搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

噪声对一种三粒子量子探针态的影响

赵军龙 张译丹 杨名

引用本文:
Citation:

噪声对一种三粒子量子探针态的影响

赵军龙, 张译丹, 杨名

Influence of noice on tripartite quantum probe state

Zhao Jun-Long, Zhang Yi-Dan, Yang Ming
PDF
导出引用
  • 量子度量学是研究量子测量与统计推断的一门学科,主要利用量子手段来提高参数估计的精度,在量子信息处理与测量中起到关键作用.量子参数估计的一般过程包含四个步骤:探针态的制备、参数化过程、对参数化后的输出态进行测量以及根据测量结果估计待测参数.其中探针态的选取对测量精度起着至关重要的作用.然而在实际的量子探针态的制备过程中,初始探针态会受到环境噪声的影响.目前人们已经研究了W态与Greenberger-Horne-Zeilinger(GHZ)态的量子Fisher信息(QFI)在典型噪声通道下的变化行为.由于W态与GHZ态有着不同的纠缠性质,对于W态与GHZ态的叠加态的QFI动力学研究具有重要的实际意义.故此,本文主要研究典型噪声通道对这两种状态的叠加态的QFI动力学行为的影响,得出了QFI随噪声参数的变化行为.结果表明,叠加态中W态组分可明显对抗相位阻尼噪声对探针态的QFI的影响,而其中的GHZ态组分可明显对抗振幅阻尼噪声的影响,从而为在实际环境中选取高精度的参数估计过程提供参考.
    Quantum metrology is a subject of studying quantum measurement and quantum statistical deduction, and the precision of parameter estimation can be enhanced by quantum properties. In general, the process of parameter estimation includes four steps:preparation of probe state, parameterization process, measurement, and data processing. Of these four steps, the preparation of probe state is the most crucial. However, in practical applications, in the process of preparing quantum probe state, the probe system will couple to its environment, which will inevitably cause the quantum properties of the probe system to deteriorate, and thus reducing the precision of quantum parameter estimation. The dynamics of quantum Fisher information (QFI) for W state and Greenberger-Horne-Zeilinger (GHZ) state have been studied in decoherence channels. Because W state and GHZ state have different entanglement properties, the studies of the dynamics of QFI for the superposition of W state and GHZ state are of practical significance in quantum metrology field. In this paper, the dynamics of QFIs for the superposition of W state and GHZ state in three typical decoherence channels (depolarization channel, amplitude damping channel and phase damping channel) are studied. In the four steps of quantum parameter estimation, our major attention is paid to the first step (i.e., the preparation of probe state). For comparison, the QFIs of different probe states are studied, with the other three steps fixed, i.e., all the probe states will undergo the same parameterization, measurement and estimation process. The parameterization process involved here is a quantum spin operation (specified by the spin rotation direction), which is chosen to maximize the QFI of the probe state. The initial probe states under consideration are the superpositions of W state and GHZ state of three-particle and five-particle systems, and the QFI dynamics of those probe states are studied in the three different typical decoherence channels. By using the operator-sum (Kraus) representation of those three typical decoherence channels, the QFI dynamics of the probe state can be analytically derived in three different decoherence channels. The results show that in the depolarization channel, the maximum QFI of the probe state decreases with the decoherence evolving to zero in the end; in the amplitude damping channel, the QFI of the probe state decreases to the minimum with the decoherence evolution and then increases to the shot noise limit; in the phase damping channel, the QFI of the probe state decreases with the evolution of decoherence, but the final stable value is not zero. Further analyses show that W state component of the superposition plays a role in resisting phase damping and the GHZ state component plays a role in resisting amplitude damping. These results can help us to choose the optimal probe state for maximizing the estimation precision in practice.
      通信作者: 杨名, mingyang@ahu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11274010,11374085)资助的课题.
      Corresponding author: Yang Ming, mingyang@ahu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11274010, 11374085).
    [1]

