搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线性模式下GaAs光电导开关的时间抖动特性

桂淮濛 施卫

引用本文:
Citation:

线性模式下GaAs光电导开关的时间抖动特性

桂淮濛, 施卫

Time jitter characteristics of GaAs photoconductive semiconductor switch in linear mode

Gui Huai-Meng, Shi Wei
PDF
导出引用
  • 针对线性模式下GaAs光电导开关时间抖动特性的研究,对提高精密同步控制系统的输出性能具有重要意义.根据电脉冲的概率分布和时间与电脉冲波形的对应关系,结合载流子的输运过程,对光电导开关时间抖动进行了定性的理论推导.此外,通过搭建实验平台,利用正交光栅分光,将一束激光同时触发两路并联的GaAs光电导开关,改变触发激光脉冲宽度及外加偏置电压测试开关时间抖动,根据实验值的对比分析,得出在不同的外加偏置电压下,随着触发激光脉冲宽度的减小,开关时间抖动值随之减小.验证了触发激光脉冲宽度对开关时间抖动的影响及理论分析的正确性.研究结果对GaAs光电导开关时间抖动的进一步减小具有一定的指导意义.
    Time precision switching is crucial to a high-precision synchronization control system with several synchronized sources. Compared with the other high-power switches, a GaAs photoconductive semiconductor switch (PCSS) with a litter time jitter has been widely used in a precision synchronization control system. There is little work on the time jitter of a GaAs PCSS. In this paper, a formula of GaAs PCSS time jitter is derived by the qualitative theoretical derivation through using the probability distribution of the output electrical pulse and the corresponding relation between the time and electrical waveform of GaAs PCSS, and combining the carrier transport process. In experiment, a neodymium-doped yttrium aluminum garnet nanosecond laser beam is split by a semipermeable half mirror into two optical beams, and then these two beams simultaneously trigger two identical GaAs PCSSs in two parallel circuits. As the energy of a triggering laser pulse is fixed at 0.35 mJ, four different laser pulse widths, namely 30 ns, 22 ns, 16 ns and 11 ns, respectively, are used to trigger the GaAs PCSSs. The bias voltage changes from 0.1 kV to 1 kV in steps of 0.1 kV, and it is used in the above-mentioned experiment. The PCSSs are triggered 20 times at each of the bias voltage values. The time jitter of the GaAs PCSS with a 3-mm gap can be measured. By analyzing the experimental data, we conclude that the time jitter of the GaAs PCSS decreases with the triggering laser pulse width decreasing under the condition of different bias voltage. In the linear mode, the GaAs PCSS illuminated by a photon with a proper wavelength creates an electron-hole pair. The characteristic of the triggering laser pulse determines that of the output electrical pulse. With the energy of triggering laser pulse fixed, the fluctuation of electrical pulse increases fast with its pulse width decreasing. Moreover, according to the derived formula for a time jitter, the GaAs PCSS time jitter decreases with triggering laser pulse width narrowing, under the different externally applied bias voltages. It is demonstrated that the theoretical and experimental results of the relationship between the triggering laser pulse width and the GaAs PCSS time jitter are consistent. The obtained results provide a basis for further reducing the GaAs PCSS time jitter, which is important for a next-generation fusion research facility and laser trigger antenna array of generating short pulse sequence.
      通信作者: 施卫, swshi@mail.xaut.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2014CB339802)、国家自然科学基金(批准号:61427814,51377133)、强脉冲辐射环境模拟与效应国家重点实验室(批准号:SKLIPR1812)和陕西省教育厅科学研究项目计划(批准号:17JK0056)资助的课题.
      Corresponding author: Shi Wei, swshi@mail.xaut.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2014CB339802), the National Natural Science Foundation of China (Grant Nos. 61427814, 51377133), the State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, China (Grant No. SKLIPR1812), and the Special Scientific Research Plan of Shaanxi Provincial Education Department, China (Grant No. 17JK0056).
    [1]

    Zutavern F J, Armijo J C, Cameron S M, Denison G J, Lehr J M, Luk T S, Mar A, O'Malley M W, Roose L D, Rudd J V 2003 14th IEEE International Pulsed Power Conference Texas, USA, June 15-18, 2003 p591

    [2]

