搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无序性对脆性材料冲击破碎的影响

陈兴 马刚 周伟 赖国伟 来志强

引用本文:
Citation:

无序性对脆性材料冲击破碎的影响

陈兴, 马刚, 周伟, 赖国伟, 来志强

Effects of material disorder on impact fragmentation of brittle spheres

Chen Xing, Ma Gang, Zhou Wei, Lai Guo-Wei, Lai Zhi-Qiang
PDF
导出引用
  • 脆性材料受冲击荷载作用产生损伤开裂是一个连续介质离散化的过程.采用连续离散耦合方法模拟了一个脆性圆球以不同初始速度与刚性板的冲击,重点研究了无序性对脆性材料冲击破碎的影响,并对其内在机理进行了分析.本文不考虑材料细观结构的无序性,材料的无序仅体现在细观断裂参数的非均质性.数值实验同样揭示了脆性材料在冲击破坏中存在两种破坏模式,即低速时接触区域的局部损伤和高速时的整体碎裂.研究表明,材料无序性对临界冲击速度、破碎模式、碎片形态影响显著.随着无序度增加,材料的临界速度增大,损伤开裂由少量贯穿性裂纹主导转变为全域性的分叉裂纹.高无序度圆球冲击产生的碎片表面更粗糙,体型更为扁平细长.这与细观断裂的主导机制有关,无序度较高时剪切导致开裂的比重更大,碎片内部损伤裂纹面更多.
    Brittle materials have many excellent properties for structural applications, whereas the brittleness and disorder due to defects and micro-cracks cause failure. Fragmentation may occur and often lead to a catastrophic damage, bring dangers to the users especially when brittle materials suffer dynamic loads like impact and explosion. The impact fragmentation of brittle material belongs to the continuum/discretization domain. The combined finite and discrete element method (FDEM) is used to investigate the impact fragmentation of disordered material in detail. In this work, structural disorder in the brittle material is not considered, and the disorder is only reflected in the strength heterogeneity. Assuming that the mesoscopic fracture parameters of brittle materials obey the Weibull distribution, the degree of disorder can be quantified by the Weibull modulus k. The impact of a brittle sphere against a rigid plate is simulated using the FDEM. The dynamic response can be classified into damage and fragmentation zones. In sphere with low material disorder, cracking pattern is mainly dominated by single or more penetrating cracks. Increasing the disorder degree by smaller k, branch cracks emerge. Finally, it changes into a global branch crack in highly disordered sphere. Besides, mass index analysis indicates that higher disordered sphere has a higher critical velocity in impact events, in which the critical impact velocities equal 10, 15, 40 and 80 m/s when the values of m are 10, 5, 2 and 1, respectively. Furthermore, the principal component analysis is adopted for digging the crack features from fragments morphology description. The statistics of two fragment shape indexes shows that fragments coming from the highly disordered spheres have greater variability with a rougher surface and higher flatness overall, corresponding to the fracture pattern. Finally, we conclude that the effects of disorder on impact fragmentation can be ascribed to the dominant cracking mechanism-specifically, the proportion of shear failure mechanism grows with the disorder degree, implying more non-penetrating branch cracks existing in the fragments. We demonstrate that the effect of disorder on impact fragmentation is probably a consequence of a continuous phase nucleation-avalanche-percolation transition as well.
      通信作者: 马刚, magang630@whu.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFC0401907)和国家自然科学基金(批准号:51509190,51579193)资助的课题.
      Corresponding author: Ma Gang, magang630@whu.edu.cn
    • Funds: Project supported by the National KeyResearch and Development Program of China (Grant No. 2016YFC0401907) and the National Natural Science Foundation of China (Grant Nos. 51509190, 51579193).
    [1]

    Halasz Z, Nakahara A, Kitsunezaki S, Kun F 2017 Phys. Rev. E 96 033006

    [2]

    Biswas S, Ray P, Roy S 2017 Phys. Rev. E 96 63003

    [3]

    Li W, Bei H, Tong Y, Dmowski W, Gao Y F 2013 Appl. Phys. Lett. 103 171910

    [4]

    Zhang Y, Zhao D, Yue Y 2017 J. Am. Ceram. Soc. 100 3434

    [5]

