两组分玻色-爱因斯坦凝聚体的受激辐射特性和量子相变. 物理学报, 2018, 67(18): 183701. doi: 10.7498/aps.67.20180971
    [11] 陈西浩, 王秀娟. 一维扩展量子罗盘模型的拓扑序和量子相变. 物理学报, 2018, 67(19): 190301. doi: 10.7498/aps.67.20180855
    [12] 宋加丽, 钟鸣, 童培庆. 横场中具有周期性各向异性的一维XY模型的量子相变. 物理学报, 2017, 66(18): 180302. doi: 10.7498/aps.66.180302
    [13] 叶世强, 陈小余. 基于量子相干性的四体贝尔不等式构建. 物理学报, 2017, 66(20): 200301. doi: 10.7498/aps.66.200301
    [14] 俞立先, 梁奇锋, 汪丽蓉, 朱士群. 双模Dicke模型的一级量子相变. 物理学报, 2014, 63(13): 134204. doi: 10.7498/aps.63.134204
    [15] 刘妮. 激光驱动下腔与玻色-爱因斯坦凝聚中的量子相变. 物理学报, 2013, 62(1): 013402. doi: 10.7498/aps.62.013402
    [16] 单传家. 具有三体相互作用的自旋链系统中的几何相位与量子相变. 物理学报, 2012, 61(22): 220302. doi: 10.7498/aps.61.220302
    [17] 赵建辉, 王海涛. 应用多尺度纠缠重整化算法研究量子自旋系统的量子相变和基态纠缠. 物理学报, 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [18] 杨金虎, 王杭栋, 杜建华, 张瞩君, 方明虎. Co(S1-xSex)2系统中的铁磁量子相变. 物理学报, 2009, 58(2): 1195-1199. doi: 10.7498/aps.58.1195
    [19] 杨金虎, 王杭栋, 杜建华, 张瞩君, 方明虎. NiS2-xSex在x=1.00附近的反铁磁量子相变. 物理学报, 2008, 57(4): 2409-2414. doi: 10.7498/aps.57.2409
    [20] 石筑一, 童 红, 石筑亚, 张春梅, 赵行知, 倪绍勇. 转动诱发原子核量子相变的一种可能途径. 物理学报, 2007, 56(3): 1329-1333. doi: 10.7498/aps.56.1329
计量
  • 文章访问数:  6857
  • PDF下载量:  294
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-13
  • 修回日期:  2018-04-03
  • 刊出日期:  2019-07-20

/

返回文章
返回