搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CsI光阴极在10100 keV X射线能区的响应灵敏度计算

黎宇坤 陈韬 李晋 杨志文 胡昕 邓克立 曹柱荣

引用本文:
Citation:

CsI光阴极在10100 keV X射线能区的响应灵敏度计算

黎宇坤, 陈韬, 李晋, 杨志文, 胡昕, 邓克立, 曹柱荣

Calculation of CsI photocathode spectral response in 10-100 keV X-ray energy region

Li Yu-Kun, Chen Tao, Li Jin, Yang Zhi-Wen, Hu Xin, Deng Ke-Li, Cao Zhu-Rong
PDF
导出引用
  • 为了满足10100 keV高能X射线光电探测器研究的需要,对CsI光阴极在该能量范围的响应灵敏度进行了研究.基于高能量X射线光子与材料相互作用的物理过程,分析了康普顿散射等效应对CsI响应灵敏度的影响.推导了CsI的响应灵敏度与二次电子平均逃逸深度和光阴极厚度的关系式和二次电子平均逃逸深度与入射光子能量的关系式,计算了CsI在10100 keV范围内的响应灵敏度,计算结果与实验测试数据相符,验证了分析与推导的可靠性.根据计算可以获得不同入射X射线能量下CsI光阴极的最佳厚度,从而为高能X射线光电探测器的设计优化提供了理论参考.
    CsI photocathode is widely applied to high energy X-ray detection. And the spectral response is an important character of CsI photocathode. In this paper, the interaction process of high energy X-ray with CsI is analyzed and the spectral response of CsI photocathode is calculated in a 10-100 keV range. The influences of Compton scattering, X-ray fluorescence radiation and Auger emission on the spectral response are analyzed in accordance with the physical process of high energy X-ray interaction with CsI photocathode. These influences prove to be negligible in comparison with photo-ionization influence. Thus only the photoelectric transition is taken into account in calculation. According to the analyses of the processes of the photoelectron creation, transition and escaping, the formula for CsI spectral response is deduced as a function of secondary electron mean escape depth and photocathode thickness. The formula of secondary electron mean escape depth is then deduced as a function of X-ray energy. These formulae indicate that the mean escape depth of the secondary electrons increases markedly with the rise of X-ray energy and has a remarkable influence on the CsI spectral response. The spectral responses for different CsI thickness values are then calculated in a range of 10-100 keV. The results show that 1000 nm CsI has the best response under 20 keV, while 10000 nm CsI has a higher response over 60 keV. Then the calculation data are compared with experimental data of Hara's and Khan's hard X-ray streak camera measurements. These data agree well with each other and prove that our calculation of CsI spectral response for high energy X-ray is reliable. The spectral responses to CsI thickness for 17.5 keV and 60 keV are also calculated and shown in figures. These calculation data match experimental data of Frumkin and Monte-Carlo simulation data of Gibrekhterman. The measurement error of Frumkin's experiment and the uncertainty of the secondary electron mean escape depth are considered to be the reasons for the deviations of calculation and experimental data. The figures of spectral responses to CsI thickness also reveal the optimal thickness values of CsI for different X-ray photon energies. It is shown that 1 m is the optimal thickness for 17.5 keV X-ray detection, and 10 m is optimal for 60 keV. Finally the spectral response of CsI photocathode in a 10-100 keV range is calculated and the formulae prove to be reliable. According to these formulae and calculations, the optimal thickness of CsI photocathode can thus be given for designing and optimizing the high energy X-ray imaging detectors.
      通信作者: 黎宇坤, lychate@126.com
    • 基金项目: 国家自然科学基金(批准号:11675157)和中国工程物理研究院科学技术发展基金(批准号:2015B0102015,2015B0102016)资助的课题.
      Corresponding author: Li Yu-Kun, lychate@126.com
    • Funds: Project supported by the National Natural Science Fundation of China (Grant No. 11675157) and the Science and Technology Development Foundation of China Academy of Engineering Physics (Grant Nos. 2015B0102015, 2015B0102016).
    [1]

    Dromey B 2016 Nature Photon. 10 436

    [2]

    Watts A L, Anderson N, Chakrabarty D, Feroci M, Hebeler K, Israel G, Lamb F K, Miller M C, Morsink S, Ozel F, Patruno A, Poutanen J, Psaltis D, Schwenk A, Steiner A W, Stella L, Tolos L, Klis M V 2016 Rev. Mod. Phys. 88 021001