    Wang J G, Zhao D Q, Pan M X, Shek C H, Wang W H 2009 Appl. Phys. Lett. 94 031904

    [6]

    Fu Y F, Liang Z Z, Tang C 2000 Chinese J. Geot. Eng. 6 705 (in Chinese) [傅宇方, 梁正召, 唐春安 2000 岩土工程学报 6 705]

    [7]

    Oddershede L, Dimon P, Bohr J 1993 Phys. Rev. Lett. 71 3107

    [8]

    Kun F, Wittel F K, Herrmann H J, Kroplin B H, Maloy K J 2006 Phys. Rev. Lett. 96 025504

    [9]

    Wittel F, Kun F, Herrmann H J, Kroplin B H 2004 Phys. Rev. Lett. 93 035504

    [10]

    Pernas-Sanchez J, Artero-Guerrero J A, Varas D, Lopez-Puente J 2015 Exp. Mech. 55 1669

    [11]

    Parab N D, Guo Z, Hudspeth M C, Claus B J, Fezzaa K, Sun T, Chen W W 2017 Int. J. Impact Eng. 106 146

    [12]

    Kun F, Herrmann H J 1999 Phys. Rev. E 59 2623

    [13]

    Behera B, Kun F, Mcnamara S, Herrmann H J 2005 J. Phys.: Condens. Matter 17 S2439

    [14]

    Sator N, Mechkov S, Sausset F 2008 EPL 81 44002

    [15]

    Wittel F K, Carmona H A, Kun F, Herrmann H J 2008 Int. J. Fract. 154 105

    [16]

    Rabczuk T, Eibl J 2003 Int. J. Numer. Meth. Eng. 56 1421

    [17]

    Su T X, Ma L Q, Liu M B, Chang J Z 2013 Acta Phys. Sin. 62 064702 (in Chinese) [苏铁熊, 马理强, 刘谋斌, 常建忠 2013 物理学报 62 064702]

    [18]

    Silling S A, Askari E 2005 Comput. Struct. 83 1526

    [19]

    Li F, Pan J, Sinka C 2011 Int. J. Impact Eng. 38 653

    [20]

    Yu Y, He H L, Wang W Q, Lu T C 2014 Acta Phys. Sin. 63 246102 (in Chinese) [俞寅, 贺红亮, 王文强, 卢铁城 2014 物理学报 63 246102]

    [21]

    Munjiza A, Owen D, Bicanic N 1995 Eng. Comput. 12 145

    [22]

    Zhou W, Tang L, Liu X, Ma G, Chen M 2016 Int. J. Impact Eng. 95 165

    [23]

    Ma G, Zhou W, Chang X, Chen M 2016 Granul. Matter 18

    [24]

    Mahabadi O K, Cottrell B E, Grasselli G 2010 Rock Mech. Rock Eng. 43 707

    [25]

    Ma G, Zhou W, Ng T, Cheng Y, Chang X 2015 Acta Geotech. 10 481

    [26]

    Ma G, Zhou W, Chang X, Ng T, Yang L 2016 Powder Technol. 301 118

    [27]

    Ma G, Zhou W, Zhang Y, Wang Q, Chang X 2018 Powder Technol. 325 498

    [28]

    Ma G, Zhang Y, Zhou W, Ng T, Wang Q, Chen X 2018 Int. J. Impact Eng. 113 132

    [29]

    Carmona H A, Wittel F K, Kun F 2014 Eur. Phys. J.: Spec. Top 223 2369

    [30]

    Carmona H A, Wittel F K, Kun F, Herrmann H J 2008 Phys. Rev. E 77 051302

    [31]

    Rao K S, Noferesti H 2008 Defence Sci. J. 58 285

    [32]

    Cui J, Hao H, Shi Y 2018 Constr. Build. Mater. 160 440

    [33]

    Ma G, Zhou W, Chang X 2014 Comput. Geotech. 61 132

    [34]

    Grange S, Forquin P, Mencacci S, Hild F 2008 Int. J. Impact Eng. 35 977

    [35]

    Pisano G, Carfagni G R 2015 Constr. Build. Mater. 98 741

    [36]

    Joshi A A, Pagni P J 1994 Fire Safety J. 22 45

    [37]

    King D S, Fahrenholtz W G, Hilmas G E 2013 J. Eur. Ceram. Soc. 33 2943

    [38]

