搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

孕震断层锁固段累积损伤导致失稳的自组织-临界行为特征

吴晓娲 秦四清 薛雷 杨百存 张珂

引用本文:
Citation:

孕震断层锁固段累积损伤导致失稳的自组织-临界行为特征

吴晓娲, 秦四清, 薛雷, 杨百存, 张珂

Behavior characteristics from self-organization to criticality caused by cumulative damage leading to instability of locked segments in seismogenic fault system

Wu Xiao-Wa, Qin Si-Qing, Xue Lei, Yang Bai-Cun, Zhang Ke
PDF
导出引用
  • 弄清锁固段(岩石)破裂过程中自组织临界性的物理涵义,对正确认识地震可预测性问题等具有重要意义.本文指出锁固段破裂过程存在两个临界点,第一临界点为体积膨胀点,是自组织过程起点,在该点锁固段发生可判识的高能级破裂事件,这可视为锁固段宏观破裂前的惟一可识别前兆;第二临界点为峰值强度点,即失稳点,在该点通常发生有明显地表破裂带的大地震.基于以前研究给出的两者之间应变比理论关系以及地震震级与能量约束关系,可预测锁固段在第一和第二临界点处发生的某些标志性地震,并已得到诸多震例分析的支持.本文研究结果表明:由于锁固段是非均匀介质,失稳前必须出现自组织过程,自组织是因,临界失稳是果,正是因为自组织过程的存在,才使得对某些大地震(如标志性地震)的预测成为可能;两个临界点之间的破裂演化过程并不是瞬态行为,通常是一个长期过程,该过程中标志性地震的发生遵循确定性规律,并不存在小地震直接导致大地震(如标志性地震)的级联效应.
    Each of the seismogenic locked segments in a well-defined seismic zone can accumulate high strain energy to bring about a major earthquake. Hence, better understanding the physical implication of self-organized criticality in the locked segment (rock) failure process is crucial to achieving insights into such issues as earthquake predictability and so on. We point out that there exist two critical points in the locked segment fracturing process. The first critical point is volume expansion point, which is the starting point of self-organization, at which a rupture event with high energy occurs. It can be regarded as the only identified precursor to macroscopic rupture of locked segment. The second critical point is the peak strength point, namely, the instability point, at which a major earthquake which is able to generate obvious surface rupture zones takes place. According to our previous research on the theoretical relationship of strain ratio between the two points as well as the constrained expressions concerning earthquake magnitudes and elastic strain energy, also known as the theory about the brittle failure of multiple locked segments in a seismogenic fault system, we can predict some characteristic earthquakes occurring at the first and the second critical point of locked segment, e.g., the 2004 Sumatra-Andaman MW9.0 earthquake in Indonesia, the 2008 Sichuan MS8.1 earthquake in China, and the 2011 Tōhoku MW9.0 earthquake in Japan. This was obtained by retrospectively analyzing the earthquake cases in 62 seismic zones covering the circum-Pacific seismic belt and the Eurasia seismic belt. The present results show that the self-organized process before the locked segment (rock) instability must arise due to its heterogeneity; there exists a causal link between the self-organization and criticality; it is possible to predict some large earthquakes (e.g. characteristic earthquakes) just because of the existence of self-organized process. We emphasize here that the damage process between the two critical points is not transient behavior, usually a long-term process; the evolution of characteristic earthquakes follows a deterministic rule; there is no probability with which small earthquakes can cascade into a large event (e.g. characteristic earthquakes). In summary, this study can help to comprehend the evolutionary mechanism of characteristic earthquakes, provide a physical basis of understanding the generation process of earthquakes, and clarify such issues as the identification of earthquake types and predictability of earthquakes.
      通信作者: 秦四清, qsqhope@mail.iggcas.ac.cn
    • 基金项目: 国家自然科学基金(批准号:41572311,U1704243,41302233,41877218)资助的课题.
      Corresponding author: Qin Si-Qing, qsqhope@mail.iggcas.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41572311, U1704243, 41302233, 41877218).
    [1]

    Bak P, Tang C, Wiesenfeld K 1987 Phys. Rev. Lett. 59 381

    [2]