    Braunstein S L, Caves C M 1994 Phys. Rev. Lett. 72 3439

    [2]

    Jin G R, Kim S W 2007 Phys. Rev. A 76 043621

    [3]

    Hyllus P, Laskowski W, Krischek P, Schwemmer C, Wieczorek W, Weinfurter H, Pezzé L, Smerzi A 2012 Phys. Rev. A 85 022321

    [4]

    Liu W F, Zhang L H, Li C J 2010 Int. J. Theor. Phys. 49 2463

    [5]

    Liu J, Xiong H N, Song F, Wang X G 2014 Physica A 410 167

    [6]

    Yao Y, Xiao X, Ge L, Wang X G, Sun C P 2014 Phys. Rev. A 89 042336

    [7]

    Giovannetti V, Lloyd S, Maccone L 2006 Phys. Rev. Lett. 96 010401

    [8]

    Ozaydin F 2014 Phys. Lett. A 378 3161

    [9]

    Ozaydin F, Altintas A A, Bugu S, Yesilyurt C 2014 Acta Phys. Pol. A 125 606

    [10]

    Luati A 2004 Ann. Stat. 32 1770

    [11]

    Jing X X, Liu J, Xiong H N, Wang X G 2015 Phys. Rev. A 92 012312

    [12]

    Pezzé L, Smerzi A 2009 Phys. Rev. Lett. 102 100401

    [13]

    Escher B M, Filho R L D M, Davidovich L 2011 Nat. Phys. 7 406

    [14]

    Demokowicz-Dobrzański R, Kolodyński J, Gutǎ M 2012 Nat. Commun. 3 1063

    [15]

    Roy S M, Braunstein S L 2008 Phys. Rev. Lett. 100 220501

    [16]

    Greenberger D M, Horne M A, Shimony A, Zeilinger A 1990 Am. J. Phys. 58 1131

    [17]

    Dr W, Vidal G, Cirac J I 2000 Phys. Rev. A 62 062314

    [18]

    Briegel H J, Raussendorf R 2001 Phys. Rev. Lett. 86 910

    [19]

    Ma J, Huang Y X, Wang X G, Sun C P 2011 Phys. Rev. A 84 022302

    [20]

    Ozaydin F, Altintas A A, Bugu S, Yesilyurt C 2013 Int. J. Theor. Phys. 52 2977

    [21]

    Ozaydin F, Altintas A A, Bugu S, Yesilyurt C 2014 Int. J. Theor. Phys. 53 3219

    [22]

    Yi X J, Huang G Q, Wang J M 2012 Int. J. Theor. Phys. 51 3458

    [23]

    Erol V 2017 Int. J. Theor. Phys. 56 3202

    [24]

    Erol V 2017 arXiv: 1704.07367 (preprints)

    [25]

    Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic Press) pp56-57

    [26]

    Holevo A S 1982 Probabilistic and Statistical Aspects of Quantum Theory (Amsterdam: North-Holland) pp102-104

    [27]

    Braunstein S L, Caves C M 1994 Phys. Rev. Lett. 72 3439

    [28]

    Paris M G A 2009 Int. J. Quantum Inf. 07 125

    [29]

    Ma J, Huang Y X, Wang X G, Sun C P 2011 Phys. Rev. A 84 022302

    [30]

    Pang S S, Brun T A 2014 Phys. Rev. A 90 022117

    [31]

    Liu J, Jing X X, Wang X G 2014 Sci. Rep. 5 8565

    [32]

    Wang X, Shi X 2015 Phys. Rev. A 92 042318

  • [1]

    Braunstein S L, Caves C M 1994 Phys. Rev. Lett. 72 3439

    [2]

    Jin G R, Kim S W 2007 Phys. Rev. A 76 043621

    [3]

    Hyllus P, Laskowski W, Krischek P, Schwemmer C, Wieczorek W, Weinfurter H, Pezzé L, Smerzi A 2012 Phys. Rev. A 85 022321