    Gorjan L, Ambrožič M 2012 J. Eur. Ceram. Soc. 32 1221

    [39]

    Siarampi E, Kontonasaki E, Andrikopoulos K S, Kantiranis N, Voyiatzis G A, Zorba T, Paraskevopoulos K M, Koidis P 2014 Dent. Mater. 30 E306

    [40]

    Guazzato M, Quach L, Albakry M, Swain M V 2005 J. Dent. 33 9

    [41]

    Yang W, Zhang G P, Zhu X F, Li X W, Meyers M A 2011 J. Mech. Behav. Biomed. 4 1514

    [42]

    Lin A Y, Meyers M A 2009 J. Mech. Behav. Biomed. 2 607

    [43]

    Gruber M, Kraleva I, Supancic P, Bielen J, Kiener D, Bermejo R 2017 J. Eur. Ceram. Soc. 37 4397

    [44]

    Wereszczak A A, Barnes A S, Breder K, Binapal S 2000 J. Mater. Sci. Mater. Electron. 11 291

    [45]

    Wittel F K, Kun F, Herrmann H J, Kroplin B H 2005 Phys. Rev. E 71 016108

    [46]

    Tomas J, Schreier M, Groger T, Ehlers S 1999 Powder Technol. 105 39

    [47]

    Khanal M, Schubert W, Tomas J 2004 Granul. Matter 5 177

    [48]

    Toussaint R, Hansen A 2006 Phys. Rev. E 73 046103

    [49]

    Shekhawat A, Zapperi S, Sethna J P 2013 Phys. Rev. Lett. 110 185505

  • [1]

    Halasz Z, Nakahara A, Kitsunezaki S, Kun F 2017 Phys. Rev. E 96 033006

    [2]

    Biswas S, Ray P, Roy S 2017 Phys. Rev. E 96 63003

    [3]

    Li W, Bei H, Tong Y, Dmowski W, Gao Y F 2013 Appl. Phys. Lett. 103 171910

    [4]

    Zhang Y, Zhao D, Yue Y 2017 J. Am. Ceram. Soc. 100 3434

    [5]

    Wang J G, Zhao D Q, Pan M X, Shek C H, Wang W H 2009 Appl. Phys. Lett. 94 031904

    [6]

    Fu Y F, Liang Z Z, Tang C 2000 Chinese J. Geot. Eng. 6 705 (in Chinese) [傅宇方, 梁正召, 唐春安 2000 岩土工程学报 6 705]

    [7]

    Oddershede L, Dimon P, Bohr J 1993 Phys. Rev. Lett. 71 3107

    [8]

    Kun F, Wittel F K, Herrmann H J, Kroplin B H, Maloy K J 2006 Phys. Rev. Lett. 96 025504

    [9]

    Wittel F, Kun F, Herrmann H J, Kroplin B H 2004 Phys. Rev. Lett. 93 035504

    [10]

    Pernas-Sanchez J, Artero-Guerrero J A, Varas D, Lopez-Puente J 2015 Exp. Mech. 55 1669

    [11]

    Parab N D, Guo Z, Hudspeth M C, Claus B J, Fezzaa K, Sun T, Chen W W 2017 Int. J. Impact Eng. 106 146

    [12]

    Kun F, Herrmann H J 1999 Phys. Rev. E 59 2623

    [13]

    Behera B, Kun F, Mcnamara S, Herrmann H J 2005 J. Phys.: Condens. Matter 17 S2439

    [14]

    Sator N, Mechkov S, Sausset F 2008 EPL 81 44002

    [15]

    Wittel F K, Carmona H A, Kun F, Herrmann H J 2008 Int. J. Fract. 154 105

    [16]

    Rabczuk T, Eibl J 2003 Int. J. Numer. Meth. Eng. 56 1421

    [17]

    Su T X, Ma L Q, Liu M B, Chang J Z 2013 Acta Phys. Sin. 62 064702 (in Chinese) [苏铁熊, 马理强, 刘谋斌, 常建忠 2013 物理学报 62 064702]

    [18]

    Silling S A, Askari E 2005 Comput. Struct. 83 1526

    [19]

    Li F, Pan J, Sinka C 2011 Int. J. Impact Eng. 38 653

    [20]

