搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

H,Cl和F原子钝化Cu2ZnSnS4(112)表面态的第一性原理计算

王小卡 汤富领 薛红涛 司凤娟 祁荣斐 刘静波

引用本文:
Citation:

H,Cl和F原子钝化Cu2ZnSnS4(112)表面态的第一性原理计算

王小卡, 汤富领, 薛红涛, 司凤娟, 祁荣斐, 刘静波

First-principles study of H, Cl and F passivation for Cu2ZnSnS4(112) surface states

Wang Xiao-Ka, Tang Fu-Ling, Xue Hong-Tao, Si Feng-Juan, Qi Rong-Fei, Liu Jing-Bo
PDF
导出引用
  • 采用基于密度泛函理论的第一性原理计算方法系统研究了Cu2ZnSnS4体相的晶格结构、能带、态密度及表面重构与H,Cl和F原子在Cu2ZnSnS4(112)表面上的吸附和钝化机理.计算结果表明:表面重构出现在以金属原子Cu-Zn-Sn终止的Cu2ZnSnS4(112)表面上,并且表面重构使表面发生自钝化;当单个H,Cl或F原子吸附在S原子终止的Cu2ZnSnS4(112)表面上时,相比于桥位(bridge)、六方密排(hcp)位和面心立方(fcc)位点,三种原子均在特定的顶位(top)吸附位点表现出最佳稳定性.当覆盖度为0.5 ML时,无论H,Cl还是F原子占据Cu2ZnSnS4(112)表面的2个顶位均具有最低的吸附能.以S原子终止的Cu2ZnSnS4(112)表面在费米能级附近的电子态主要由价带顶部Cu-3d轨道和S-3p轨道电子贡献,此即表面态.当H,Cl或F原子在表面的覆盖度达0.5 ML时,费米能级附近的表面态降低,其中H原子钝化表面态的效果最佳,Cl原子的效果次之,F原子的效果最差.表面态降低的主要原因在于吸附原子从S原子获得电子致使表面Cu原子和S原子在费米能级处的态密度峰几乎完全消失.
    The first-principles calculation method is used to systematically investigate the lattice structure, energy band, density of states of the bulk Cu2ZnSnS4, surface reconstruction, and mechanism of adsorption and passivation of F, Cl and H atoms on Cu2ZnSnS4 (112) surface. We find that the surface reconstruction occurs on the Cu-Zn-Sn-terminated Cu2ZnSnS4 (112) surface and this reconstruction introduces surface self-passivation. By analyzing the partial density of states of the atoms on the S-terminated Cu2ZnSnS4 (112) surface, it can be seen that surface states near the Fermi level are mainly contributed by 3d orbitals of Cu atoms and 3p orbits of S atoms at the top of the valence band. When a single F, Cl or H atom is adsorbed on the S-terminated Cu2ZnSnS4 (112) surface, all three kinds of atoms exhibit an optimal stability at a specific top adsorption site in comparison with at the bridge, hcp and fcc sites. And this top position is also the position of the S atom that has the greatest influence on the surface states. When two atoms of the same kind are adsorbed on the surface, H, Cl or F atoms occupy the top sites of two S atoms that cause surface states on the Cu2ZnSnS4 (112) surface, which have the lowest adsorption energy. And the surface states near the Fermi level are partially reduced. Therefore, two S atoms that cause the surface states are the main targets of S-terminated Cu2ZnSnS4 (112) surface passivation. It has also been found that the passivation effect of H atom for surface states is the most significant and the effect of Cl atom is better than that of F atom. Comparing the partial density of states, the Bader charge and the differential charge of the atoms before and after adsorption, we find that the main reason for the decrease of the surface states is that the adsorption atoms obtain electrons from the S atoms, and the state density peaks of the Cu and S atoms at the Fermi level almost disappear completely. In the surface model, the F atom obtains the same number of electrons from the two S atoms, while the two S atoms have different effects on the surface states. And the H and Cl atoms obtain fewer electrons from the S atoms, that have less influence on the surface states. It may be the reason why the passivation effect of F atom is slightly less than that of H and Cl atoms.
      通信作者: 汤富领, tfl03@mails.tsinghua.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11764027,11364025)和沈阳材料科学国家研究中心-有色金属加工与再利用国家重点实验室联合基金(批准号:18LHPY003)资助的课题.
      Corresponding author: Tang Fu-Ling, tfl03@mails.tsinghua.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11764027, 11364025) and Joint fund between Shenyang National Laboratory for Materials Science and State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, China (Grant No. 18LHPY003).
    [1]

