搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直拉硅单晶生长过程中工艺参数对相变界面形态的影响

张妮 刘丁 冯雪亮

引用本文:
Citation:

直拉硅单晶生长过程中工艺参数对相变界面形态的影响

张妮, 刘丁, 冯雪亮

Effects of process parameters on melt-crystal interface in Czochralski silicon crystal growth

Zhang Ni1\2, Liu Ding1\2, Feng Xue-Liang
PDF
导出引用
  • 为改善晶体相变界面形态,提高晶体品质,提出了一种融合浸入边界法(immersed boundary method,IBM)和格子Boltzmann法(lattice Boltzmann method,LBM)的二维轴对称浸入边界热格子Boltzmann模型来研究直拉法硅单晶生长中的相变问题.将相变界面视为浸没边界,用拉格朗日节点显式追踪相变界面;用LBM求解熔体中的流场和温度分布;用有限差分法求解晶体中的温度分布.实现了基于IB-LBM的动边界晶体生长过程研究.得到了不同晶体生长工艺参数作用下的相变界面,并用相变界面位置偏差绝对值的均值和偏差的标准差来衡量界面的平坦度,得到平坦相变界面对应工艺参数的调整方法.研究表明,相变过程与晶体提拉速度、晶体旋转参数和坩埚旋转参数的相互作用有关,合理地配置晶体旋转参数和坩埚旋转参数的比值,能够得到平坦的相变界面.
    A two-dimensional axisymmetric immersed boundary thermal lattice Boltzmann (IB-TLB) model is presented to study the phase transition in Czochralski silicon crystal growth for improving the morphology of the melt-crystal interface and the crystal quality. Specifically, the Euler grid and the Lagrange grid are established, respectively. The melt-crystal interface is considered as an immersed boundary, and it is described by a series of Lagrange nodes. In this paper, the melt-crystal interface is tracked by the immersed boundary method, and the melt flow and heat transfer are simulated by the lattice Boltzmann method. The D2Q9 model is adopted to solve the axial velocity, radial velocity, swirling velocity and temperature of the melt. The finite difference method is used to solve the temperature distribution of the crystal. Then the solid-liquid transition in crystal growth with moving boundary is solved by the proposed IB-TLB model. The proposed model is validated by the solid-liquid phase transition benchmark. In addition, the flatness of the melt-crystal interface is evaluated by the mean value of the absolute value of the interface deviation and the standard deviation of the interface deviation. The effects of the process parameters on the morphology of melt-crystal interface, melt flow structure and temperature distribution are analyzed. The results show that the morphology of the melt-crystal interface is relevant to the interaction of the crystal pulling rate, the crystal rotation parameter, and the crucible rotation parameter. When the crystal and crucible rotate together, the deviation and fluctuation of the melt-crystal interface can be effectively adjusted, whether they rotate in the same direction or rotate in the opposite directions. And a flat melt-crystal interface can be obtained by appropriately configurating the ratio of crystal rotation parameter to crucible rotation parameter. Finally, according to a series of computations, it is found that when the crucible and crystal rotate in the opposite directions, the crystal rotation parameter and the crucible rotation parameter satisfy a functional relation, with a flat interface maintained. The obtained relationship has a certain reference for adjusting and improving the crystal growth parameters in practice.
      通信作者: 刘丁, liud@xaut.edu.cn
    • 基金项目: 国家自然科学基金重点项目(批准号:61533014)、国家重点基础研究发展计划(批准号:2014CB360508)和高等学校博士学科点专项科研基金(批准号:20136118130001)资助的课题.
      Corresponding author: Liu Ding1\2, liud@xaut.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 61533014), the National Basic Research Program of China (Grant No. 2014CB360508), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20136118130001).
    [1]

    Liu D, Zhao X G, Zhao Y 2017 Control Theor. Appl. 34 1 (in Chinese)[刘丁, 赵小国, 赵跃 2017 控制理论与应用 34 1]

    [2]

    Nikitin N, Polezhaev V 2001 J. Cryst. Growth 230 30

    [3]

    Zhang N, Liu D 2018 Results Phys. 10 882

    [4]

    Jana S, Dost S, Kumar V, Durst F 2006 Int. J. Eng. Sci. 44 554

    [5]

    Liu L J, Kakimoto K 2008 J. Cryst. Growth 310 306

    [6]

    Chen J C, Chiang P Y, Chang C H, et al. 2014 J. Cryst. Growth 401 813

    [7]

    Peng Y, Shu C, Chew Y T 2003 J. Comput. Phys. 186 295

    [8]

    Mencinger J 2004 J. Comput. Phys. 198 243

    [9]

    Miller W, Rasin I, Succi S 2006 Physica A 362 78

    [10]