    Yu Y, He H L, Wang W Q, Lu T C 2014 Acta Phys. Sin. 63 246102 (in Chinese) [俞寅, 贺红亮, 王文强, 卢铁城 2014 物理学报 63 246102]

    [21]

    Munjiza A, Owen D, Bicanic N 1995 Eng. Comput. 12 145

    [22]

    Zhou W, Tang L, Liu X, Ma G, Chen M 2016 Int. J. Impact Eng. 95 165

    [23]

    Ma G, Zhou W, Chang X, Chen M 2016 Granul. Matter 18

    [24]

    Mahabadi O K, Cottrell B E, Grasselli G 2010 Rock Mech. Rock Eng. 43 707

    [25]

    Ma G, Zhou W, Ng T, Cheng Y, Chang X 2015 Acta Geotech. 10 481

    [26]

    Ma G, Zhou W, Chang X, Ng T, Yang L 2016 Powder Technol. 301 118

    [27]

    Ma G, Zhou W, Zhang Y, Wang Q, Chang X 2018 Powder Technol. 325 498

    [28]

    Ma G, Zhang Y, Zhou W, Ng T, Wang Q, Chen X 2018 Int. J. Impact Eng. 113 132

    [29]

    Carmona H A, Wittel F K, Kun F 2014 Eur. Phys. J.: Spec. Top 223 2369

    [30]

    Carmona H A, Wittel F K, Kun F, Herrmann H J 2008 Phys. Rev. E 77 051302

    [31]

    Rao K S, Noferesti H 2008 Defence Sci. J. 58 285

    [32]

    Cui J, Hao H, Shi Y 2018 Constr. Build. Mater. 160 440

    [33]

    Ma G, Zhou W, Chang X 2014 Comput. Geotech. 61 132

    [34]

    Grange S, Forquin P, Mencacci S, Hild F 2008 Int. J. Impact Eng. 35 977

    [35]

    Pisano G, Carfagni G R 2015 Constr. Build. Mater. 98 741

    [36]

    Joshi A A, Pagni P J 1994 Fire Safety J. 22 45

    [37]

    King D S, Fahrenholtz W G, Hilmas G E 2013 J. Eur. Ceram. Soc. 33 2943

    [38]

    Gorjan L, Ambrožič M 2012 J. Eur. Ceram. Soc. 32 1221

    [39]

    Siarampi E, Kontonasaki E, Andrikopoulos K S, Kantiranis N, Voyiatzis G A, Zorba T, Paraskevopoulos K M, Koidis P 2014 Dent. Mater. 30 E306

    [40]

    Guazzato M, Quach L, Albakry M, Swain M V 2005 J. Dent. 33 9

    [41]

    Yang W, Zhang G P, Zhu X F, Li X W, Meyers M A 2011 J. Mech. Behav. Biomed. 4 1514

    [42]

    Lin A Y, Meyers M A 2009 J. Mech. Behav. Biomed. 2 607

    [43]

    Gruber M, Kraleva I, Supancic P, Bielen J, Kiener D, Bermejo R 2017 J. Eur. Ceram. Soc. 37 4397

    [44]

    Wereszczak A A, Barnes A S, Breder K, Binapal S 2000 J. Mater. Sci. Mater. Electron. 11 291

    [45]

    Wittel F K, Kun F, Herrmann H J, Kroplin B H 2005 Phys. Rev. E 71 016108

    [46]

    Tomas J, Schreier M, Groger T, Ehlers S 1999 Powder Technol. 105 39

    [47]

    Khanal M, Schubert W, Tomas J 2004 Granul. Matter 5 177

    [48]

    Toussaint R, Hansen A 2006 Phys. Rev. E 73 046103

    [49]