    Gutenberg B, Richter C F 1944 Bull. Seismol. Soc. Am. 34 185

    [3]

    Geller R J, Jackson D D, Kagan Y Y, Mulargia F 1997 Science 275 1616

    [4]

    Stark P B 1996 Res. Lett. 23 1399

    [5]

    Wyss M, Aceves B R L, Park S K 1997 Science 278 487

    [6]

    Sykes L R, Shaw B E, Scholz C H 1999 Pure Appl. Geophys. 155 207

    [7]

    Crampin S, Gao Y 2010 Geophys. J. Int. 180 1124

    [8]

    Wu Z L 1998 Earthquake Research in China 14 1 (in Chinese)[吴忠良 1998 中国地震 14 1]

    [9]

    Frette V, Christensen K, Malthe-Srenssen A, Feder J, Jssang T, Mrakin P 1996 Nature 379 49

    [10]

    Ramos O, Altshuler E, Mly K J 2009 Phys. Rev. Lett. 102 078701

    [11]

    Wu X W, Qin S Q, Xue L, Yang B C, Li P, Zhang K 2016 Chinese J. Geophys. 59 3696 (in Chinese)[吴晓娲, 秦四清, 薛雷, 杨百存, 李培, 张珂 2016 地球物理学报 59 3696]

    [12]

    Qin S Q, Xu X W, Hu P, Wang Y Y, Huang X, Pan X H 2010 Chinese J. Geophys. 53 1001 (in Chinese)[秦四清, 徐锡伟, 胡平, 王媛媛, 黄鑫, 泮晓华 2010 地球物理学报 53 1001]

    [13]

    Sornette A, Sornette D 1989 EPL 9 197

    [14]

    Chen K, Bak P, Obukhov S P 1991 Phys. Rev. A 43 625

    [15]

    Zheng J 1992 Prog. Geophys. 7 20 (in Chinese)[郑捷 1992 地球物理学进展 7 20]

    [16]

    Godano C, Alonzo M L, Caruso V 1993 Phys. Earth Planet. Inter. 80 117

    [17]

    Yoshioka N 2003 Earth Planets Space 55 283

    [18]

    Lu K Q, Hou M Y, Jiang Z H, Wang Q, Sun G, Liu J X 2012 Acta Phys. Sin. 61 119103 (in Chinese)[陆坤权, 厚美瑛, 姜泽辉, 王强, 孙刚, 刘寄星 2012 物理学报 61 119103]

    [19]

    Brace W F, Paulding B W, Scholz C H 1966 J. Geophys. Res. 71 3939

    [20]

    Bieniawski Z T 1967 Int. J. Rock Mech. Min. Sci. 4 395

    [21]

    Bieniawski Z T 1967 Int. J. Rock Mech. Min. Sci. 4 407

    [22]

    Martin C D, Chandler N A 1994 Int. J. Rock Mech. Min. Sci. 31 643

    [23]

    Xue L, Qi M, Qin S Q, Li G L, Li P, Wang M M 2015 Rock Mech. Rock Eng. 48 1763

    [24]

    Xue L, Qin S Q, Sun Q, Wang Y Y, Lee M L, Li W C 2014 Rock Mech. Rock Eng. 47 1183

    [25]

    Chen H R, Qin S Q, Xue L, Yang B C, Zhang K, Wu X W 2017 Prog. Geophys. 32 2200 (in Chinese)[陈竑然, 秦四清, 薛雷, 杨百存, 张珂, 吴晓娲 2017 地球物理学进展 32 2200]

    [26]

    Yang B C, Qin S Q, Xue L, Zhang K 2018 Chinese J. Geophys. 61 616 (in Chinese)[杨百存, 秦四清, 薛雷, 张珂 2018 地球物理学报 61 616]

    [27]

    Lei X L, Masuda K, Nishizawa O, Jouniaux L, Liu L, Ma W, Satoh T, Kusunose K 2004 J. Struct. Geol. 26 247

    [28]

    Zhao X G, Wang J, Ma L K, Su R, Cai M, Wang G B 2013 Proceedings of the 3rd ISRM SINOROCK Symposium. London: CRC Press/Balkema, p75

    [29]

