搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

诱导空间非相干束匀滑技术的近区特性及改善技术

李福建 高妍琦 赵晓晖 季来林 王伟 黄秀光 马伟新 隋展 裴文兵

引用本文:
Citation:

诱导空间非相干束匀滑技术的近区特性及改善技术

李福建, 高妍琦, 赵晓晖, 季来林, 王伟, 黄秀光, 马伟新, 隋展, 裴文兵

Near-field character and improvement technology of induced spatial incoherence

Li Fu-Jian, Gao Yan-Qi, Zhao Xiao-Hui, Ji Lai-Lin, Wang Wei, Huang Xiu-Guang, Ma Wei-Xin, Sui Zhan, Pei Wen-Bing
PDF
导出引用
  • 诱导空间非相干技术是面向激光驱动惯性约束核聚变的一种具有自身独特优势的束匀滑方法.然而直接使用诱导空间非相干方法将引起强烈的近区强度空间调制,这将威胁装置的运行安全,并严重限制装置的最大输出能力.这也是该方法应用于聚变级高功率激光装置的主要技术障碍之一.本文介绍了一种通过双透镜滤波系统对诱导空间非相干束匀滑技术导致的近区空间强度调制进行匀滑的技术.利用该技术可以在保留诱导空间非相干束匀滑方法的先天优势(更好的远区匀滑特性)的前提下,获得均匀、稳定的近区强度分布,从而避免高功率激光系统在使用诱导空间非相干束匀滑技术时,因为近区强度不均匀、不稳定导致的器件损伤及输出能力受限.在理论建模和数值分析的基础上,以近区调制度、软化因子和透过率为主要评价指标,对比分析了方形、圆形、高斯型等3种滤波孔在不同尺寸下的近区输出效果,最终给出了一种典型的优化结果:16×16诱导空间非相干分割数、0.8倍衍射极限宽度、方形小孔.此时近区强度分布均匀,同时保证了较好的远区匀滑效果和高的能量利用率.在此基础上,针对装置的实际应用情况,进一步分析了准直误差对近区强度分布的影响,结果表明准直误差小于0.1倍衍射极限便不会影响输出的近区质量.对诱导空间非相干束匀滑方法所得焦斑的模拟分析表明,滤波系统的加入能进一步改善焦斑的低频不均匀性.
    Induced spatial incoherence technology is a beam-smoothing method with its own unique advantages for laser driven inertial confinement fusion. However, simply using the induced spatial incoherent method will induce a strong near-field intensity spatial modulation, which will threaten the safety of the operation and severely limit the maximum output capability of the device. This is also one of the main technical obstacles to applying induced spatial incoherence to a high-power laser device used for fusion. In this paper, a technique of smoothing the near-field spatial intensity modulation caused by induced spatial incoherence is introduced. By using a two-lens filter system, a homogeneous and stable near-field intensity distribution can be obtained on the premise of reserving the innate advantages of induced spatial incoherence (better far-field smoothing characteristics), thereby avoiding the damage to devices and limitation to output capacity in high power laser system using induced spatial incoherence. Based on the theoretical modeling and numerical analysis, using modulation degree, softening factor, and transmittance as evaluation parameters, the near-field light characters with three kinds of filter apertures, such as square, round, and Gaussian, are compared and analyzed. Finally, in a typical optimization result there are used 16×16 induced spatial incoherent divisions and a square aperture with 0.8 times diffraction limit width. In this case, the near-field intensity distribution is uniform, and at the same time, good smoothing effect on far-field and a high energy utilization rate are ensured. On this basis, according to the actual application of the device, the influence of the collimation error on the near-field intensity distribution is further analyzed. The results show that as long as the collimation error is less than 0.1 times the diffraction limit, the near-field quality will not be affected. The simulation analysis of the focal spot obtained by induced spatial incoherence shows that the addition of the filtering system can further improve the low frequency uniformity of the focal spot.
      通信作者: 高妍琦, liufenggyq@siom.ac.cn
    • 基金项目: 科学挑战计划(批准号:TZ2016005)和国家自然科学基金(批准号:1263236,0968895,1102301,11404308)资助的课题.
      Corresponding author: Gao Yan-Qi, liufenggyq@siom.ac.cn
    • Funds: Project supported by the Science Challenge Project, China (Grant No. TZ2016005) and the National Natural Science Foundation of China (Grant Nos. 1263236, 0968895, 1102301, 11404308).
    [1]