    [3]

    Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, Bronnimann C, Grunzweig C, David C 2008 Nature Mater. 7 134

    [4]

    Breskin A 1996 Nucl. Instrum. Methods Phys. Res. A 371 116

    [5]

    Henke B L, Knauer J P, Premaratne K 1981 J. Appl. Phys. 52 1509

    [6]

    Fraser G W 1983 Nucl. Instrum. Methods Phys. Res. 206 251

    [7]

    Akkerman A, Gibrekherman A, Breskin A, Chechik R 1992 J. Appl. Phys. 72 5429

    [8]

    Gibrekhterman A, Akkerman A, Breskin A, Chechik R 1993 J. Appl. Phys. 74 7506

    [9]

    Opachich Y P, Ross P W, MacPhee A G, Hilsabeck T J, Nagel S R, Huffman E, Bell P M, Bradley D K, Koch J A, Lande O L 2014 Rev. Sci. Instrum. 85 11D625

    [10]

    Wang Y Y, Yan D W, Tan X L, Wang X M, Gao Y, Peng L P, Yi Y G, Wu W D 2015 Acta Phys. Sin. 64 094103 (in Chinese)[王瑜英, 阎大伟, 谭秀兰, 王雪敏, 高扬, 彭丽萍, 易有根, 吴卫东 2015 物理学报 64 094103]

    [11]

    Zeng P, Yuan Z, Deng B, Yuan Y T, Li Z C, Liu S Y, Zhao Y D, Hong C H, Zheng L, Cui M Q 2012 Acta Phys. Sin. 61 155209 (in Chinese)[曾鹏, 袁铮, 邓博, 袁永腾, 李志超, 刘慎业, 赵屹东, 洪才浩, 郑雷, 崔明启 2012 物理学报 61 155209]

    [12]

    Spicer W E 1958 Phys. Rev. 112 114

    [13]

    Landau L D (translated by Gao J G) 1992 Quatumn Electrodynamics (Beijing:High Education Press) p244 (in Chinese)[朗道著 (高建功译)1992 量子电动力学 (北京:高等教育出版社) 第244页]

    [14]

    Saloman E B, Hubbell J H 1988 Atomic Data and Nuclear Data Tables 38 1

    [15]

    Kane E O 1966 Phys. Rev. 147 335

    [16]

    Tanuma S, Yoshikawa H, Shinotsuka H, Ueda R 2013 J. Electron Spectrosc. Relat. Phenom. 190 127

    [17]

    Xie A G, Xiao S R, Wu H Y 2013 Indian J. Phys. 87 1093

    [18]

    Kanaya K, Ono S, Ishigaki F 1978 J. Phys. D:Appl. Phys. 11 2425

    [19]

    Kanaya K, Kawakatsu H 1972 J. Phys. D:Appl. Phys. 5 1727

    [20]

    Alig R C, Bloom S 1978 J. Appl. Phys. 49 3476

    [21]

    Hara T, Tanaka Y, Kitamura H, Ishikawa T 2000 Rev. Sci. Instrum. 71 3624

    [22]

    Khan S F, Lee J J, Izumi N, Hatch B, Larsen G K, MacPhee A G, Kimbrough J R, Holder J P, Haugh M J, Opachich Y P, Bell P M, Bradley D K 2013 Proc. SPIE 8850 88500D

    [23]

    Frumkin I, Breskin A, Chechik R, Elkind V, Notea A 1992 Nucl. Instrum. Methods Phys. Res. A 329 337

  • [1]

    Dromey B 2016 Nature Photon. 10 436

    [2]

    Watts A L, Anderson N, Chakrabarty D, Feroci M, Hebeler K, Israel G, Lamb F K, Miller M C, Morsink S, Ozel F, Patruno A, Poutanen J, Psaltis D, Schwenk A, Steiner A W, Stella L, Tolos L, Klis M V 2016 Rev. Mod. Phys. 88 021001

    [3]

    Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E F, Bronnimann C, Grunzweig C, David C 2008 Nature Mater. 7 134

    [4]

    Breskin A 1996 Nucl. Instrum. Methods Phys. Res. A 371 116

    [5]

    Henke B L, Knauer J P, Premaratne K 1981 J. Appl. Phys. 52 1509

    [6]

