搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

音频段1.34 μm压缩态光场的实验制备

冯晋霞 杜京师 靳晓丽 李渊骥 张宽收

引用本文:
Citation:

音频段1.34 μm压缩态光场的实验制备

冯晋霞, 杜京师, 靳晓丽, 李渊骥, 张宽收

Generation of audio-band frequency squeezed light at 1.34 μm

Feng Jin-Xia, Du Jing-Shi, Jin Xiao-Li, Li Yuan-Ji, Zhang Kuan-Shou
PDF
导出引用
  • 音频段压缩态光场是进行连续变量量子精密测量重要的量子资源.本文利用自制的低噪声连续单频671 nm/1.34 μm双波长激光器作为抽运源,抽运基于周期极化磷酸氧钛钾晶体的简并光学参量振荡器,进行了光通信波段1.34 μm 连续变量音频段真空压缩态光场的实验制备.当简并光学参量振荡器运转于阈值以下参量反放大状态时,抽运光场功率为95 mW,本地振荡光功率为60 μupW时,在分析频率8–100 kHz 范围内研制出1.34 μm真空压缩态光场.在分析频率36 kHz 处,压缩态光场的最大压缩度达5.0 dB;在音频频率8 kHz处,压缩态光场的压缩度达3.0 dB.音频段1.34 μm压缩态光场可用于实现基于光纤的量子精密测量.
    Continuous variable (CV) audio-band frequency squeezed states at the fiber telecommunication wavelength is an important quantum resource for the practical applications based on optical fiber. As is well known, the optical power attenuation and phase diffusion effect of light at 1.3 μm in standard telecommunication fibres are low and small, respectively. The audio-band frequency squeezed light at 1.34 μm can be utilized to realize quantum precision measurement, such as quantum-enhanced sensing in the low-frequency range, laser interferometer for gravitational wave detection. In this paper, CV audio-band frequency vacuum squeezed states at 1.3 μm are experimentally generated by using a type-I degenerate optical parametric oscillator (DOPO) below the threshold. A home-made continuous-wave single-frequency dual-wavelength (671 nm and 1.34 μm) Nd:YVO4/LBO laser is used as a pump source for DOPO based on a type-I quasi-phase-matched periodically poled KTiOPO4 (PPKTP) crystal. Mode cleaners with a finesse of 400 and linewidth of 0.75 MHz are used to filter the noise of lasers at 671 nm and 1.34 μm, respectively. The intensity noises of the two lasers reach a shot noise level for analysis frequencies higher than 1.0 MHz and their phase noises reach shot noise level for analysis frequencies higher than 1.3 MHz, respectively. The low noise single-frequency 671 nm laser is utilized as a pump of the DOPO. The threshold power of the DOPO is 450 mW. In order to detect the audio-band frequency vacuum squeezed states, the power of local oscillator of a homodyne detector system is optimized to 60 μupW. Furthermore, the effect of common mode rejection ratio (CMRR) of detectors is discussed in detecting the audio-band frequency vacuum squeezed states. Improvement of CMRR of detectors is a good way to detect the audio-band frequency vacuum squeezed states effectively. When the phase matching temperature of PPKTP crystal is controlled at 53℃ by using a home-made temperature controller and the pump power is 95 mW, the vacuum squeezed states are generated at analysis frequency ranging from 8-100 kHz. A maximum measured squeeze of 5.0 dB is obtained at analysis frequency of 36 kHz. A 3.0 dB squeezed light is obtained at an audio-band frequency of 8 kHz.
      通信作者: 张宽收, kuanshou@sxu.edu.cn
    • 基金项目: 国家重点研发计划(批准号:2016YFA0301401)和山西省“1331工程”重点学科建设计划(批准号:1331KSC)资助的课题.
      Corresponding author: Zhang Kuan-Shou, kuanshou@sxu.edu.cn
    • Funds: Project supported by the National Key Research and Development Plan of China (Grant No. 2016YFA0301401) and Sponsored by the Fund for Shanxi "1331Project" Key Subjects Construction (Grant No. 1331KSC).
    [1]

    Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513

    [2]

    Wang X B, Hiroshima T, Tomita A, Hayashi M 2007 Phys. Rep. 448 1

    [3]

    Weedbrook C, Pirandola S, Garcia-Patron R, Cerf N J, Ralph T C 2012 Rev. Mod. Phys. 84 621