    Deng B Q, Li Z X, Li C Y, Feng K M 2011 Nucl. Fusion 51 073041

    [2]

    Atzeni S, Meyertervehn J 2004 The Physics of Inertial Fusion:Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford:Clarendon Press)

    [3]

    Lehmberg R, Obenschain S 1983 Opt. Commun. 46 27

    [4]

    Lehmberg R, Schmitt A, Bodner S 1987 J. Appl. Phys. 62 2680

    [5]

    Grun J, Emery M H, Manka C K, Lee T N, Mclean E A, Mostovych A, Stamper J, Bodner S, Obenschain S P, Ripin B H 1987 Phys. Rev. Lett. 58 2672

    [6]

    Obenschain S P, Bodner S E, Colombant D, Gerber K, Lehmberg R H, McLean E A, Mostovych A N, Pronko M S, Pawley C J, Schmitt A J, Sethian J D, Serlin V, Stamper J A, Sullivan C A, Dahlburg J P, Gardner J H, Chan Y, Deniz A V, Hardgrove J, Lehecka T, Klapisch M 1996 Phys. Plasmas 3 2098

    [7]

    Donnat P, Gouedard C, Veron D, Bonville O, Sauteret C, Migus A 1992 Opt. Lett. 17 331

    [8]

    Goodman J W (translated by Qing K C, Liu P S, Cao Q Z, Zhan D S) 1992 Statistical Optics (Beijing:Science Press) p41 (in Chinese)[顾德门 J W 著 (秦克诚, 刘培森, 曹其智, 詹达三 译) 1992 统计光学(北京:科学出版社)第41页]

    [9]

    Dainty J C 2013 Laser Speckle and Related Phenomena (Berlin:Springer science & business Media) p19

    [10]

    Kato Y, Mima K, Miyanaga N, Arinaga S, Kitagawa Y, Nakatsuka M 1984 Phys. Rev. Lett. 53 1057

    [11]

    Marozas J A 2007 J. Opt. Soc. Am. A 24 74

    [12]

    Li P, Wang W, Zhao R C, Geng Y C, Jia H T, Su J Q 2014 Acta Phys. Sin. 63 215202 (in Chinese)[李平, 王伟, 赵润昌, 耿远超, 贾怀庭, 粟敬钦 2014 物理学报 63 215202]

    [13]

    Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456

    [14]

    Rothenberg J E 1995 Solid State Lasers for Application to Inertial Confinement Fusion (ICF) 2633 634

    [15]

    Jiang X J, Li J H, Wu R, Zhu Z T, Zhou S L, Lin Z Q 2013 J. Opt. Soc. Am. A 30 2162

    [16]

    Afeyan B, Huller S 2013 arXiv:1304.3960[physics. plasm-ph]

    [17]

    Albright B J, Yin L, Afeyan B 2014 Phys. Rev. Lett. 113 045002

    [18]

    Regan S P, Marozas J A, Kelly J H, Boehly T R, Donaldson W R, Jaanimagi P A, Keck R L, Kessler T J, Meyerhofer D D, Seka W 2000 J. Opt. Soc. Am. B 17 1483

    [19]

    Goodman J W 1996 Introduction to Fourier Optics (New York:The McGraw-Hill Companies) p66

    [20]

    Schmidt J D 2010 Numerical Simulation of Optical Wave Propagation with Examples in MATLAB (Washington:SPIE) p124

    [21]

    Eimerl D, Milam D, Yu J 1993 Phys. Rev. Lett. 70 2738

  • [1]

    Deng B Q, Li Z X, Li C Y, Feng K M 2011 Nucl. Fusion 51 073041

    [2]

    Atzeni S, Meyertervehn J 2004 The Physics of Inertial Fusion:Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford:Clarendon Press)

    [3]

    Lehmberg R, Obenschain S 1983 Opt. Commun. 46 27

    [4]

    Lehmberg R, Schmitt A, Bodner S 1987 J. Appl. Phys. 62 2680

    [5]

