搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对比度阈值函数修正对于NVThermIP模型的影响

吴元庆 王洋 张延涛 张宇峰 刘春梅

引用本文:
Citation:

对比度阈值函数修正对于NVThermIP模型的影响

吴元庆, 王洋, 张延涛, 张宇峰, 刘春梅

Effect of contrast threshold function correction on NVThermIP model

Wu Yuan-Qing, Wang Yang, Zhang Yan-Tao, Zhang Yu-Feng, Liu Chun-Mei
PDF
导出引用
  • NVThermIP模型作为经典的性能模型,在指导红外系统参数的设计优化方面略有不足,因此需要构建更科学合理的综合评估模型.在经典模型基础上,结合人眼噪声的理论和实验研究,利用噪声等效温差修正了系统的对比度阈值函数.并利用现有的红外系统实验数据,对修正后的模型进行图像模糊和不同距离下辨识两方面验证,结果证明该模型具有很高的预测精确度,可为新型系统设计分析提供可靠的依据和理论指导.
    With the innovation of infrared imaging technology, the performance evaluation of the infrared imaging system plays an indispensable role in the general technology. Therefore, the establishment of a comprehensive, scientific and reasonable performance evaluation model is a prerequisite for accurately predicting the performance of the imaging system, and is also an effective technology to design and develop the high performance imaging system. According to previous studies, in this paper we analyze the key problems that need to be solved urgently in the current research and the factors limiting the development of performance evaluation techniques. The main researches of this paper are as follows. 1) Through improving the deficiencies of the inherent physical effect evaluation methods, the accuracy and reliability of the performance evaluation model are enhanced. 2) In order to meet the needs of performance optimization design, the performance parameters provided by product design and production requirements must be selected correctly to achieve an organic combination of performance evaluation model and imaging system.The NVThermIP model, a widely used performance evaluation model, is slightly inadequate for guiding the optimization of the parameters of an infrared system. A more scientific and reasonable performance evaluation model is proposed in this paper, in which the contrast-threshold function of the system in the NVThermIP model is corrected by noise equivalent temperature difference based on the theory of the human-eye noise. By quantitatively analyzing the typical physical effects on infrared imaging system, the modeling theory and process of NVThermIP model are introduced in detail. The simulation results give a visual representation of evaluating the performance of an infrared imaging system. The limitations of the NVThermIP model used to guide the design and production of the system and the deficiencies of the early theoretical basis for system optimization design are analyzed. The noise equivalent temperature difference is introduced to revise and perfect the NVThermIP model combined with the theory of human eye noise. The accuracy of the newly proposed model is verified by two experiments. Experimental results show that the corrected model is more accurate in system prediction and can be used to guide the design of a new system.
      通信作者: 吴元庆, wuyuanqing123@163.com
    • 基金项目: 国家自然科学基金(批准号:61575029)资助的课题.
      Corresponding author: Wu Yuan-Qing, wuyuanqing123@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61575029).
    [1]

    Gerald C H (translated by Yan J X, Yu X) 2015 Electro-optical Imaging System Performance (4th Ed.) (Beijing: National Defence Industry Press) pp1-8 (in Chinese)[霍尔斯特 著 (阎吉祥, 俞信 译) 2015 光电成像系统性能 (第四版) (北京: 国防工业出版社) 第1–8页]

    [2]

    Li X D, Ai K C, Wang W 2004 J. Appl. Opt. 25 37 (in Chinese)[李旭东, 艾克聪, 王伟 2004 应用光学 25 37]

    [3]

    Tsujino Y 2010 Infrared Phys. Technol. 53 50

    [4]

    Gravrand O, Baier N, Ferron A 2014 J. Electron. Mater. 43 3025

    [5]

    Preece B L, Reynolds J P, Fanning J D 2011 Proc. SPIE 8014 801406

    [6]

    Vollmerhausen R H 2009 Opt. Express 17 17253

    [7]

    Teaney B P, Tomkinson D M 2015 Proc. SPIE 9452 94520P

    [8]

    Holst G C 2007 Opt. Eng. 46 103204

    [9]

    Preece B L, Reynolds J P, Fanning J D 2014 Opt. Eng. 53 061712

    [10]

    Li Q, Yang C, Zhang J Q 2012 Appl. Opt. 51 7668

    [11]

    Vaitekunas D A, Holst G C, Ramaswamy S 2015 Proc. SPIE 9452 94520G

    [12]

    Hu M P 2009 Infrared Technol. 31 27 (in Chinese)[胡明鹏 2009 红外技术 31 27]