    Fraser G W 1983 Nucl. Instrum. Methods Phys. Res. 206 251

    [7]

    Akkerman A, Gibrekherman A, Breskin A, Chechik R 1992 J. Appl. Phys. 72 5429

    [8]

    Gibrekhterman A, Akkerman A, Breskin A, Chechik R 1993 J. Appl. Phys. 74 7506

    [9]

    Opachich Y P, Ross P W, MacPhee A G, Hilsabeck T J, Nagel S R, Huffman E, Bell P M, Bradley D K, Koch J A, Lande O L 2014 Rev. Sci. Instrum. 85 11D625

    [10]

    Wang Y Y, Yan D W, Tan X L, Wang X M, Gao Y, Peng L P, Yi Y G, Wu W D 2015 Acta Phys. Sin. 64 094103 (in Chinese)[王瑜英, 阎大伟, 谭秀兰, 王雪敏, 高扬, 彭丽萍, 易有根, 吴卫东 2015 物理学报 64 094103]

    [11]

    Zeng P, Yuan Z, Deng B, Yuan Y T, Li Z C, Liu S Y, Zhao Y D, Hong C H, Zheng L, Cui M Q 2012 Acta Phys. Sin. 61 155209 (in Chinese)[曾鹏, 袁铮, 邓博, 袁永腾, 李志超, 刘慎业, 赵屹东, 洪才浩, 郑雷, 崔明启 2012 物理学报 61 155209]

    [12]

    Spicer W E 1958 Phys. Rev. 112 114

    [13]

    Landau L D (translated by Gao J G) 1992 Quatumn Electrodynamics (Beijing:High Education Press) p244 (in Chinese)[朗道著 (高建功译)1992 量子电动力学 (北京:高等教育出版社) 第244页]

    [14]

    Saloman E B, Hubbell J H 1988 Atomic Data and Nuclear Data Tables 38 1

    [15]

    Kane E O 1966 Phys. Rev. 147 335

    [16]

    Tanuma S, Yoshikawa H, Shinotsuka H, Ueda R 2013 J. Electron Spectrosc. Relat. Phenom. 190 127

    [17]

    Xie A G, Xiao S R, Wu H Y 2013 Indian J. Phys. 87 1093

    [18]

    Kanaya K, Ono S, Ishigaki F 1978 J. Phys. D:Appl. Phys. 11 2425

    [19]

    Kanaya K, Kawakatsu H 1972 J. Phys. D:Appl. Phys. 5 1727

    [20]

    Alig R C, Bloom S 1978 J. Appl. Phys. 49 3476

    [21]

    Hara T, Tanaka Y, Kitamura H, Ishikawa T 2000 Rev. Sci. Instrum. 71 3624

    [22]

    Khan S F, Lee J J, Izumi N, Hatch B, Larsen G K, MacPhee A G, Kimbrough J R, Holder J P, Haugh M J, Opachich Y P, Bell P M, Bradley D K 2013 Proc. SPIE 8850 88500D

    [23]

    Frumkin I, Breskin A, Chechik R, Elkind V, Notea A 1992 Nucl. Instrum. Methods Phys. Res. A 329 337