    [4]

    Liu W F, Zhang L H, Li C J 2010 Int. J. Theor. Phys. 49 2463

    [5]

    Liu J, Xiong H N, Song F, Wang X G 2014 Physica A 410 167

    [6]

    Yao Y, Xiao X, Ge L, Wang X G, Sun C P 2014 Phys. Rev. A 89 042336

    [7]

    Giovannetti V, Lloyd S, Maccone L 2006 Phys. Rev. Lett. 96 010401

    [8]

    Ozaydin F 2014 Phys. Lett. A 378 3161

    [9]

    Ozaydin F, Altintas A A, Bugu S, Yesilyurt C 2014 Acta Phys. Pol. A 125 606

    [10]

    Luati A 2004 Ann. Stat. 32 1770

    [11]

    Jing X X, Liu J, Xiong H N, Wang X G 2015 Phys. Rev. A 92 012312

    [12]

    Pezzé L, Smerzi A 2009 Phys. Rev. Lett. 102 100401

    [13]

    Escher B M, Filho R L D M, Davidovich L 2011 Nat. Phys. 7 406

    [14]

    Demokowicz-Dobrzański R, Kolodyński J, Gutǎ M 2012 Nat. Commun. 3 1063

    [15]

    Roy S M, Braunstein S L 2008 Phys. Rev. Lett. 100 220501

    [16]

    Greenberger D M, Horne M A, Shimony A, Zeilinger A 1990 Am. J. Phys. 58 1131

    [17]

    Dr W, Vidal G, Cirac J I 2000 Phys. Rev. A 62 062314

    [18]

    Briegel H J, Raussendorf R 2001 Phys. Rev. Lett. 86 910

    [19]

    Ma J, Huang Y X, Wang X G, Sun C P 2011 Phys. Rev. A 84 022302

    [20]

    Ozaydin F, Altintas A A, Bugu S, Yesilyurt C 2013 Int. J. Theor. Phys. 52 2977

    [21]

    Ozaydin F, Altintas A A, Bugu S, Yesilyurt C 2014 Int. J. Theor. Phys. 53 3219

    [22]

    Yi X J, Huang G Q, Wang J M 2012 Int. J. Theor. Phys. 51 3458

    [23]

    Erol V 2017 Int. J. Theor. Phys. 56 3202

    [24]

    Erol V 2017 arXiv: 1704.07367 (preprints)

    [25]

    Helstrom C W 1976 Quantum Detection and Estimation Theory (New York: Academic Press) pp56-57

    [26]

    Holevo A S 1982 Probabilistic and Statistical Aspects of Quantum Theory (Amsterdam: North-Holland) pp102-104

    [27]

    Braunstein S L, Caves C M 1994 Phys. Rev. Lett. 72 3439

    [28]

    Paris M G A 2009 Int. J. Quantum Inf. 07 125

    [29]

    Ma J, Huang Y X, Wang X G, Sun C P 2011 Phys. Rev. A 84 022302

    [30]

    Pang S S, Brun T A 2014 Phys. Rev. A 90 022117

    [31]

    Liu J, Jing X X, Wang X G 2014 Sci. Rep. 5 8565

    [32]