    Sun J 1999 Rheology of Rock and Soil Materials and its Engineering Application 1 (Beijing: China Architecture and Building Press) p434 (in Chinese)[孙钧 1999岩土材料流变及其工程应用 1 (北京: 中国建筑工业出版社) 第434页]

    [30]

    Hudson J A, Crouch S L, Fairhurst C 1972 Eng. Geol. 6 155

    [31]

    Meng X Y, Li S H, Zhang J F 2004 Chin. J. Rock Mech. Eng. 23 1760 (in Chinese)[孟祥跃, 李世海, 张均锋 2004 岩石力学与工程学报 23 1760]

    [32]

    Qin S Q, Li P, Yang B C, Xue L, Wu X W 2016 Prog. Geophys. 31 574 (in Chinese)[秦四清, 李培, 杨百存, 薛雷, 吴晓娲 2016 地球物理学进展 31 574]

    [33]

    Qin S Q, Yang B C, Wu X W, Xue L, Li P 2016 Prog. Geophys. 31 115 (in Chinese)[秦四清, 杨百存, 吴晓娲, 薛雷, 李培 2016 地球物理学进展 31 115]

    [34]

    Qin S Q, Yang B C, Xue L, Li P, Wu X W 2016 Prog. Geophys. 31 559 (in Chinese)[秦四清, 杨百存, 薛雷, 李培, 吴晓娲 2016 地球物理学进展 31 559]

    [35]

    Qin S Q, Li P, Xue L, Li G L, Wang M M 2014 Prog. Geophys. 29 1526 (in Chinese)[秦四清, 李培, 薛雷, 李国梁, 王苗苗 2014 球物理学进展 29 1526]

    [36]

    Li P, Qin S Q, Xue L, Wu X W, Yang B C, Zhang K 2016 Prog. Geophys. 31 1450 (in Chinese)[李培, 秦四清, 薛雷, 吴晓娲, 杨百存, 张珂 2016 地球物理学进展 31 1450]

    [37]

    Yang B C, Qin S Q, Xue L, Wu X W, Zhang K 2017 Prog. Geophys. 32 1067 (in Chinese)[杨百存, 秦四清, 薛雷, 吴晓娲, 张珂 2017 地球物理学进展 32 1067]

    [38]

    Qin S Q, Yang B C, Xue L, Li P, Wu X W 2015 Prog. Geophys. 30 2013 (in Chinese)[秦四清, 杨百存, 薛雷, 李培, 吴晓娲 2015 地球物理学进展 30 2013]

    [39]

    Yang B C, Qin S Q, Xue L, Wu X W, Zhang K 2017 Prog. Geophys. 32 1953 (in Chinese)[杨百存, 秦四清, 薛雷, 吴晓娲, 张珂 2017 地球物理学进展 32 1953]

    [40]

    Xue L, Qin S Q, Li P, Li G L, Oyediran I A, Pan X H 2014 Eng. Geol. 182 79

    [41]

    Qin S Q, Wang Y Y, Ma P 2010 Chin. J. Rock Mech. Eng. 29 873 (in Chinese)[秦四清, 王媛媛, 马平 2010 岩石力学与工程学报 29 873]

    [42]

    Yang B C, Qin S Q, Xue L, Chen H R, Wu X W, Zhang K 2017 Chinese J. Geophys. 60 1746 (in Chinese)[杨百存, 秦四清, 薛雷, 陈竑然, 吴晓娲, 张珂 2017 地球物理学报 60 1746]

    [43]

    Song Z P 2011 Global Earthquake Catalog 1 (Beijing: Seismological Press) pp1-450 (in Chinese)[宋治平 2011 全球地震目录 1 (北京: 地震出版社) 第1450页]

  • [1]

    Bak P, Tang C, Wiesenfeld K 1987 Phys. Rev. Lett. 59 381

    [2]

    Gutenberg B, Richter C F 1944 Bull. Seismol. Soc. Am. 34 185

    [3]

    Geller R J, Jackson D D, Kagan Y Y, Mulargia F 1997 Science 275 1616

    [4]

    Stark P B 1996 Res. Lett. 23 1399

    [5]

    Wyss M, Aceves B R L, Park S K 1997 Science 278 487

    [6]