    Zutavern F J, Reed K W, Glover S F, Mar A, Ruebush M H, Horry M L, Swalby M E, Alexander J A, Smith T L 2005 2005 IEEE Pulsed Power Conference Washington, USA, May 14-18, 2005 p81

    [3]

    Hu L, Su J C, Ding Z J, Hao Q S 2015 IEEE Electr. Device Lett. 36 1176

    [4]

    Appiah G N, Jang S R, Bae J S, Cho C G, Song S H, Ryoo H J 2017 IEEE Trans. Dielect. Elect. In. 24 2006

    [5]

    Song B B, Do K I, Koo Y S 2018 IEEE J. Electron Dev. 6 691

    [6]

    Zutavern F J, Glover S F, Swalby M E, Cich M J, Mar A, Loubriel G M, Roose L D, White F E 2010 IEEE Trans. Plasma Sci. 38 2708

    [7]

    Schoenberg J S H, Burger J W, Tyo J S, Abdalla M D, Skipper M C, Buchwald W R 1997 IEEE Trans. Plasma Sci. 25 327

    [8]

    Xu M, Li R B, Ma C, Shi W 2016 IEEE Electr. Device Lett. 37 1147

    [9]

    Zhang T, Liu K F, Gao S J, Shi Y W 2015 IEEE Trans. Dielect. Elect. In. 22 1991

    [10]

    Vergne B, Couderc V, Leveque P 2008 IEEE Photon. Technol. Lett. 20 2132

    [11]

    Shi W, Wang X M, Hou L 2013 IEEE Trans. Electron Dev. 60 1361

    [12]

    Ruan C, Zhao W, Chen G F, Zhu S L 2007 Microw. Opt. Technol. Lett. 49 1118

    [13]

    Shi W, Yan Z J 2015 Acta Phys. Sin. 64 228702 (in Chinese) [施卫, 闫志巾 2015 物理学报 64 228702]

    [14]

    Eric E F, Chi H L 1996 IEEE Trans. Microw. Theory 44 2039

    [15]

    Xu M, Bian K K, Ma C, Jia H J, An X, Shi W 2016 Opt. Lett. 41 4387

    [16]

    Gaudet J A, Skipper M C, Abdalla M D, Ahem S M, Romero S P, Mar A, Zutavem F J, Loubriel G M, O'Malley M W, Helgeson W D 2000 Intense Microwave Pulses VⅡ Orlando, USA, April 24-28, 2000 p121

    [17]

    Saad E A, Annalisa D A, Delia A C, Vincent C, Philippe L 2011 IEEE Photon. Technol. Lett. 23 673

    [18]

    Shi W, Fu Z L 2013 IEEE Electr. Dev. Lett. 34 93

    [19]

    Shi W, Zhang L, Gui H M, Hou L, Xu M, Qu G H 2013 Appl. Phys. Lett. 102 154106

    [20]

    Shi W, Gui H M, Zhang L, Ma C, Li M X, Xu M, Wang L Y 2013 Opt. Lett. 38 2330

    [21]

    Shi W, Gui H M, Zhang L, Li M C, Ma C, Wang L Y, Jiang H 2013 Opt. Lett. 38 4339

    [22]

    Gui H M, Shi W, Ma C, Fan L L, Zhang L, Zhang S, Xu Y J 2015 IEEE Photon. Technol. Lett. 27 2001

    [23]

    Liu J Y, Wang J, Shan B, Wang C, Chang Z H 2004 Fourth-Generation X-Ray Sources and Ultrafast X-Ray Detectors California, USA, August 4-6, 2004 p123

  • [1]

    Zutavern F J, Armijo J C, Cameron S M, Denison G J, Lehr J M, Luk T S, Mar A, O'Malley M W, Roose L D, Rudd J V 2003 14th IEEE International Pulsed Power Conference Texas, USA, June 15-18, 2003 p591

    [2]

    Zutavern F J, Reed K W, Glover S F, Mar A, Ruebush M H, Horry M L, Swalby M E, Alexander J A, Smith T L 2005 2005 IEEE Pulsed Power Conference Washington, USA, May 14-18, 2005 p81

    [3]

    Hu L, Su J C, Ding Z J, Hao Q S 2015 IEEE Electr. Device Lett. 36 1176

    [4]

