搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺杂红外染料聚叠氮缩水甘油醚工质激光烧蚀推进性能优化探索

罗乐乐 窦志国 叶继飞

引用本文:
Citation:

掺杂红外染料聚叠氮缩水甘油醚工质激光烧蚀推进性能优化探索

罗乐乐, 窦志国, 叶继飞

Optimization exploration of laser ablation propulsion performance of infrared dye doped glycidyl azide polymer

Luo Le-Le, Dou Zhi-Guo, Ye Ji-Fei
PDF
导出引用
  • 选择含能聚合物聚叠氮缩水甘油醚(GAP)作为激光烧蚀微推力器的工质,分析了红外染料掺杂对激光烧蚀GAP工质推进性能的影响.通过对比掺杂红外染料GAP在不同激光功率密度、掺杂浓度、靶材厚度和激光烧蚀模式下的推进性能数据和烧蚀羽流,初步探索了掺杂红外染料GAP工质的推进性能优化方式.实验结果表明:透射式激光烧蚀模式下,激光能量的指数衰减特性和掺杂红外染料GAP的强黏性使得烧蚀羽流中易存在未充分烧蚀的工质;GAP的推进性能受红外染料掺杂浓度和靶材厚度的综合影响,当靶材厚度与激光吸收深度接近时,靶材充分吸收激光能量使中心烧蚀区达到化学能释放的温度阈值,同时沿激光传播方向未充分烧蚀的质量最少,此时推进性能达到最优值.反射式下掺杂红外染料的聚合物的激光烧蚀过程遵循先吸收激光能量先喷射的规律,工质分解充分,推进性能优于透射式.
    The energetic polymer glycidyl azide polymer (GAP) is selected as the propellant of laser ablation micro thruster, and the effect of infrared dye doping on the propelling performance of laser ablative GAP is analyzed. By comparing the propulsion performance data with the plumes of infrared dyes doped GAP under different laser intensities, doping concentrations, target thickness and laser ablation modes, the optimization of the propulsion performance of infrared dye doped GAP is explored preliminarily. The experimental results show that the exponential attenuation characteristics of laser energy and the strong viscosity of GAP doped with infrared dye in the transmission mode lead to the existence of incomplete ablative GAP in the plume. The propulsion performances of GAP are influenced by the doping concentration of infrared dye and the thickness of propellant. Only when the target thickness is close to the laser absorption depth, can the mass of incomplete ablation along the direction of laser propagation be the least and can the laser energy be fully absorbed by the propellant to make the central ablation region reach the temperature threshold of the release of chemical energy. At the same time the optimum value of propulsion performance can be achieved. The GAP doped with infrared dyes in which laser ablation process follows the rule of absorbing laser energy first and spraying first is decomposed adequately under the reflection mode and the propelling performance is better than that in the transmission mode.
      通信作者: 窦志国, dou-zhiguo@tom.com
    • 基金项目: 国家自然科学基金(批准号:11602304)资助的课题.
      Corresponding author: Dou Zhi-Guo, dou-zhiguo@tom.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11602304).
    [1]

    Phipps C R, Luke J R, Lippert T, Hauer M, Wokaun A 2004 J. Propul. Power 26 1000

    [2]

    Phipps C R, Luke J R 2003 Beamed Energy Propulsion (New York: AIP Publishing) pp230-239

    [3]

    Hong Y J 2013 J. Acad. Equipment 24 57 (in Chinese) [洪延姬 2003 装备学院学报 24 57]

    [4]

    Ye J F, Hong Y J, Wang G Y, Li N L 2011 Chin. Opt. 4 319 (in Chinese) [叶继飞, 洪延姬, 王广宇, 李南雷 2011 中国光学 4 319]

    [5]

    Phipps C R, Birkan M, Bohn W, Eckel H A, Horisawa H, Lippert T, Michaelis M, Rezunkov Y, Sasoh A, Schall W, Scharring S, Sinko J 2010 J. Propul. Power 26 609

    [6]

    Ye J F, Hong Y J, Wang G Y 2009 J. Propul. Technol. 30 751 (in Chinese) [叶继飞, 洪延姬, 王广宇 2009推进技术30 751]

    [7]