    Shekhawat A, Zapperi S, Sethna J P 2013 Phys. Rev. Lett. 110 185505

  • [1] 张凤国, 刘军, 何安民, 赵福祺, 王裴. 强冲击加载下延性金属卸载熔化损伤/破碎问题的物理建模及其应用. 物理学报, 2022, 71(24): 244601. doi: 10.7498/aps.71.20221340
    [2] 王智环, 贾雷明, 何增, 田宙. 冲击载荷下线性硬化材料中球面应力波场的理论计算方法研究. 物理学报, 2022, 71(1): 018301. doi: 10.7498/aps.71.20210954
    [3] 苗春贺, 袁良柱, 陆建华, 王鹏飞, 徐松林. 聚甲基丙烯酸甲酯的冲击破碎扩散特性. 物理学报, 2022, 71(21): 216201. doi: 10.7498/aps.71.20220740
    [4] 苗春贺, 袁良柱, 陆建华, 王鹏飞, 徐松林. PMMA的冲击破碎扩散特性研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120220740
    [5] 储根柏, 于明海, 税敏, 范伟, 席涛, 景龙飞, 赵永强, 吴玉迟, 辛建婷, 周维民. 强激光间接驱动材料动态破碎过程的实验技术研究. 物理学报, 2020, 69(2): 026201. doi: 10.7498/aps.69.20191245
    [6] 彭旭, 李斌, 王顺尧, 饶国宁, 陈网桦. 激波冲击作用下液膜破碎的气液两相流. 物理学报, 2020, 69(24): 244702. doi: 10.7498/aps.69.20201051
    [7] 季顺迎, 樊利芳, 梁绍敏. 基于离散元方法的颗粒材料缓冲性能及影响因素分析. 物理学报, 2016, 65(10): 104501. doi: 10.7498/aps.65.104501
    [8] 徐新河, 刘鹰, 甘月红, 刘文苗. 磁电耦合超材料本构矩阵获取方法的研究. 物理学报, 2015, 64(4): 044101. doi: 10.7498/aps.64.044101
    [9] 喻寅, 贺红亮, 王文强, 卢铁城. 多孔脆性材料对高能量密度脉冲的吸收和抵抗能力. 物理学报, 2015, 64(12): 124302. doi: 10.7498/aps.64.124302
    [10] 姜太龙, 喻寅, 宦强, 李永强, 贺红亮. 设计脆性材料的冲击塑性. 物理学报, 2015, 64(18): 188301. doi: 10.7498/aps.64.188301
    [11] 喻寅, 贺红亮, 王文强, 卢铁城. 含微孔洞脆性材料的冲击响应特性与介观演化机制. 物理学报, 2014, 63(24): 246102. doi: 10.7498/aps.63.246102
    [12] 何龙, 宋筠. 双层石墨烯材料中无序导致超导-绝缘体相变的数值研究. 物理学报, 2013, 62(5): 057303. doi: 10.7498/aps.62.057303
    [13] 喻寅, 王文强, 杨佳, 张友君, 蒋冬冬, 贺红亮. 多孔脆性介质冲击波压缩破坏的细观机理和图像. 物理学报, 2012, 61(4): 048103. doi: 10.7498/aps.61.048103
    [14] 刘冬梅, 韩鹏. 含单负特异材料一维无序扰动周期结构中的光子局域特性研究. 物理学报, 2010, 59(10): 7066-7072. doi: 10.7498/aps.59.7066
    [15] 赵义. 一维长程关联无序系统的局域性. 物理学报, 2010, 59(1): 532-535. doi: 10.7498/aps.59.532
    [16] 杨利霞, 葛德彪, 赵跃华, 王 刚, 阎 述. 基于直接离散方式的磁化铁氧体材料电磁散射的时域有限差分方法分析. 物理学报, 2008, 57(5): 2936-2940. doi: 10.7498/aps.57.2936
    [17] 陈登平, 贺红亮, 黎明发, 经福谦. 冲击压缩下非均质脆性固体的弛豫破坏研究. 物理学报, 2007, 56(1): 423-428. doi: 10.7498/aps.56.423
    [18] 程 勇, 张 雄, 伍 林, 毛慰明, 尤莉莎. 用离散相关函数方法分析Blazar天体的γ射线和射电辐射的相关性. 物理学报, 2006, 55(2): 988-994. doi: 10.7498/aps.55.988
    [19] 熊诗杰. 无序对金属超晶格电子结构的影响——CPA方法. 物理学报, 1985, 34(6): 774-783. doi: 10.7498/aps.34.774
    [20] 傅卓武. 具有近程序的N元无序材料理论. 物理学报, 1985, 34(4): 493-502. doi: 10.7498/aps.34.493
计量
  • 文章访问数:  4960
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-03
  • 修回日期:  2018-03-20
  • 刊出日期:  2019-07-20

/

返回文章
返回