    Jackson P, Hariskos D, Wuerz R, Kiowski O, Bauer A, Friedlmeier T M, Powalla M 2015 Phys. Status Solidi R 9 28

    [2]

    Chen S Y, Gong X G, Walsh A, Wei S H 2009 Appl. Phys. Lett. 94 041903

    [3]

    Pandiyan R, Elhmaidi Z O, Sekkat Z, Abd-lefdil M, Khakani M A E 2017 Appl. Surf. Sci. 396 1562

    [4]

    Tanaka K, Oonuki M, Moritake N, Uchiki H 2009 Sol. Energ. Mat. Sol. C 93 583

    [5]

    Cheng Y W, Tang F L, Xue H T, Liu H X, Gao B, Feng Y D 2016 J. Phys. D: Appl. Phys. 49 285107

    [6]

    Katagiri H, Saitoh K, Washio T, Shinohara H, Kurumadani T, Miyajima S 2001 Sol. Energy Mat. Sol. C 65 141

    [7]

    Kumar Y B K, Babu G S, Bhaskar P U, Vanjari S R 2009 Sol. Energy Mat. Sol. C 93 1230

    [8]

    Xu P, Chen S, Huang B, Xiang H J, Gong X G, Wei S H 2013 Phys. Rev. B 88 045427

    [9]

    Xu J X, Yao R H 2012 Acta Phys. Sin. 61 187304 (in Chinese) [许佳雄, 姚若河 2012 物理学报 61 187304]

    [10]

    Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B 2014 Adv. Energy Mater. 4 1301465

    [11]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510

    [12]

    Shockley W 1961 Czech. J. Phys. 11 81

    [13]

    Shadike Z, Zhou Y N, Chen L L, Wu Q, Yue J L, Zhang N, Yang X Q, Gu L, Liu X S, Shi S Q, Fu Z W 2017 Nat. Commun. 8 566

    [14]

    Gao J, Zhao Y S, Shi S Q, Li H 2016 Chin. Phys. B 25 018212

    [15]

    Furuta K, Sakai N, Kato T, Sugimoto H, Kurokawa Y, Yamada A 2015 Phys. Status Solidi C 12 704

    [16]

    Lee Y S, Gershon T, Todorov T K, Wang W, Winkler M T, Hopstaken M, Gunawan O, Kim J 2016 Adv. Energy Mater. 6 1600198

    [17]

    Lin Y R, Tunuguntla V, Wei S Y, Chen W C, Wong D, Lai C H, Liu L K, Chen L C, Chen K H 2015 Nano Energy 16 438

    [18]

    Xing Q Q, Yang Y, Chen J, Chao M M, Zhang L 2015 Taipei 2 1

    [19]

    Ohno T, Shiraishi K J 1990 Phys. Rev. B 42 11194

    [20]

    Wang W C, Lee G, Huang M, Wallace R, Cho K 2010 J. Appl. Phys. 107 103720

    [21]

    Medaboina D, Gade V, Patil S K R, Khare S V 2007 Phys. Rev. B 76 205327

    [22]

    Vermang B, Fjällström V, Pettersson J, Salomé P, Edoff M 2013 Sol. Energy Mat. Sol. C 117 505

    [23]