    Sykes L R, Shaw B E, Scholz C H 1999 Pure Appl. Geophys. 155 207

    [7]

    Crampin S, Gao Y 2010 Geophys. J. Int. 180 1124

    [8]

    Wu Z L 1998 Earthquake Research in China 14 1 (in Chinese)[吴忠良 1998 中国地震 14 1]

    [9]

    Frette V, Christensen K, Malthe-Srenssen A, Feder J, Jssang T, Mrakin P 1996 Nature 379 49

    [10]

    Ramos O, Altshuler E, Mly K J 2009 Phys. Rev. Lett. 102 078701

    [11]

    Wu X W, Qin S Q, Xue L, Yang B C, Li P, Zhang K 2016 Chinese J. Geophys. 59 3696 (in Chinese)[吴晓娲, 秦四清, 薛雷, 杨百存, 李培, 张珂 2016 地球物理学报 59 3696]

    [12]

    Qin S Q, Xu X W, Hu P, Wang Y Y, Huang X, Pan X H 2010 Chinese J. Geophys. 53 1001 (in Chinese)[秦四清, 徐锡伟, 胡平, 王媛媛, 黄鑫, 泮晓华 2010 地球物理学报 53 1001]

    [13]

    Sornette A, Sornette D 1989 EPL 9 197

    [14]

    Chen K, Bak P, Obukhov S P 1991 Phys. Rev. A 43 625

    [15]

    Zheng J 1992 Prog. Geophys. 7 20 (in Chinese)[郑捷 1992 地球物理学进展 7 20]

    [16]

    Godano C, Alonzo M L, Caruso V 1993 Phys. Earth Planet. Inter. 80 117

    [17]

    Yoshioka N 2003 Earth Planets Space 55 283

    [18]

    Lu K Q, Hou M Y, Jiang Z H, Wang Q, Sun G, Liu J X 2012 Acta Phys. Sin. 61 119103 (in Chinese)[陆坤权, 厚美瑛, 姜泽辉, 王强, 孙刚, 刘寄星 2012 物理学报 61 119103]

    [19]

    Brace W F, Paulding B W, Scholz C H 1966 J. Geophys. Res. 71 3939

    [20]

    Bieniawski Z T 1967 Int. J. Rock Mech. Min. Sci. 4 395

    [21]

    Bieniawski Z T 1967 Int. J. Rock Mech. Min. Sci. 4 407

    [22]

    Martin C D, Chandler N A 1994 Int. J. Rock Mech. Min. Sci. 31 643

    [23]

    Xue L, Qi M, Qin S Q, Li G L, Li P, Wang M M 2015 Rock Mech. Rock Eng. 48 1763

    [24]

    Xue L, Qin S Q, Sun Q, Wang Y Y, Lee M L, Li W C 2014 Rock Mech. Rock Eng. 47 1183

    [25]

    Chen H R, Qin S Q, Xue L, Yang B C, Zhang K, Wu X W 2017 Prog. Geophys. 32 2200 (in Chinese)[陈竑然, 秦四清, 薛雷, 杨百存, 张珂, 吴晓娲 2017 地球物理学进展 32 2200]

    [26]

    Yang B C, Qin S Q, Xue L, Zhang K 2018 Chinese J. Geophys. 61 616 (in Chinese)[杨百存, 秦四清, 薛雷, 张珂 2018 地球物理学报 61 616]

    [27]

    Lei X L, Masuda K, Nishizawa O, Jouniaux L, Liu L, Ma W, Satoh T, Kusunose K 2004 J. Struct. Geol. 26 247

    [28]

    Zhao X G, Wang J, Ma L K, Su R, Cai M, Wang G B 2013 Proceedings of the 3rd ISRM SINOROCK Symposium. London: CRC Press/Balkema, p75

    [29]

    Sun J 1999 Rheology of Rock and Soil Materials and its Engineering Application 1 (Beijing: China Architecture and Building Press) p434 (in Chinese)[孙钧 1999岩土材料流变及其工程应用 1 (北京: 中国建筑工业出版社) 第434页]

    [30]

    Hudson J A, Crouch S L, Fairhurst C 1972 Eng. Geol. 6 155

    [31]