    Wang D K, Hong Y J, Wang G Y 2009 Laser J. 30 1 (in Chinese) [王殿恺, 洪延姬, 王广宇2009 激光杂志 30 1]

    [8]

    Zheng Z Y 2015 Laser Plasma Propulsion Technology (Beijing: Science Press) p31 (in Chinese) [郑志远 2015 激光等离子体推进技术 (北京: 科学出版社) 第31页]

    [9]

    Lippert T, Hauer M, Phipps C R, Wokaun A 2003 Appl. Phys. A 77 259

    [10]

    Urech L, Lippert T, Phipps C R, Wokaun A 2007 Appl. Surf. Sci. 253 6409

    [11]

    Urech L, Lippert T, Phipps C R, Wokaun A 2006 Proc. SPIE 6221 626114

    [12]

    Urech L, Lippert T, Phipps C R, Wokaun A 2007 Appl. Surf. Sci. 253 7646

    [13]

    Cai J 2007 Ph. D. Dissertation (Heifei: University of Science and Technology of China) (in Chinese) [蔡建 2007 博士学位论文 (合肥: 中国科学技术大学)]

    [14]

    Chen G, Hong Y J, Ye J F 2016 Phys. Experiment 36 5 (in Chinese) [陈庚, 洪延姬, 叶继飞 2016物理实验36 5]

    [15]

    Anoop N A 2015 Ph. D. Dissertation (Cochin: Cochin University of Science Technology)

    [16]

    Tan R, Lin J, Hughes J, Pakhomov A V 2004 Proceedings of the Second International Symposium on Beamed Energy Propulsion (Sendai: AIP) p122

    [17]

    Zheng Y J, Gong P, Tan R Q, Tang Z P, Ke C J, Cai J, Wan C Y, Hu X J, Yu Y N, Liu S M, Wu J, Zheng G, Zhou J W, L Y 2005 Chin. J. Laser 32 889 (in Chinese) [郑义军, 龚平, 谭荣清, 唐志平, 柯常军, 蔡建, 万重怡, 胡晓军, 于延宁, 刘世明, 吴瑾, 郑光, 周锦文, 吕岩 2005中国激光32 889]

    [18]

    Fardel R, Urech L, Lippert T, Phipps C R, Fitz-Gerald J M, Wokaun A 2009 Appl. Phys. A 94 657

    [19]

    Liu K F 2015 M. S. Thesis (Beijing: Academy of Equipment) (in Chinese) [刘克非 2015 硕士学位论文(北京: 装备学院)

    [20]

    Phipps C R, Luke J R, Mcduff G G, Lippert T 2003 Appl. Phys. A 77 193

    [21]

    Luo L L, Dou Z G, Li N L 2017 Develop. Innovat. Mach. Electr. Products 30 70 (in Chinese) [罗乐乐, 窦志国, 李南雷 2017 机电产品开发与创新 30 70]

    [22]

    Phipps C R, Harrison R F, Shimada T, York G W, Turner T P, Corlis X F, Steele H S, Haynes L C, King T R 1990 Laser Part. Beams 8 281

  • [1]

    Phipps C R, Luke J R, Lippert T, Hauer M, Wokaun A 2004 J. Propul. Power 26 1000

    [2]

    Phipps C R, Luke J R 2003 Beamed Energy Propulsion (New York: AIP Publishing) pp230-239

    [3]

    Hong Y J 2013 J. Acad. Equipment 24 57 (in Chinese) [洪延姬 2003 装备学院学报 24 57]

    [4]

    Ye J F, Hong Y J, Wang G Y, Li N L 2011 Chin. Opt. 4 319 (in Chinese) [叶继飞, 洪延姬, 王广宇, 李南雷 2011 中国光学 4 319]

    [5]

    Phipps C R, Birkan M, Bohn W, Eckel H A, Horisawa H, Lippert T, Michaelis M, Rezunkov Y, Sasoh A, Schall W, Scharring S, Sinko J 2010 J. Propul. Power 26 609

    [6]

    Ye J F, Hong Y J, Wang G Y 2009 J. Propul. Technol. 30 751 (in Chinese) [叶继飞, 洪延姬, 王广宇 2009推进技术30 751]

    [7]