    [13]

    Devitt N, Moyer S, Flug E 2005 Proc. SPIE 5784 48

    [14]

    Teaney B P, Reynolds J P 2007 Proc. SPIE 6543 65430L

    [15]

    Moyer S, Devitt N 2005 Proc. SPIE 5784 60

    [16]

    Vollmerhausen R 2016 Opt. Express 24 23654

    [17]

    Vollmerhausen R H, Driggers R G, Wilson D L 2008 J. Opt. Soc. Am. A 25 2055

    [18]

    Dulski R, Barela J, Trzaskawka P 2013 Proc. SPIE 8896 889617

    [19]

    Zuo F, Liu G R, Gao Z Y 2002 Opt. Technol. 28 63 (in Chinese)[左昉, 刘广荣, 高稚允 2002 光学技术 28 63]

    [20]

    Tohyama S, Sasaki T, Endoh T, et al. 2015 Yun Guang Ji Shu 1 41

    [21]

    Sui X B, Chen Q, Lu H H 2007 J. Infrared Millim. Waves 26 377 (in Chinese)[隋修宝, 陈钱, 陆红红 2007 红外与毫米波学报 26 377]

    [22]

    Da Z S, Chen L Y 2003 Acta Photon. Sin. 32 669 (in Chinese)[达争尚, 陈良益 2003 光子学报 32 669]

  • [1]

    Gerald C H (translated by Yan J X, Yu X) 2015 Electro-optical Imaging System Performance (4th Ed.) (Beijing: National Defence Industry Press) pp1-8 (in Chinese)[霍尔斯特 著 (阎吉祥, 俞信 译) 2015 光电成像系统性能 (第四版) (北京: 国防工业出版社) 第1–8页]

    [2]

    Li X D, Ai K C, Wang W 2004 J. Appl. Opt. 25 37 (in Chinese)[李旭东, 艾克聪, 王伟 2004 应用光学 25 37]

    [3]

    Tsujino Y 2010 Infrared Phys. Technol. 53 50

    [4]

    Gravrand O, Baier N, Ferron A 2014 J. Electron. Mater. 43 3025

    [5]

    Preece B L, Reynolds J P, Fanning J D 2011 Proc. SPIE 8014 801406

    [6]

    Vollmerhausen R H 2009 Opt. Express 17 17253

    [7]

    Teaney B P, Tomkinson D M 2015 Proc. SPIE 9452 94520P

    [8]

    Holst G C 2007 Opt. Eng. 46 103204

    [9]

    Preece B L, Reynolds J P, Fanning J D 2014 Opt. Eng. 53 061712

    [10]

    Li Q, Yang C, Zhang J Q 2012 Appl. Opt. 51 7668

    [11]

    Vaitekunas D A, Holst G C, Ramaswamy S 2015 Proc. SPIE 9452 94520G

    [12]

    Hu M P 2009 Infrared Technol. 31 27 (in Chinese)[胡明鹏 2009 红外技术 31 27]

    [13]

    Devitt N, Moyer S, Flug E 2005 Proc. SPIE 5784 48

    [14]

    Teaney B P, Reynolds J P 2007 Proc. SPIE 6543 65430L

    [15]

    Moyer S, Devitt N 2005 Proc. SPIE 5784 60

    [16]

    Vollmerhausen R 2016 Opt. Express 24 23654

    [17]

    Vollmerhausen R H, Driggers R G, Wilson D L 2008 J. Opt. Soc. Am. A 25 2055

    [18]

    Dulski R, Barela J, Trzaskawka P 2013 Proc. SPIE 8896 889617

    [19]

    Zuo F, Liu G R, Gao Z Y 2002 Opt. Technol. 28 63 (in Chinese)[左昉, 刘广荣, 高稚允 2002 光学技术 28 63]

    [20]

    Tohyama S, Sasaki T, Endoh T, et al. 2015 Yun Guang Ji Shu 1 41

    [21]

    Sui X B, Chen Q, Lu H H 2007 J. Infrared Millim. Waves 26 377 (in Chinese)[隋修宝, 陈钱, 陆红红 2007 红外与毫米波学报 26 377]

    [22]

    Da Z S, Chen L Y 2003 Acta Photon. Sin. 32 669 (in Chinese)[达争尚, 陈良益 2003 光子学报 32 669]