    Meng X Y, Li S H, Zhang J F 2004 Chin. J. Rock Mech. Eng. 23 1760 (in Chinese)[孟祥跃, 李世海, 张均锋 2004 岩石力学与工程学报 23 1760]

    [32]

    Qin S Q, Li P, Yang B C, Xue L, Wu X W 2016 Prog. Geophys. 31 574 (in Chinese)[秦四清, 李培, 杨百存, 薛雷, 吴晓娲 2016 地球物理学进展 31 574]

    [33]

    Qin S Q, Yang B C, Wu X W, Xue L, Li P 2016 Prog. Geophys. 31 115 (in Chinese)[秦四清, 杨百存, 吴晓娲, 薛雷, 李培 2016 地球物理学进展 31 115]

    [34]

    Qin S Q, Yang B C, Xue L, Li P, Wu X W 2016 Prog. Geophys. 31 559 (in Chinese)[秦四清, 杨百存, 薛雷, 李培, 吴晓娲 2016 地球物理学进展 31 559]

    [35]

    Qin S Q, Li P, Xue L, Li G L, Wang M M 2014 Prog. Geophys. 29 1526 (in Chinese)[秦四清, 李培, 薛雷, 李国梁, 王苗苗 2014 球物理学进展 29 1526]

    [36]

    Li P, Qin S Q, Xue L, Wu X W, Yang B C, Zhang K 2016 Prog. Geophys. 31 1450 (in Chinese)[李培, 秦四清, 薛雷, 吴晓娲, 杨百存, 张珂 2016 地球物理学进展 31 1450]

    [37]

    Yang B C, Qin S Q, Xue L, Wu X W, Zhang K 2017 Prog. Geophys. 32 1067 (in Chinese)[杨百存, 秦四清, 薛雷, 吴晓娲, 张珂 2017 地球物理学进展 32 1067]

    [38]

    Qin S Q, Yang B C, Xue L, Li P, Wu X W 2015 Prog. Geophys. 30 2013 (in Chinese)[秦四清, 杨百存, 薛雷, 李培, 吴晓娲 2015 地球物理学进展 30 2013]

    [39]

    Yang B C, Qin S Q, Xue L, Wu X W, Zhang K 2017 Prog. Geophys. 32 1953 (in Chinese)[杨百存, 秦四清, 薛雷, 吴晓娲, 张珂 2017 地球物理学进展 32 1953]

    [40]

    Xue L, Qin S Q, Li P, Li G L, Oyediran I A, Pan X H 2014 Eng. Geol. 182 79

    [41]

    Qin S Q, Wang Y Y, Ma P 2010 Chin. J. Rock Mech. Eng. 29 873 (in Chinese)[秦四清, 王媛媛, 马平 2010 岩石力学与工程学报 29 873]

    [42]

    Yang B C, Qin S Q, Xue L, Chen H R, Wu X W, Zhang K 2017 Chinese J. Geophys. 60 1746 (in Chinese)[杨百存, 秦四清, 薛雷, 陈竑然, 吴晓娲, 张珂 2017 地球物理学报 60 1746]

    [43]

    Song Z P 2011 Global Earthquake Catalog 1 (Beijing: Seismological Press) pp1-450 (in Chinese)[宋治平 2011 全球地震目录 1 (北京: 地震出版社) 第1450页]