    Miller W 2001 J. Cryst. Growth 230 263

    [11]

    Zhao X, Dong B, Li W Z, Dou B L 2017 Appl. Therm. Eng. 111 1477

    [12]

    Huang R Z, Wu H Y 2016 J. Comput. Phys. 315 65

    [13]

    Huang R Z, Wu H Y 2014 J. Comput. Phys. 277 305

    [14]

    Wu X D, Liu H P, Chen F 2017 Acta Phys. Sin. 66 224702 (in Chinese)[吴晓笛, 刘华坪, 陈浮 2017 物理学报 66 224702]

    [15]

    Qian Y H, d'Humières D, Lallemand P 1992 Europhys. Lett. 17 479

    [16]

    Guo Z L, Zheng C G, Shi B C 2002 Chin. Phys. 11 366

    [17]

    Liu K T, Tang A P 2014 J. Sichuan Univ. (Eng. Sci.) 46 73 (in Chinese)[刘克同, 汤爱平 2014 四川大学学报(工程科学版) 46 73]

    [18]

    Guo Z L, Zheng C G, Shi B C 2002 Phys. Fluids 14 2007

    [19]

    Huang R, Wu H, Cheng P 2013 Int. J. Heat. Mass. Tran. 59 295

    [20]

    Jiang L, Liu D, Zhao Y, Liu Z S 2012 J. Synth. Cryst. 41 1762 (in Chinese)[姜雷, 刘丁, 赵跃, 刘志尚 2012 人工晶体学报 41 1762]

  • [1]

    Liu D, Zhao X G, Zhao Y 2017 Control Theor. Appl. 34 1 (in Chinese)[刘丁, 赵小国, 赵跃 2017 控制理论与应用 34 1]

    [2]

    Nikitin N, Polezhaev V 2001 J. Cryst. Growth 230 30

    [3]

    Zhang N, Liu D 2018 Results Phys. 10 882

    [4]

    Jana S, Dost S, Kumar V, Durst F 2006 Int. J. Eng. Sci. 44 554

    [5]

    Liu L J, Kakimoto K 2008 J. Cryst. Growth 310 306

    [6]

    Chen J C, Chiang P Y, Chang C H, et al. 2014 J. Cryst. Growth 401 813

    [7]

    Peng Y, Shu C, Chew Y T 2003 J. Comput. Phys. 186 295

    [8]

    Mencinger J 2004 J. Comput. Phys. 198 243

    [9]

    Miller W, Rasin I, Succi S 2006 Physica A 362 78

    [10]

    Miller W 2001 J. Cryst. Growth 230 263

    [11]

    Zhao X, Dong B, Li W Z, Dou B L 2017 Appl. Therm. Eng. 111 1477

    [12]

    Huang R Z, Wu H Y 2016 J. Comput. Phys. 315 65

    [13]

    Huang R Z, Wu H Y 2014 J. Comput. Phys. 277 305

    [14]

    Wu X D, Liu H P, Chen F 2017 Acta Phys. Sin. 66 224702 (in Chinese)[吴晓笛, 刘华坪, 陈浮 2017 物理学报 66 224702]

    [15]

    Qian Y H, d'Humières D, Lallemand P 1992 Europhys. Lett. 17 479

    [16]

    Guo Z L, Zheng C G, Shi B C 2002 Chin. Phys. 11 366

    [17]

    Liu K T, Tang A P 2014 J. Sichuan Univ. (Eng. Sci.) 46 73 (in Chinese)[刘克同, 汤爱平 2014 四川大学学报(工程科学版) 46 73]

    [18]

    Guo Z L, Zheng C G, Shi B C 2002 Phys. Fluids 14 2007

    [19]

    Huang R, Wu H, Cheng P 2013 Int. J. Heat. Mass. Tran. 59 295

    [20]

    Jiang L, Liu D, Zhao Y, Liu Z S 2012 J. Synth. Cryst. 41 1762 (in Chinese)[姜雷, 刘丁, 赵跃, 刘志尚 2012 人工晶体学报 41 1762]