  • [1] 张建威, 牛莹, 闫润圻, 张荣奇, 曹猛, 李永东, 刘纯亮, 张嘉伟. 体空位缺陷对氧化铝二次电子发射特性的影响分析. 物理学报, 2024, 73(15): 157902. doi: 10.7498/aps.73.20240577
    [2] 周贤明, 尉静, 程锐, 梁昌慧, 陈燕红, 赵永涛, 张小安. 近玻尔速度不同离子碰撞产生Al的K X射线. 物理学报, 2023, 72(1): 013402. doi: 10.7498/aps.72.20221628
    [3] 何小安, 杨家敏, 黎宇坤, 李晋, 熊刚. 软X射线条纹相机CsI光阴极响应灵敏度的理论计算. 物理学报, 2023, 72(24): 245203. doi: 10.7498/aps.72.20231043
    [4] 张秉章, 宋张勇, 张明武, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 朱志超, 孙良亭, 于得洋. 类氢O、N离子入射Al表面俘获电子布居几率的理论与实验研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212434
    [5] 张秉章, 宋张勇, 张明武, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 朱志超, 孙良亭, 于得洋. 类氢O、N离子入射Al表面俘获电子布居几率的理论与实验研究. 物理学报, 2022, 71(13): 133201. doi: 10.7498/aps.70.20212434
    [6] 李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 万城亮, 崔莹, 马越, 杨治虎, 路迪, ReinholdSchuch, 黎明, 张红强, 陈熙萌. 低能电子在玻璃管中的稳定传输. 物理学报, 2022, 71(7): 074101. doi: 10.7498/aps.71.20212036
    [7] 黎宇坤, 董建军, 陈韬, 宋仔锋, 王强强, 邓克立, 邓博, 曹柱荣, 王峰. 对钙钛矿CsPbX3的X光波段外光电效应的研究. 物理学报, 2021, 70(19): 197901. doi: 10.7498/aps.70.20210651
    [8] 强鹏飞, 盛立志, 李林森, 闫永清, 刘哲, 周晓红. X射线聚焦望远镜光学设计. 物理学报, 2019, 68(16): 160702. doi: 10.7498/aps.68.20190709
    [9] 刘学, 冉宪文, 徐志宏, 汤文辉. 多能复合谱电子束与X射线能量沉积剖面的等效性. 物理学报, 2017, 66(2): 025202. doi: 10.7498/aps.66.025202
    [10] 宋庆庆, 王新波, 崔万照, 王志宇, 冉立新. 多载波微放电中二次电子横向扩散的概率分析. 物理学报, 2014, 63(22): 220205. doi: 10.7498/aps.63.220205
    [11] 刘慎业, 黄翼翔, 胡昕, 张继彦, 杨国洪, 李军, 易荣清, 杜华冰, 丁永坤. 高强度二倍频激光辐照银薄膜靶的烧蚀和X光辐射实验研究. 物理学报, 2013, 62(3): 035202. doi: 10.7498/aps.62.035202
    [12] 曾鹏, 袁铮, 邓博, 袁永腾, 李志超, 刘慎业, 赵屹东, 洪才浩, 郑雷, 崔明启. 软X射线条纹相机透射式Au与CsI阴极谱响应灵敏度标定. 物理学报, 2012, 61(15): 155209. doi: 10.7498/aps.61.155209
    [13] 常天海, 郑俊荣. 固体金属二次电子发射的Monte-Carlo模拟. 物理学报, 2012, 61(24): 241401. doi: 10.7498/aps.61.241401
    [14] 段萍, 李肸, 鄂鹏, 卿绍伟. 霍尔推进器中磁化二次电子对鞘层特性的影响. 物理学报, 2011, 60(12): 125203. doi: 10.7498/aps.60.125203
    [15] 梁昌慧, 张小安, 李耀宗, 赵永涛, 肖国青. 129Xeq+激发Mo表面产生的X射线谱. 物理学报, 2010, 59(9): 6059-6063. doi: 10.7498/aps.59.6059
    [16] 刘鑫, 雷耀虎, 赵志刚, 郭金川, 牛憨笨. 硬X射线相位光栅的设计与研制. 物理学报, 2010, 59(10): 6927-6932. doi: 10.7498/aps.59.6927
    [17] 于达仁, 张凤奎, 李鸿, 刘辉. 霍尔推进器中振荡鞘层对电子与壁面碰撞频率的影响研究. 物理学报, 2009, 58(3): 1844-1848. doi: 10.7498/aps.58.1844
    [18] 陈 博, 朱佩平, 刘宜晋, 王寯越, 袁清习, 黄万霞, 明 海, 吴自玉. X射线光栅相位成像的理论和方法. 物理学报, 2008, 57(3): 1576-1581. doi: 10.7498/aps.57.1576
    [19] 杨治虎, 宋张勇, 陈熙萌, 张小安, 张艳萍, 赵永涛, 崔 莹, 张红强, 徐 徐, 邵健雄, 于得洋, 蔡晓红. 高电荷态离子Arq+与不同金属靶作用产生的X射线. 物理学报, 2006, 55(5): 2221-2227. doi: 10.7498/aps.55.2221
    [20] 赵永涛, 肖国青, 张小安, 杨治虎, 陈熙萌, 李福利, 张艳萍, 张红强, 崔 莹, 绍剑雄, 徐 徐. 空心原子的K-x射线谱. 物理学报, 2005, 54(1): 85-88. doi: 10.7498/aps.54.85
计量
  • 文章访问数:  7934
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-04
  • 修回日期:  2018-01-30
  • 刊出日期:  2019-04-20

/

返回文章
返回