    Grun J, Emery M H, Manka C K, Lee T N, Mclean E A, Mostovych A, Stamper J, Bodner S, Obenschain S P, Ripin B H 1987 Phys. Rev. Lett. 58 2672

    [6]

    Obenschain S P, Bodner S E, Colombant D, Gerber K, Lehmberg R H, McLean E A, Mostovych A N, Pronko M S, Pawley C J, Schmitt A J, Sethian J D, Serlin V, Stamper J A, Sullivan C A, Dahlburg J P, Gardner J H, Chan Y, Deniz A V, Hardgrove J, Lehecka T, Klapisch M 1996 Phys. Plasmas 3 2098

    [7]

    Donnat P, Gouedard C, Veron D, Bonville O, Sauteret C, Migus A 1992 Opt. Lett. 17 331

    [8]

    Goodman J W (translated by Qing K C, Liu P S, Cao Q Z, Zhan D S) 1992 Statistical Optics (Beijing:Science Press) p41 (in Chinese)[顾德门 J W 著 (秦克诚, 刘培森, 曹其智, 詹达三 译) 1992 统计光学(北京:科学出版社)第41页]

    [9]

    Dainty J C 2013 Laser Speckle and Related Phenomena (Berlin:Springer science & business Media) p19

    [10]

    Kato Y, Mima K, Miyanaga N, Arinaga S, Kitagawa Y, Nakatsuka M 1984 Phys. Rev. Lett. 53 1057

    [11]

    Marozas J A 2007 J. Opt. Soc. Am. A 24 74

    [12]

    Li P, Wang W, Zhao R C, Geng Y C, Jia H T, Su J Q 2014 Acta Phys. Sin. 63 215202 (in Chinese)[李平, 王伟, 赵润昌, 耿远超, 贾怀庭, 粟敬钦 2014 物理学报 63 215202]

    [13]

    Skupsky S, Short R W, Kessler T, Craxton R S, Letzring S, Soures J M 1989 J. Appl. Phys. 66 3456

    [14]

    Rothenberg J E 1995 Solid State Lasers for Application to Inertial Confinement Fusion (ICF) 2633 634

    [15]

    Jiang X J, Li J H, Wu R, Zhu Z T, Zhou S L, Lin Z Q 2013 J. Opt. Soc. Am. A 30 2162

    [16]

    Afeyan B, Huller S 2013 arXiv:1304.3960[physics. plasm-ph]

    [17]

    Albright B J, Yin L, Afeyan B 2014 Phys. Rev. Lett. 113 045002

    [18]

    Regan S P, Marozas J A, Kelly J H, Boehly T R, Donaldson W R, Jaanimagi P A, Keck R L, Kessler T J, Meyerhofer D D, Seka W 2000 J. Opt. Soc. Am. B 17 1483

    [19]

    Goodman J W 1996 Introduction to Fourier Optics (New York:The McGraw-Hill Companies) p66

    [20]

    Schmidt J D 2010 Numerical Simulation of Optical Wave Propagation with Examples in MATLAB (Washington:SPIE) p124

    [21]