    Vermang B, Fjällström V, Gao X, Edoff M 2014 IEEE J. Photovolt. 4 486

    [24]

    Cheng Y W, Tang F L, Xue H T, Liu H X, Gao B 2017 Appl. Surf. Sci. 394 58

    [25]

    Huang W X, Li Q, Chen Y H, Xia Y D, Huang H H, Dun C C, Li Y, Carroll D 2014 Sol. Energy Mat. Sol. C 127 188

    [26]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15

    [27]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [28]

    Yu J, Lin X, Wang J J, Chen J, Huang W D 2009 Appl. Surf. Sci. 255 9032

    [29]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [30]

    Zhou W W, Zhou J J, Shen J Q, Ouyang C Y, Shi S Q 2012 J. Phys. Chem. Solids 73 245

    [31]

    Blöchl P E, Jepsen O, Andersen O K 1994 Phys. Rev. B: Condens. Matter 49 16223

    [32]

    Zhou J G, Causon D M, Mingham C G, Ingram D M 2001 J. Comput. Phys. 168 1

    [33]

    Huang G Y, Wang C Y, Wang J T 2012 Comput. Phys. Commun. 183 1749

    [34]

    Karazhanov S, Ravindran P, Grossner U, Kjekhus A, Fjellvag H, Svensson B G 2006 J. Cryst. Growth 287 162

    [35]

    Tang Y H, Zhang H, Cui L X, Ouyang C Y, Shi S Q, Tang W H, Li H, Chen L Q 2012 J. Power Sources 197 28

    [36]

    Cui L X, Tang Y H, Zhang H, Hector Jr L G, Ouyang C Y, Shi S Q, Li H, Chen L Q 2012 Phys. Chem. Chem. Phys. 14 1923

    [37]

    Huang D, Persson C 2013 Thin Solid Films 535 265

    [38]

    Ma L C, Zhang J M, Xu K W 2013 Physica E 50 1

    [39]

    Kresse G, Joubert D P 1999 Phys. Rev. B 59 1758

    [40]

    Hall S R, Szymański J T, Stewart J M 1978 Can. Mineral 16 131

    [41]

    He X C, Shen H L 2011 Physica B 406 4604

    [42]

    Chen S Y, Gong X W, Walsh A, Wei S H 2009 Appl. Phys. Lett. 94 041903

    [43]

    Han G, Lu J H, Wang M, Li D Y 2016 Mater. Rev. 30 50 (in Chinese) [韩贵, 陆金花, 王敏, 李丹阳 2016 材料导报 30 50]

    [44]

    Persson C 2010 J. Appl. Phys. 107 053710

    [45]

    Reshak A H, Nouneh K, Kityk I V, Bila J, Auluck S, Kamarudin H, Sekkat Z 2014 Int. J. Electrochem. Sci. 9 955

    [46]

    Li D F, Zu X T, Xiao H Y, Liu K Z 2009 J. Alloys Compd. 467 557

    [47]

    Chen L J, Tang Y H, Cui L X, Ouyang C Y, Shi S Q 2013 J. Power Sources 234 69

    [48]

    Chen L L, Wang X F, Shi S Q, Cui Y Y, Luo H J, Gao Y F 2016 Appl. Surf. Sci. 367 507

    [49]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354

  • [1]

    Jackson P, Hariskos D, Wuerz R, Kiowski O, Bauer A, Friedlmeier T M, Powalla M 2015 Phys. Status Solidi R 9 28

    [2]

    Chen S Y, Gong X G, Walsh A, Wei S H 2009 Appl. Phys. Lett. 94 041903

    [3]

    Pandiyan R, Elhmaidi Z O, Sekkat Z, Abd-lefdil M, Khakani M A E 2017 Appl. Surf. Sci. 396 1562

    [4]

    Tanaka K, Oonuki M, Moritake N, Uchiki H 2009 Sol. Energ. Mat. Sol. C 93 583

    [5]