    Appiah G N, Jang S R, Bae J S, Cho C G, Song S H, Ryoo H J 2017 IEEE Trans. Dielect. Elect. In. 24 2006

    [5]

    Song B B, Do K I, Koo Y S 2018 IEEE J. Electron Dev. 6 691

    [6]

    Zutavern F J, Glover S F, Swalby M E, Cich M J, Mar A, Loubriel G M, Roose L D, White F E 2010 IEEE Trans. Plasma Sci. 38 2708

    [7]

    Schoenberg J S H, Burger J W, Tyo J S, Abdalla M D, Skipper M C, Buchwald W R 1997 IEEE Trans. Plasma Sci. 25 327

    [8]

    Xu M, Li R B, Ma C, Shi W 2016 IEEE Electr. Device Lett. 37 1147

    [9]

    Zhang T, Liu K F, Gao S J, Shi Y W 2015 IEEE Trans. Dielect. Elect. In. 22 1991

    [10]

    Vergne B, Couderc V, Leveque P 2008 IEEE Photon. Technol. Lett. 20 2132

    [11]

    Shi W, Wang X M, Hou L 2013 IEEE Trans. Electron Dev. 60 1361

    [12]

    Ruan C, Zhao W, Chen G F, Zhu S L 2007 Microw. Opt. Technol. Lett. 49 1118

    [13]

    Shi W, Yan Z J 2015 Acta Phys. Sin. 64 228702 (in Chinese) [施卫, 闫志巾 2015 物理学报 64 228702]

    [14]

    Eric E F, Chi H L 1996 IEEE Trans. Microw. Theory 44 2039

    [15]

    Xu M, Bian K K, Ma C, Jia H J, An X, Shi W 2016 Opt. Lett. 41 4387

    [16]

    Gaudet J A, Skipper M C, Abdalla M D, Ahem S M, Romero S P, Mar A, Zutavem F J, Loubriel G M, O'Malley M W, Helgeson W D 2000 Intense Microwave Pulses VⅡ Orlando, USA, April 24-28, 2000 p121

    [17]

    Saad E A, Annalisa D A, Delia A C, Vincent C, Philippe L 2011 IEEE Photon. Technol. Lett. 23 673

    [18]

    Shi W, Fu Z L 2013 IEEE Electr. Dev. Lett. 34 93

    [19]

    Shi W, Zhang L, Gui H M, Hou L, Xu M, Qu G H 2013 Appl. Phys. Lett. 102 154106

    [20]

    Shi W, Gui H M, Zhang L, Ma C, Li M X, Xu M, Wang L Y 2013 Opt. Lett. 38 2330

    [21]

    Shi W, Gui H M, Zhang L, Li M C, Ma C, Wang L Y, Jiang H 2013 Opt. Lett. 38 4339

    [22]

    Gui H M, Shi W, Ma C, Fan L L, Zhang L, Zhang S, Xu Y J 2015 IEEE Photon. Technol. Lett. 27 2001

    [23]

    Liu J Y, Wang J, Shan B, Wang C, Chang Z H 2004 Fourth-Generation X-Ray Sources and Ultrafast X-Ray Detectors California, USA, August 4-6, 2004 p123