    Wang D K, Hong Y J, Wang G Y 2009 Laser J. 30 1 (in Chinese) [王殿恺, 洪延姬, 王广宇2009 激光杂志 30 1]

    [8]

    Zheng Z Y 2015 Laser Plasma Propulsion Technology (Beijing: Science Press) p31 (in Chinese) [郑志远 2015 激光等离子体推进技术 (北京: 科学出版社) 第31页]

    [9]

    Lippert T, Hauer M, Phipps C R, Wokaun A 2003 Appl. Phys. A 77 259

    [10]

    Urech L, Lippert T, Phipps C R, Wokaun A 2007 Appl. Surf. Sci. 253 6409

    [11]

    Urech L, Lippert T, Phipps C R, Wokaun A 2006 Proc. SPIE 6221 626114

    [12]

    Urech L, Lippert T, Phipps C R, Wokaun A 2007 Appl. Surf. Sci. 253 7646

    [13]

    Cai J 2007 Ph. D. Dissertation (Heifei: University of Science and Technology of China) (in Chinese) [蔡建 2007 博士学位论文 (合肥: 中国科学技术大学)]

    [14]

    Chen G, Hong Y J, Ye J F 2016 Phys. Experiment 36 5 (in Chinese) [陈庚, 洪延姬, 叶继飞 2016物理实验36 5]

    [15]

    Anoop N A 2015 Ph. D. Dissertation (Cochin: Cochin University of Science Technology)

    [16]

    Tan R, Lin J, Hughes J, Pakhomov A V 2004 Proceedings of the Second International Symposium on Beamed Energy Propulsion (Sendai: AIP) p122

    [17]

    Zheng Y J, Gong P, Tan R Q, Tang Z P, Ke C J, Cai J, Wan C Y, Hu X J, Yu Y N, Liu S M, Wu J, Zheng G, Zhou J W, L Y 2005 Chin. J. Laser 32 889 (in Chinese) [郑义军, 龚平, 谭荣清, 唐志平, 柯常军, 蔡建, 万重怡, 胡晓军, 于延宁, 刘世明, 吴瑾, 郑光, 周锦文, 吕岩 2005中国激光32 889]

    [18]

    Fardel R, Urech L, Lippert T, Phipps C R, Fitz-Gerald J M, Wokaun A 2009 Appl. Phys. A 94 657

    [19]

    Liu K F 2015 M. S. Thesis (Beijing: Academy of Equipment) (in Chinese) [刘克非 2015 硕士学位论文(北京: 装备学院)

    [20]

    Phipps C R, Luke J R, Mcduff G G, Lippert T 2003 Appl. Phys. A 77 193

    [21]

    Luo L L, Dou Z G, Li N L 2017 Develop. Innovat. Mach. Electr. Products 30 70 (in Chinese) [罗乐乐, 窦志国, 李南雷 2017 机电产品开发与创新 30 70]

    [22]

    Phipps C R, Harrison R F, Shimada T, York G W, Turner T P, Corlis X F, Steele H S, Haynes L C, King T R 1990 Laser Part. Beams 8 281