    [4]

    Wu L A, Xiao M, Kimble H J 1987 J. Opt. Soc. Am. B. 4 1465

    [5]

    Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321

    [6]

    Vahlbruch H, Mehmet M, Chelkowski S, Hage B, Franzen A, Lastzka N, Goßler S, Danzmann K, Schnabel R 2008 Phys. Rev. Lett. 100 033602

    [7]

    Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H, Peng K C 2017 Opt. Lett. 42 4553

    [8]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801

    [9]

    Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, Mckenzie K, Ward R, Vass S, Weinstein A J, Mavalvala N 2008 Nat. Phys. 4 472

    [10]

    The L I G O Scientific Collaboration 2008 Nat. Photon. 7 613

    [11]

    Travis H, Singh R, Dowling J P, Mikhailov E E 2012 Phys. Rev. A 86 023803

    [12]

    Taylor M A, Janousek J, Daria V, Knittel J, Hage B, Bachor H A, Bowen W P 2013 Nat. Photon. 7 229

    [13]

    McKenize K, Grosser N, Bowen W P, Whitcomb S E, Gray M B, McClelland D E, Lam P K 2004 Phys. Rev. Lett. 93 161105

    [14]

    Stefszky M S, Mow-lowry C M, Chua S S Y, Shaddock D A, Buchler B C, Vahlbruch H, Khalaidovski A, Schnabel R, Lam P K, McClelland D E 2012 Class. Quantum. Grav. 29 145015

    [15]

    Liu C J, Jing J T, Zhou Z F, Pooser R C, Hudelist F, Zhou L, Zhang W P 2011 Opt. Lett. 36 2979

    [16]

    Liu Z J, Zhai Z H, Sun H X, Gao J R 2016 Acta Phys. Sin. 65 060401 (in Chinese)[刘增俊, 翟泽辉, 孙恒信, 郜江瑞 2016 物理学报 65 060401]

    [17]

    Yan Z H, Sun H X, Cai C X, Ma L, Liu K, Gao J R 2017 Acta Phys. Sin. 66 114205 (in Chinese)[闫子华, 孙恒信, 蔡春晓, 马龙, 刘奎, 郜江瑞 2017 物理学报 66 114205]

    [18]

    Yang W H, Jing X L, Yu X D, Zheng Y H, Peng K C 2017 Opt. Express 25 24262

    [19]

    Yao L T, Feng J X, Gao Y H, Zhang K S 2017 Acta Sin. Quan. Opt. 23 99 (in Chinese)[要立婷, 冯晋霞, 高英豪, 张宽收 2017 量子光学学报 23 99]

    [20]

    Bachor H A, Ralph T C A 2004 Guide to Experiments in Quantum Optics (Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA) pp247-250

    [21]

    Li Y J, Feng J X, Li P, Zhang K S, Chen Y J, Lin Y F, Huang Y D 2013 Opt. Express 21 6082

    [22]

    Liu X, Wang Y, Chang D X, Jia X J, Peng K C 2007 Acta Sin. Quan. Opt. 13 138 (in Chinese)[刘侠, 王宇, 常冬霞, 贾晓军, 彭堃墀 2007 量子光学学报 13 138]

    [23]

    Hou F Y, Yu L, Jia X J, Zheng Y H, Xie C D, Peng K C 2011 Eur. Phys. J. D 62 433

    [24]

    Zheng Y H, Wu Z Q, Huo M R, Zhou H J 2013 Chin. Phys. B 22 094206

    [25]

    Aoki T, Takahashi G, Furusawa A 2006 Opt. Express 14 6930

    [26]

    Yang W H, Jin X L, Yu X D, Zheng Y H, Peng K C 2017 Opt. Express 25 22262

    [27]

    Ma Y Y, Feng J X, Wan Z J, Gao Y H, Zhang K S 2017 Acta Phys. Sin. 66 244205 (in Chinese)[马亚云, 冯晋霞, 万振菊, 高英豪, 张宽收 2017 物理学报 66 244205]

  • [1]

    Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513

    [2]

    Wang X B, Hiroshima T, Tomita A, Hayashi M 2007 Phys. Rep. 448 1

    [3]

    Weedbrook C, Pirandola S, Garcia-Patron R, Cerf N J, Ralph T C 2012 Rev. Mod. Phys. 84 621

    [4]