  • [1] 马博文, 戴雯, 孟飞, 陶家宁, 武子铃, 石岩青, 方占军, 胡明列, 宋有建. 基于异步光学采样的电光频率梳时间抖动测量. 物理学报, 2024, 73(14): 144203. doi: 10.7498/aps.73.20240400
    [2] 田立强, 潘璁, 施卫, 潘艺柯, 冉恩泽, 李存霞. GaAs光电导开关非线性模式的雪崩畴输运机理. 物理学报, 2023, 72(17): 178101. doi: 10.7498/aps.72.20230711
    [3] 桂淮濛, 施卫. 储能电容对GaAs光电导开关快前沿正负对称脉冲输出特性的影响. 物理学报, 2019, 68(19): 194206. doi: 10.7498/aps.68.20190321
    [4] 孙华娟, 颜晓红, 郝学元. 多值数据的自适应脉冲宽度调制预加重方法. 物理学报, 2015, 64(1): 018402. doi: 10.7498/aps.64.018402
    [5] 施卫, 闫志巾. 雪崩倍增GaAs光电导太赫兹辐射源研究进展. 物理学报, 2015, 64(22): 228702. doi: 10.7498/aps.64.228702
    [6] 秦鹏, 宋有建, 胡明列, 柴路, 王清月. 基于阿秒抖动光纤锁模激光器的时钟同步. 物理学报, 2015, 64(22): 224209. doi: 10.7498/aps.64.224209
    [7] 郝翔, 谢瑞良, 杨旭, 刘韬, 黄浪. 基于脉冲宽度调制的滑模变结构控制的一阶H桥逆变器的分岔和混沌行为研究. 物理学报, 2013, 62(20): 200503. doi: 10.7498/aps.62.200503
    [8] 施卫, 马湘蓉, 薛红. 半绝缘GaAs光电导开关的瞬态热效应. 物理学报, 2010, 59(8): 5700-5705. doi: 10.7498/aps.59.5700
    [9] 王金东, 魏正军, 张辉, 张华妮, 陈帅, 秦晓娟, 郭健平, 廖常俊, 刘颂豪. 长程光纤传输的时间抖动对相位编码量子密钥分发系统的影响. 物理学报, 2010, 59(8): 5514-5522. doi: 10.7498/aps.59.5514
    [10] 施卫, 屈光辉, 王馨梅. 半绝缘GaAs光电导开关非线性电脉冲超快上升特性研究. 物理学报, 2009, 58(1): 477-481. doi: 10.7498/aps.58.477
    [11] 赵 环, 赵研英, 田金荣, 王 鹏, 朱江峰, 令维军, 魏志义. 两台独立飞秒钛宝石振荡器的高精度主动同步研究. 物理学报, 2008, 57(2): 892-896. doi: 10.7498/aps.57.892
    [12] 刘世杰, 麻健勇, 沈自才, 孔伟金, 沈 健, 晋云霞, 赵元安, 邵建达, 范正修. 多层介质膜脉冲宽度压缩光栅与超短脉冲作用时的性能分析. 物理学报, 2007, 56(8): 4542-4549. doi: 10.7498/aps.56.4542
    [13] 晋兴雨, 邱锡钧, 朱志远. 在相对论性激光-等离子体系统中初始物理参数对激光脉冲的影响. 物理学报, 2006, 55(10): 5338-5343. doi: 10.7498/aps.55.5338
    [14] 陈树琪, 刘智波, 周文远, 田建国, 臧维平, 宋 峰, 张春平. 克尔介质中脉冲宽度对瞬态热光非线性效应的影响. 物理学报, 2004, 53(10): 3577-3582. doi: 10.7498/aps.53.3577
    [15] 施 卫, 马德明, 赵 卫. 用光电导开关产生稳幅ps量级时间晃动超快电脉冲的研究. 物理学报, 2004, 53(6): 1716-1720. doi: 10.7498/aps.53.1716
    [16] 王云才. 增益开关半导体激光器在外光注入下脉冲抖动的实验研究. 物理学报, 2003, 52(9): 2190-2193. doi: 10.7498/aps.52.2190
    [17] 施卫, 赵卫, 张显斌, 李恩玲. 高功率亚纳秒GaAs光电导开关的研究. 物理学报, 2002, 51(4): 867-872. doi: 10.7498/aps.51.867
    [18] 王徐芳, 姚敏玉, 徐磊, 张剑锋, 陈明华, 高以智. 自注入减小增益开关分布反馈激光器时间抖动的数值模拟. 物理学报, 2000, 49(3): 475-479. doi: 10.7498/aps.49.475
    [19] 晁月盛, 肖素红. 连续超短电脉冲促进非晶晶化的物理机理. 物理学报, 1998, 47(12): 2012-2017. doi: 10.7498/aps.47.2012
    [20] 林金谷, 刘承惠, 朱振和, 赖瑞生, 霍崇儒. 用非共线二次谐波法实现对锁模激光器超短脉冲宽度的测定. 物理学报, 1980, 29(3): 406-408. doi: 10.7498/aps.29.406
计量
  • 文章访问数:  6390
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-27
  • 修回日期:  2018-05-20
  • 刊出日期:  2019-09-20

/

返回文章
返回