    Eimerl D, Milam D, Yu J 1993 Phys. Rev. Lett. 70 2738

  • [1] 冯凯源, 邵福球, 蒋祥瑞, 邹德滨, 胡理想, 张国博, 杨晓虎, 银燕, 马燕云, 余同普. 双束对射激光驱动超薄靶的超短脉冲中子源. 物理学报, 2023, 72(18): 185201. doi: 10.7498/aps.72.20230706
    [2] 朱军高, 卢海洋, 赵媛, 赖美福, 古永力, 徐世祥, 周沧涛. 面向激光驱动质子束应用的弱聚焦磁场束线设计研究. 物理学报, 2022, 71(19): 194102. doi: 10.7498/aps.71.20220599
    [3] 郝歌扬, 杨钰城, 赵荣娟, 吕小鹏, 杨雅涵, 吴国俊. 基于光子多普勒技术的高超风洞驱动器速度历程测量. 物理学报, 2022, 71(23): 234208. doi: 10.7498/aps.71.20221234
    [4] 熊皓, 钟哲强, 张彬, 隋展, 张小民. 基于束间动态干涉的快速匀滑新方法. 物理学报, 2020, 69(6): 064206. doi: 10.7498/aps.69.20190962
    [5] 李斌, 刘占军, 郝亮, 郑春阳, 蔡洪波, 何民卿. 束匀滑光束偏折现象的模拟. 物理学报, 2020, 69(7): 075201. doi: 10.7498/aps.69.20191639
    [6] 高妍琦, 赵晓晖, 贾果, 李福建, 崔勇, 饶大幸, 季来林, 刘栋, 冯伟, 黄秀光, 马伟新, 隋展. 基于低相干光的阵列透镜束匀滑技术研究. 物理学报, 2019, 68(7): 075201. doi: 10.7498/aps.68.20182138
    [7] 白云鹤, 臧瑞环, 汪盼, 荣腾达, 马凤英, 杜艳丽, 段智勇, 弓巧侠. 基于空间光调制器的非相干数字全息单次曝光研究. 物理学报, 2018, 67(6): 064202. doi: 10.7498/aps.67.20172127
    [8] 李腾飞, 钟哲强, 张彬. 用于超快束匀滑的动态波前调控新方案. 物理学报, 2018, 67(17): 174206. doi: 10.7498/aps.67.20172527
    [9] 唐熊忻, 邱基斯, 樊仲维, 王昊成, 刘悦亮, 刘昊, 苏良碧. 用于惯性约束核聚变激光驱动器的激光二极管抽运Nd,Y:CaF2激光放大器的实验研究. 物理学报, 2016, 65(20): 204206. doi: 10.7498/aps.65.204206
    [10] 江秀娟, 李菁辉, 朱俭, 林尊琪. 基于简单透镜列阵的可调焦激光均匀辐照光学系统研究. 物理学报, 2015, 64(5): 054201. doi: 10.7498/aps.64.054201
    [11] 钟哲强, 周冰洁, 叶荣, 张彬. 多频多色光谱角色散束匀滑新方案. 物理学报, 2014, 63(3): 035201. doi: 10.7498/aps.63.035201
    [12] 李平, 王伟, 赵润昌, 耿远超, 贾怀庭, 粟敬钦. 基于焦斑空间频率全域优化的偏振匀滑设计. 物理学报, 2014, 63(21): 215202. doi: 10.7498/aps.63.215202
    [13] 周冰洁, 钟哲强, 张彬. 光束运动特性对焦斑束匀滑效果的影响. 物理学报, 2012, 61(21): 214202. doi: 10.7498/aps.61.214202
    [14] 江秀娟, 李菁辉, 李华刚, 周申蕾, 李扬, 林尊琪. 采用透镜列阵与光谱色散改善三倍频小焦斑辐照均匀性. 物理学报, 2012, 61(12): 124202. doi: 10.7498/aps.61.124202
    [15] 杨未强, 侯静, 宋锐, 刘泽金. 高功率光纤激光器二级抽运技术的理论分析. 物理学报, 2011, 60(8): 084210. doi: 10.7498/aps.60.084210
    [16] 姚欣, 高福华, 高博, 张怡霄, 黄利新, 郭永康, 林祥棣. 惯性约束聚变驱动器终端束匀滑器件前置时频率转换系统优化研究. 物理学报, 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
    [17] 姚欣, 高福华, 张怡霄, 温圣林, 郭永康, 林祥棣. 激光惯性约束聚变驱动器终端光学系统中束匀滑器件前置的条件研究. 物理学报, 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [18] 程兆谷, 李现勤, 柴雄良, 高海军, 刘翠青. 预电离脉冲群开关技术高功率脉冲CO2激光器. 物理学报, 2004, 53(5): 1362-1366. doi: 10.7498/aps.53.1362
    [19] 王桂英, 赵九源, 张明科, 范滇元, 崔志光. 钕玻璃高功率激光系统中的空间滤波器的基本研究. 物理学报, 1985, 34(2): 171-181. doi: 10.7498/aps.34.171
    [20] 徐至展, 李安民, 陈时胜, 林礼煌, 梁向春, 欧阳斌, 殷光裕, 何兴法. 六束高功率钕玻璃激光器. 物理学报, 1980, 29(4): 439-446. doi: 10.7498/aps.29.439
计量
  • 文章访问数:  6052
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-26
  • 修回日期:  2018-05-23
  • 刊出日期:  2018-09-05

/

返回文章
返回