    Wu L A, Xiao M, Kimble H J 1987 J. Opt. Soc. Am. B. 4 1465

    [5]

    Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321

    [6]

    Vahlbruch H, Mehmet M, Chelkowski S, Hage B, Franzen A, Lastzka N, Goßler S, Danzmann K, Schnabel R 2008 Phys. Rev. Lett. 100 033602

    [7]

    Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H, Peng K C 2017 Opt. Lett. 42 4553

    [8]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801

    [9]

    Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, Mckenzie K, Ward R, Vass S, Weinstein A J, Mavalvala N 2008 Nat. Phys. 4 472

    [10]

    The L I G O Scientific Collaboration 2008 Nat. Photon. 7 613

    [11]

    Travis H, Singh R, Dowling J P, Mikhailov E E 2012 Phys. Rev. A 86 023803

    [12]

    Taylor M A, Janousek J, Daria V, Knittel J, Hage B, Bachor H A, Bowen W P 2013 Nat. Photon. 7 229

    [13]

    McKenize K, Grosser N, Bowen W P, Whitcomb S E, Gray M B, McClelland D E, Lam P K 2004 Phys. Rev. Lett. 93 161105

    [14]

    Stefszky M S, Mow-lowry C M, Chua S S Y, Shaddock D A, Buchler B C, Vahlbruch H, Khalaidovski A, Schnabel R, Lam P K, McClelland D E 2012 Class. Quantum. Grav. 29 145015

    [15]

    Liu C J, Jing J T, Zhou Z F, Pooser R C, Hudelist F, Zhou L, Zhang W P 2011 Opt. Lett. 36 2979

    [16]

    Liu Z J, Zhai Z H, Sun H X, Gao J R 2016 Acta Phys. Sin. 65 060401 (in Chinese)[刘增俊, 翟泽辉, 孙恒信, 郜江瑞 2016 物理学报 65 060401]

    [17]

    Yan Z H, Sun H X, Cai C X, Ma L, Liu K, Gao J R 2017 Acta Phys. Sin. 66 114205 (in Chinese)[闫子华, 孙恒信, 蔡春晓, 马龙, 刘奎, 郜江瑞 2017 物理学报 66 114205]

    [18]

    Yang W H, Jing X L, Yu X D, Zheng Y H, Peng K C 2017 Opt. Express 25 24262

    [19]

    Yao L T, Feng J X, Gao Y H, Zhang K S 2017 Acta Sin. Quan. Opt. 23 99 (in Chinese)[要立婷, 冯晋霞, 高英豪, 张宽收 2017 量子光学学报 23 99]

    [20]

    Bachor H A, Ralph T C A 2004 Guide to Experiments in Quantum Optics (Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA) pp247-250

    [21]

    Li Y J, Feng J X, Li P, Zhang K S, Chen Y J, Lin Y F, Huang Y D 2013 Opt. Express 21 6082

    [22]

    Liu X, Wang Y, Chang D X, Jia X J, Peng K C 2007 Acta Sin. Quan. Opt. 13 138 (in Chinese)[刘侠, 王宇, 常冬霞, 贾晓军, 彭堃墀 2007 量子光学学报 13 138]

    [23]

    Hou F Y, Yu L, Jia X J, Zheng Y H, Xie C D, Peng K C 2011 Eur. Phys. J. D 62 433

    [24]

    Zheng Y H, Wu Z Q, Huo M R, Zhou H J 2013 Chin. Phys. B 22 094206

    [25]

    Aoki T, Takahashi G, Furusawa A 2006 Opt. Express 14 6930

    [26]

    Yang W H, Jin X L, Yu X D, Zheng Y H, Peng K C 2017 Opt. Express 25 22262

    [27]

    Ma Y Y, Feng J X, Wan Z J, Gao Y H, Zhang K S 2017 Acta Phys. Sin. 66 244205 (in Chinese)[马亚云, 冯晋霞, 万振菊, 高英豪, 张宽收 2017 物理学报 66 244205]