  • [1] 吴亚珍, 孙中奎. 循环噪声驱动下非对称双稳系统的驻留时间分布函数研究. 物理学报, 2020, 69(12): 120501. doi: 10.7498/aps.69.20201752
    [2] 周博睿, 谈宜东, 沈学举, 朱开毅, 鲍丽萍. 微泡造影剂增强超声调制激光回馈成像对比度的机理研究. 物理学报, 2019, 68(21): 214304. doi: 10.7498/aps.68.20190770
    [3] 范启蒙, 尹成友. 高对比度目标的电磁逆散射超分辨成像. 物理学报, 2018, 67(14): 144101. doi: 10.7498/aps.67.20180266
    [4] 曹正文, 张爽浩, 冯晓毅, 赵光, 柴庚, 李东伟. 基于散粒噪声方差实时监测的连续变量量子密钥分发系统的设计与实现. 物理学报, 2017, 66(2): 020301. doi: 10.7498/aps.66.020301
    [5] 田恒, 朱京平, 张云尧, 管今哥, 侯洵. 浑浊介质中图像对比度与成像方式的关系. 物理学报, 2016, 65(8): 084201. doi: 10.7498/aps.65.084201
    [6] 周丽萍, 李培, 潘聪, 郭立, 丁志华, 李鹏. 高灵敏、高对比度无标记三维光学微血管造影系统与脑科学应用研究. 物理学报, 2016, 65(15): 154201. doi: 10.7498/aps.65.154201
    [7] 王路, 徐江荣. 两相湍流统一色噪声法概率密度函数模型. 物理学报, 2015, 64(5): 054704. doi: 10.7498/aps.64.054704
    [8] 王长宏, 林涛, 曾志环. 半导体温差发电过程的模型分析与数值仿真. 物理学报, 2014, 63(19): 197201. doi: 10.7498/aps.63.197201
    [9] 曾喆昭, 雷妮, 盛立锃. 不确定混沌系统的多项式函数模型补偿控制. 物理学报, 2013, 62(15): 150506. doi: 10.7498/aps.62.150506
    [10] 罗佳奇, 刘锋. 基于梯度响应面模型的优化设计. 物理学报, 2013, 62(19): 190201. doi: 10.7498/aps.62.190201
    [11] 常宏, 杨福桂, 董磊, 王安廷, 谢建平, 明海. 激光光斑形状和尺寸对扫描显示中散斑对比度的影响. 物理学报, 2010, 59(7): 4634-4639. doi: 10.7498/aps.59.4634
    [12] 刘永生, 谷民安, 杨晶晶, 石奇光, 高湉, 杨金焕, 杨正龙. 太阳能光伏-温差发电驱动的新型冰箱模型设计与热力学分析. 物理学报, 2010, 59(10): 7368-7373. doi: 10.7498/aps.59.7368
    [13] 戎海武, 王向东, 徐伟, 方同. 窄带随机噪声作用下单自由度非线性干摩擦系统的响应. 物理学报, 2009, 58(11): 7558-7564. doi: 10.7498/aps.58.7558
    [14] 刘建东, 余有明. 基于可变参数双向耦合映像系统的时空混沌Hash函数设计. 物理学报, 2007, 56(3): 1297-1304. doi: 10.7498/aps.56.1297
    [15] 易煦农, 胡 巍, 罗海陆, 朱 静. 用高阶对比度研究光束的小尺度自聚焦. 物理学报, 2005, 54(2): 749-754. doi: 10.7498/aps.54.749
    [16] 宋洪胜, 程传福, 张宁玉, 任晓荣, 滕树云, 徐至展. 强散射体产生的像面散斑对比度与随机表面及成像系统关系的研究. 物理学报, 2005, 54(2): 669-676. doi: 10.7498/aps.54.669
    [17] 张海燕, GNgele, 马红孺. 二分量带电胶体悬浮系统的等效硬球模型. 物理学报, 2002, 51(8): 1892-1896. doi: 10.7498/aps.51.1892
    [18] 王传奎, 孙金祚, 王继锁, 王文正. 一维无公度系统Aubry模型的迁移率边. 物理学报, 1993, 42(1): 95-100. doi: 10.7498/aps.42.95
    [19] 孙金祚, 王传奎. 一维无公度系统Aubry模型的Anderson转变. 物理学报, 1991, 40(3): 469-475. doi: 10.7498/aps.40.469
    [20] 秦克诚. 斑纹噪声相乘模型的误差. 物理学报, 1983, 32(2): 267-272. doi: 10.7498/aps.32.267
计量
  • 文章访问数:  4870
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-20
  • 修回日期:  2018-08-02
  • 刊出日期:  2018-11-05

/

返回文章
返回