    Wang X, Shi X 2015 Phys. Rev. A 92 042318

  • [1] 任亚雷, 周涛. 运动参考系中量子Fisher信息. 物理学报, 2024, 73(5): 050601. doi: 10.7498/aps.73.20231394
    [2] 周贤韬, 江英华. 带身份认证的量子安全直接通信方案. 物理学报, 2023, 72(2): 020302. doi: 10.7498/aps.72.20221684
    [3] 刘然, 吴泽, 李宇晨, 陈昱全, 彭新华. 基于量子Fisher信息测量的实验多体纠缠刻画. 物理学报, 2023, 72(11): 110305. doi: 10.7498/aps.72.20230356
    [4] 李竞, 丁海涛, 张丹伟. 非厄米哈密顿量中的量子Fisher信息与参数估计. 物理学报, 2023, 72(20): 200601. doi: 10.7498/aps.72.20230862
    [5] 李岩, 任志红. 多量子比特WV纠缠态在Lipkin-Meshkov-Glick模型下的量子Fisher信息. 物理学报, 2023, 72(22): 220302. doi: 10.7498/aps.72.20231179
    [6] 贺志, 蒋登魁, 李艳. 一种与开放系统初态无关的非马尔科夫度量. 物理学报, 2022, 71(21): 210303. doi: 10.7498/aps.71.20221053
    [7] 牛明丽, 王月明, 李志坚. 基于量子Fisher信息的耗散相互作用光-物质耦合常数的估计. 物理学报, 2022, 71(9): 090601. doi: 10.7498/aps.71.20212029
    [8] 王帅, 眭永兴, 孟祥国. 光子增加双模压缩真空态在马赫-曾德尔干涉仪相位测量中的应用. 物理学报, 2020, 69(12): 124202. doi: 10.7498/aps.69.20200179
    [9] 任志红, 李岩, 李艳娜, 李卫东. 基于量子Fisher信息的量子计量进展. 物理学报, 2019, 68(4): 040601. doi: 10.7498/aps.68.20181965
    [10] 武莹, 李锦芳, 刘金明. 基于部分测量增强量子隐形传态过程的量子Fisher信息. 物理学报, 2018, 67(14): 140304. doi: 10.7498/aps.67.20180330
    [11] 范榕华, 郭邦红, 郭建军, 张程贤, 张文杰, 杜戈. 基于轨道角动量的多自由度W态纠缠系统. 物理学报, 2015, 64(14): 140301. doi: 10.7498/aps.64.140301
    [12] 郭红. Bose-Hubbard模型中系统初态对量子关联的影响. 物理学报, 2015, 64(22): 220301. doi: 10.7498/aps.64.220301
    [13] 常锋, 王晓茜, 盖永杰, 严冬, 宋立军. 光与物质相互作用系统中的量子Fisher信息和自旋压缩. 物理学报, 2014, 63(17): 170302. doi: 10.7498/aps.63.170302
    [14] 宋立军, 严冬, 刘烨. 玻色-爱因斯坦凝聚系统的量子Fisher信息与混沌. 物理学报, 2011, 60(12): 120302. doi: 10.7498/aps.60.120302
    [15] 查新未, 张淳民. 利用一个三粒子W态隐形传送N粒子GHZ态. 物理学报, 2008, 57(3): 1339-1342. doi: 10.7498/aps.57.1339
    [16] 尹辑文, 肖景林, 于毅夫, 王子武. 库仑势对抛物量子点量子比特消相干的影响. 物理学报, 2008, 57(5): 2695-2698. doi: 10.7498/aps.57.2695
    [17] 张登玉, 郭 萍, 高 峰. 强热辐射环境中两能级原子量子态保真度. 物理学报, 2007, 56(4): 1906-1910. doi: 10.7498/aps.56.1906
    [18] 周小清, 邬云文. 利用三粒子纠缠态建立量子隐形传态网络的探讨. 物理学报, 2007, 56(4): 1881-1887. doi: 10.7498/aps.56.1881
    [19] 黄永畅, 刘 敏. 一般WGHZ态和它的退纠缠与概率隐形传态. 物理学报, 2005, 54(10): 4517-4523. doi: 10.7498/aps.54.4517
    [20] 林秀, 李洪才. 利用V形三能级原子与光场Raman相互作用制备多原子GHZ态. 物理学报, 2001, 50(9): 1689-1692. doi: 10.7498/aps.50.1689
计量
  • 文章访问数:  5907
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-05
  • 修回日期:  2018-03-26
  • 刊出日期:  2019-07-20

/

返回文章
返回