  • [1] 李锦芳, 何东山, 王一平. 一维耦合腔晶格中磁子-光子拓扑相变和拓扑量子态的调制. 物理学报, 2024, 73(4): 044203. doi: 10.7498/aps.73.20231519
    [2] 郑智勇, 陈立杰, 向吕, 王鹤, 王一平. 一维超导微波腔晶格中反旋波效应对拓扑相变和拓扑量子态的调制. 物理学报, 2023, 72(24): 244204. doi: 10.7498/aps.72.20231321
    [3] 王伟, 王一平. 一维超导传输线腔晶格中的拓扑相变和拓扑量子态的调制. 物理学报, 2022, 71(19): 194203. doi: 10.7498/aps.71.20220675
    [4] 刘奎, 马龙, 苏必达, 李佳明, 孙恒信, 郜江瑞. 基于非简并光学参量放大器产生光学频率梳纠缠态. 物理学报, 2020, 69(12): 124203. doi: 10.7498/aps.69.20200107
    [5] 万振菊, 冯晋霞, 成健, 张宽收. 连续变量纠缠态光场在光纤中传输特性的实验研究. 物理学报, 2018, 67(2): 024203. doi: 10.7498/aps.67.20171542
    [6] 马亚云, 冯晋霞, 万振菊, 高英豪, 张宽收. 连续变量1.34 m量子纠缠态光场的实验制备. 物理学报, 2017, 66(24): 244205. doi: 10.7498/aps.66.244205
    [7] 卢道明, 邱昌东. 弱相干场原子-腔-光纤系统中的量子失协. 物理学报, 2014, 63(11): 110303. doi: 10.7498/aps.63.110303
    [8] 王菊霞. 二能级原子与多模光场简并多光子共振相互作用系统中量子保真度的演化特性. 物理学报, 2014, 63(18): 184203. doi: 10.7498/aps.63.184203
    [9] 卢道明. 弱相干场耦合腔系统中的纠缠特性. 物理学报, 2013, 62(3): 030302. doi: 10.7498/aps.62.030302
    [10] 周媛媛, 张合庆, 周学军, 田培根. 基于标记配对相干态光源的诱骗态量子密钥分配性能分析. 物理学报, 2013, 62(20): 200302. doi: 10.7498/aps.62.200302
    [11] 卢道明. 三参数双模压缩粒子数态的量子特性. 物理学报, 2012, 61(21): 210302. doi: 10.7498/aps.61.210302
    [12] 周媛媛, 周学军. 基于弱相干态光源的非正交编码被动诱骗态量子密钥分配. 物理学报, 2011, 60(10): 100301. doi: 10.7498/aps.60.100301
    [13] 赵加强, 逯怀新. 原子偶极压缩的相干控制和Cauchy-Schwarz不等式的破坏. 物理学报, 2010, 59(11): 7875-7879. doi: 10.7498/aps.59.7875
    [14] 冯秀琴, 姚治海, 田作林, 韩秀宇. 简并光学参量振荡器的超混沌控制与周期态同步. 物理学报, 2010, 59(12): 8414-8419. doi: 10.7498/aps.59.8414
    [15] 赵建刚, 孙长勇, 梁宝龙, 苏杰. 虚光场对玻色-爱因斯坦凝聚体与二项式光场相互作用系统中光场压缩性质的影响. 物理学报, 2009, 58(7): 4635-4640. doi: 10.7498/aps.58.4635
    [16] 张英杰, 夏云杰, 任廷琦, 杜秀梅, 刘玉玲. 反Jaynes-Cummings模型下纠缠相干光场量子特性的研究. 物理学报, 2009, 58(2): 722-728. doi: 10.7498/aps.58.722
    [17] 林继成, 郑小虎, 曹卓良. Kerr介质中双模纠缠相干光与Bell态原子相互作用系统的原子偶极压缩. 物理学报, 2007, 56(2): 837-844. doi: 10.7498/aps.56.837
    [18] 冯秀琴, 沈 柯. 简并光学参量振荡器混沌反控制. 物理学报, 2006, 55(9): 4455-4459. doi: 10.7498/aps.55.4455
    [19] 江金环, 王永龙, 李子平. 稳态光折变空间孤子传输的量子理论. 物理学报, 2004, 53(12): 4070-4074. doi: 10.7498/aps.53.4070
    [20] 王丹翎, 龚旗煌, 汪凯戈, 杨国健. 光学简并参量振荡中的量子非破坏性测量. 物理学报, 2000, 49(8): 1484-1489. doi: 10.7498/aps.49.1484
计量
  • 文章访问数:  6119
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-06
  • 修回日期:  2018-04-18
  • 刊出日期:  2018-09-05

/

返回文章
返回