  • [1] 孙贵花, 张庆礼, 罗建乔, 王小飞, 谷长江. Pr, Yb, Ho:GdScO3晶体生长及光谱性能. 物理学报, 2024, 73(5): 059801. doi: 10.7498/aps.73.20231362
    [2] 王欢, 何春娟, 徐升, 王义炎, 曾祥雨, 林浚发, 王小艳, 巩静, 马小平, 韩坤, 王乙婷, 夏天龙. 拓扑半金属及磁性拓扑材料的单晶生长. 物理学报, 2023, 72(3): 038103. doi: 10.7498/aps.72.20221574
    [3] 孙贵花, 张庆礼, 罗建乔, 王小飞, 谷长江. Pr,Yb,Ho:GdScO3晶体生长及光谱性能研究. 物理学报, 2023, 0(0): . doi: 10.7498/aps.72.20231362
    [4] 辛建建, 陈振雷, 石凡, 石伏龙. 基于直角网格法的单个和阵列布置下柔性水翼绕流数值模拟. 物理学报, 2020, 69(4): 044702. doi: 10.7498/aps.69.20191711
    [5] 孙贵花, 张庆礼, 罗建乔, 孙敦陆, 谷长江, 郑丽丽, 韩松, 李为民. Ti:MgAl2O4激光晶体的提拉法生长及性能表征. 物理学报, 2020, 69(1): 014210. doi: 10.7498/aps.69.20191150
    [6] 辛建建, 石伏龙, 金秋. 一种径向基函数虚拟网格法数值模拟复杂边界流动. 物理学报, 2017, 66(4): 044704. doi: 10.7498/aps.66.044704
    [7] 吴晓笛, 刘华坪, 陈浮. 基于浸入边界-多松弛时间格子玻尔兹曼通量求解法的流固耦合算法研究. 物理学报, 2017, 66(22): 224702. doi: 10.7498/aps.66.224702
    [8] 李强, 李五明. 带嵌件型腔内熔接过程的数值模拟研究. 物理学报, 2016, 65(6): 064601. doi: 10.7498/aps.65.064601
    [9] 郭灿, 王锦程, 王志军, 李俊杰, 郭耀麟, 唐赛. BCC枝晶生长原子堆垛过程的晶体相场研究. 物理学报, 2015, 64(2): 028102. doi: 10.7498/aps.64.028102
    [10] 黄伟超, 刘丁, 焦尚彬, 张妮. 直拉法晶体生长过程非稳态流体热流耦合. 物理学报, 2015, 64(20): 208102. doi: 10.7498/aps.64.208102
    [11] 刘飞飞, 魏守水, 魏长智, 任晓飞. 基于速度源修正的浸入边界-晶格玻尔兹曼法研究仿生微流体驱动模型. 物理学报, 2014, 63(19): 194704. doi: 10.7498/aps.63.194704
    [12] 周耐根, 洪涛, 周浪. MEAM势与Tersoff势比较研究碳化硅熔化与凝固行为. 物理学报, 2012, 61(2): 028101. doi: 10.7498/aps.61.028101
    [13] 周鹏宇, 张庆礼, 杨华军, 宁凯杰, 孙敦陆, 罗建乔, 殷绍唐. 5 at%Yb3+: YNbO4 的提拉法晶体生长和光谱特性. 物理学报, 2012, 61(22): 228103. doi: 10.7498/aps.61.228103
    [14] 肖进, 张庆礼, 周文龙, 谭晓靓, 刘文鹏, 殷绍唐, 江海河, 夏上达, 郭常新. Nd3+:Gd3Sc2Al3O12 晶场能级及拟合. 物理学报, 2010, 59(10): 7306-7313. doi: 10.7498/aps.59.7306
    [15] 邢辉, 陈长乐, 金克新, 谭兴毅, 范飞. 相场晶体法模拟过冷熔体中的晶体生长. 物理学报, 2010, 59(11): 8218-8225. doi: 10.7498/aps.59.8218
    [16] 牛睿祺, 董慧茹, 王云平. 非线性光学晶体4-(4-二甲基氨基苯乙烯基)甲基吡啶对甲基苯磺酸盐的制备与性能研究. 物理学报, 2007, 56(7): 4235-4241. doi: 10.7498/aps.56.4235
    [17] 王英伟, 王自东, 程灏波. 新型激光晶体Yb:KY(WO4)2的结构与光谱. 物理学报, 2006, 55(9): 4803-4808. doi: 10.7498/aps.55.4803
    [18] 徐锦锋, 魏炳波. 快速凝固Co-Cu包晶合金的电学性能. 物理学报, 2005, 54(7): 3444-3450. doi: 10.7498/aps.54.3444
    [19] 刘向荣, 王 楠, 魏炳波. 无容器条件下Cu-Pb偏晶的快速生长. 物理学报, 2005, 54(4): 1671-1678. doi: 10.7498/aps.54.1671
    [20] 徐锦锋, 魏炳波. 急冷快速凝固过程中液相流动与组织形成的相关规律. 物理学报, 2004, 53(6): 1909-1915. doi: 10.7498/aps.53.1909
计量
  • 文章访问数:  6640
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-07
  • 修回日期:  2018-07-28
  • 刊出日期:  2018-11-05

/

返回文章
返回