  • [1] 石燕, 张天辉. 自组织结构的控制: 从平衡过程到非平衡过程. 物理学报, 2020, 69(14): 140503. doi: 10.7498/aps.69.20200161
    [2] 孙保安, 王利峰, 邵建华. 非晶力学流变的自组织临界行为. 物理学报, 2017, 66(17): 178103. doi: 10.7498/aps.66.178103
    [3] 余旭涛, 徐进, 张在琛. 基于量子远程传态的无线自组织量子通信网络路由协议. 物理学报, 2012, 61(22): 220303. doi: 10.7498/aps.61.220303
    [4] 田雪雁, 赵谡玲, 徐征, 姚江峰, 张福俊, 贾全杰, 陈雨, 龚伟, 樊星. 高分子有机场效应晶体管中退火引起的自组织微观结构变化的研究. 物理学报, 2011, 60(5): 057201. doi: 10.7498/aps.60.057201
    [5] 白克钊, 陈瑞熊, 刘慕仁, 孔令江, 郑容森. 平面环行交叉路口交通流的研究. 物理学报, 2009, 58(7): 4500-4505. doi: 10.7498/aps.58.4500
    [6] 张文铸, 袁 坚, 俞 哲, 徐赞新, 山秀明. 基于元胞自动机的无线传感网络整体行为研究. 物理学报, 2008, 57(11): 6896-6900. doi: 10.7498/aps.57.6896
    [7] 黄丽清, 潘华强, 王 军, 童慧敏, 朱 可, 任冠旭, 王永昌. 多孔氧化铝膜上自组织生长Sn纳米点阵列的研究. 物理学报, 2007, 56(11): 6712-6716. doi: 10.7498/aps.56.6712
    [8] 张 林, 孔红艳, 杨国健. 约束阱中受激发原子的集体反弹效应所导致的自组织行为. 物理学报, 2006, 55(10): 5122-5128. doi: 10.7498/aps.55.5122
    [9] 刘玉敏, 俞重远, 杨红波, 黄永箴. InAs/GaAs透镜形量子点超晶格材料的纵向和横向周期对应变场分布的影响. 物理学报, 2006, 55(10): 5023-5029. doi: 10.7498/aps.55.5023
    [10] 刘 蕾, 徐升华, 刘 捷, 段 俐, 孙祉伟, 刘忍肖, 董 鹏. 带电胶体粒子结晶过程的实验研究. 物理学报, 2006, 55(11): 6168-6174. doi: 10.7498/aps.55.6168
    [11] 周海平, 蔡绍洪, 王春香. 含崩塌概率的一维沙堆模型的自组织临界性. 物理学报, 2006, 55(7): 3355-3359. doi: 10.7498/aps.55.3355
    [12] 董庆瑞, 牛智川. 垂直耦合自组织InAs双量子点中激子能的计算. 物理学报, 2005, 54(4): 1794-1798. doi: 10.7498/aps.54.1794
    [13] 张永炬, 余森江. 准自由支撑铝薄膜中有序表面结构的自组织生长. 物理学报, 2005, 54(10): 4867-4873. doi: 10.7498/aps.54.4867
    [14] 贺亚峰, 董丽芳, 刘富成, 范伟丽. 介质阻挡放电中的局域态六边形结构. 物理学报, 2005, 54(9): 4236-4239. doi: 10.7498/aps.54.4236
    [15] 李良新, 胡勇华. 可用于红外探测器的自组织量子线及其带间和子带间光学跃迁. 物理学报, 2005, 54(2): 848-856. doi: 10.7498/aps.54.848
    [16] 巩龙, 童培庆. 二维格气模型中动力学相变与自组织临界现象. 物理学报, 2003, 52(11): 2757-2761. doi: 10.7498/aps.52.2757
    [17] 全宏俊, 汪秉宏, 杨伟松, 王卫宁, 罗晓曙. 经纪人模仿在演化少数者博弈模型中引入的自组织分离效应. 物理学报, 2002, 51(12): 2667-2670. doi: 10.7498/aps.51.2667
    [18] 何声太, 姚建年, 汪裕萍, 江鹏, 时东霞, 解思深, 庞世瑾, 高鸿钧. 银纳米粒子自组织二维有序阵列. 物理学报, 2001, 50(4): 765-768. doi: 10.7498/aps.50.765
    [19] 吕振东, 李 晴, 许继宗, 郑宝真, 徐仲英, 葛惟锟. 自组织生长InAs/GaAs量子点发光动力学研究. 物理学报, 1999, 48(4): 744-750. doi: 10.7498/aps.48.744
    [20] 王志明, 封松林, 吕振东, 杨小平, 陈宗圭, 宋春英, 徐仲英, 郑厚植, 王凤莲, 韩培德, 段晓峰. 自组织InAs/GaAs量子点垂直排列生长研究. 物理学报, 1998, 47(1): 89-93. doi: 10.7498/aps.47.89
计量
  • 文章访问数:  7184
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-07
  • 修回日期:  2018-07-30
  • 刊出日期:  2019-10-20

/

返回文章
返回