  • [1] 陆云杰, 陶弢, 赵斌, 郑坚. 激光烧蚀固体碳氢材料的离子组分分离研究. 物理学报, 2023, 72(7): 075201. doi: 10.7498/aps.72.20230013
    [2] 周毛吉, 李亚举, 钱东斌, 叶晓燕, 林平, 马新文. 粒径对激光驱动颗粒溅射动力学特征的影响. 物理学报, 2022, 71(14): 145203. doi: 10.7498/aps.71.20220243
    [3] 叶浩, 黄印博, 王琛, 刘国荣, 卢兴吉, 曹振松, 黄尧, 齐刚, 梅海平. 激光烧蚀-吸收光谱测量铀同位素比实验研究. 物理学报, 2021, 70(16): 163201. doi: 10.7498/aps.70.20210193
    [4] 白清顺, 张凯, 沈荣琦, 张飞虎, 苗心向, 袁晓东. 单晶铁金属表面污染物的激光烧蚀机理. 物理学报, 2018, 67(23): 234401. doi: 10.7498/aps.67.20180999
    [5] 蔡颂, 陈根余, 周聪, 周枫林, 李光. 脉冲激光烧蚀材料等离子体反冲压力物理模型研究与应用. 物理学报, 2017, 66(13): 134205. doi: 10.7498/aps.66.134205
    [6] 段兴跃, 李小康, 程谋森, 李干. 激光烧蚀掺杂金属聚合物羽流屏蔽特性数值研究. 物理学报, 2016, 65(19): 197901. doi: 10.7498/aps.65.197901
    [7] 康小卫, 陈龙, 陈洁, 盛政明. 大气环境下飞秒激光对铝靶烧蚀过程的研究. 物理学报, 2016, 65(5): 055204. doi: 10.7498/aps.65.055204
    [8] 李干, 程谋森, 李小康. 激光烧蚀聚甲醛的热-化学耦合模型及其验证. 物理学报, 2014, 63(10): 107901. doi: 10.7498/aps.63.107901
    [9] 刘慎业, 黄翼翔, 胡昕, 张继彦, 杨国洪, 李军, 易荣清, 杜华冰, 丁永坤. 高强度二倍频激光辐照银薄膜靶的烧蚀和X光辐射实验研究. 物理学报, 2013, 62(3): 035202. doi: 10.7498/aps.62.035202
    [10] 常浩, 金星, 陈朝阳. 纳秒激光烧蚀冲量耦合数值模拟. 物理学报, 2013, 62(19): 195203. doi: 10.7498/aps.62.195203
    [11] 包凌东, 韩敬华, 段涛, 孙年春, 高翔, 冯国英, 杨李茗, 牛瑞华, 刘全喜. 纳秒紫外重复脉冲激光烧蚀单晶硅的热力学过程研究. 物理学报, 2012, 61(19): 197901. doi: 10.7498/aps.61.197901
    [12] 方合, 王顺利, 李立群, 李培刚, 刘爱萍, 唐为华. 液相激光烧蚀合成ZnO及Zn/ZnO纳米颗粒及其光致发光性能. 物理学报, 2011, 60(9): 096102. doi: 10.7498/aps.60.096102
    [13] 陈安民, 高勋, 姜远飞, 丁大军, 刘航, 金明星. 数值模拟飞秒激光加热金属的热电子发射. 物理学报, 2010, 59(10): 7198-7202. doi: 10.7498/aps.59.7198
    [14] 刘世炳, 刘院省, 何润, 陈涛. 纳秒激光诱导铜等离子体中原子激发态 5s' 4D7/2的瞬态特性研究. 物理学报, 2010, 59(8): 5382-5386. doi: 10.7498/aps.59.5382
    [15] 黄庆举. 激光烧蚀金属Al诱导发光的动力学研究. 物理学报, 2008, 57(4): 2314-2319. doi: 10.7498/aps.57.2314
    [16] 郑新亮, 李广山, 钟寿仙, 田进寿, 李振红, 任兆玉. 激光烧蚀对碳纳米管薄膜场发射性能的影响. 物理学报, 2008, 57(12): 7912-7918. doi: 10.7498/aps.57.7912
    [17] 张 翼, 郑志远, 李玉同, 刘 峰, 李汉明, 鲁 欣, 张 杰. 两个冲击波相互碰撞的演化过程. 物理学报, 2007, 56(10): 5931-5936. doi: 10.7498/aps.56.5931
    [18] 李成斌, 贾天卿, 孙海轶, 李晓溪, 徐世珍, 冯东海, 王晓峰, 葛晓春, 徐至展. 飞秒激光对氟化镁烧蚀机理研究. 物理学报, 2006, 55(1): 217-220. doi: 10.7498/aps.55.217
    [19] 成金秀, 郑志坚, 陈红素, 缪文勇, 陈 波, 王耀梅, 胡 昕. 1.06μm 激光直接驱动烧蚀靶内爆压缩特性. 物理学报, 2004, 53(10): 3419-3423. doi: 10.7498/aps.53.3419
    [20] 张树东, 李海洋. 激光烧蚀Al热原子与CF4反应中C2的形成及其发光光谱研究. 物理学报, 2003, 52(5): 1297-1301. doi: 10.7498/aps.52.1297
计量
  • 文章访问数:  6269
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-19
  • 修回日期:  2018-06-14
  • 刊出日期:  2019-09-20

/

返回文章
返回