    Cheng Y W, Tang F L, Xue H T, Liu H X, Gao B, Feng Y D 2016 J. Phys. D: Appl. Phys. 49 285107

    [6]

    Katagiri H, Saitoh K, Washio T, Shinohara H, Kurumadani T, Miyajima S 2001 Sol. Energy Mat. Sol. C 65 141

    [7]

    Kumar Y B K, Babu G S, Bhaskar P U, Vanjari S R 2009 Sol. Energy Mat. Sol. C 93 1230

    [8]

    Xu P, Chen S, Huang B, Xiang H J, Gong X G, Wei S H 2013 Phys. Rev. B 88 045427

    [9]

    Xu J X, Yao R H 2012 Acta Phys. Sin. 61 187304 (in Chinese) [许佳雄, 姚若河 2012 物理学报 61 187304]

    [10]

    Wang W, Winkler M T, Gunawan O, Gokmen T, Todorov T K, Zhu Y, Mitzi D B 2014 Adv. Energy Mater. 4 1301465

    [11]

    Shockley W, Queisser H J 1961 J. Appl. Phys. 32 510

    [12]

    Shockley W 1961 Czech. J. Phys. 11 81

    [13]

    Shadike Z, Zhou Y N, Chen L L, Wu Q, Yue J L, Zhang N, Yang X Q, Gu L, Liu X S, Shi S Q, Fu Z W 2017 Nat. Commun. 8 566

    [14]

    Gao J, Zhao Y S, Shi S Q, Li H 2016 Chin. Phys. B 25 018212

    [15]

    Furuta K, Sakai N, Kato T, Sugimoto H, Kurokawa Y, Yamada A 2015 Phys. Status Solidi C 12 704

    [16]

    Lee Y S, Gershon T, Todorov T K, Wang W, Winkler M T, Hopstaken M, Gunawan O, Kim J 2016 Adv. Energy Mater. 6 1600198

    [17]

    Lin Y R, Tunuguntla V, Wei S Y, Chen W C, Wong D, Lai C H, Liu L K, Chen L C, Chen K H 2015 Nano Energy 16 438

    [18]

    Xing Q Q, Yang Y, Chen J, Chao M M, Zhang L 2015 Taipei 2 1

    [19]

    Ohno T, Shiraishi K J 1990 Phys. Rev. B 42 11194

    [20]

    Wang W C, Lee G, Huang M, Wallace R, Cho K 2010 J. Appl. Phys. 107 103720

    [21]

    Medaboina D, Gade V, Patil S K R, Khare S V 2007 Phys. Rev. B 76 205327

    [22]

    Vermang B, Fjällström V, Pettersson J, Salomé P, Edoff M 2013 Sol. Energy Mat. Sol. C 117 505

    [23]

    Vermang B, Fjällström V, Gao X, Edoff M 2014 IEEE J. Photovolt. 4 486

    [24]

    Cheng Y W, Tang F L, Xue H T, Liu H X, Gao B 2017 Appl. Surf. Sci. 394 58

    [25]

    Huang W X, Li Q, Chen Y H, Xia Y D, Huang H H, Dun C C, Li Y, Carroll D 2014 Sol. Energy Mat. Sol. C 127 188

    [26]

    Kresse G, Furthmller J 1996 Comp. Mater. Sci. 6 15

    [27]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [28]

    Yu J, Lin X, Wang J J, Chen J, Huang W D 2009 Appl. Surf. Sci. 255 9032

    [29]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [30]

    Zhou W W, Zhou J J, Shen J Q, Ouyang C Y, Shi S Q 2012 J. Phys. Chem. Solids 73 245

    [31]

    Blöchl P E, Jepsen O, Andersen O K 1994 Phys. Rev. B: Condens. Matter 49 16223

    [32]

    Zhou J G, Causon D M, Mingham C G, Ingram D M 2001 J. Comput. Phys. 168 1

    [33]

    Huang G Y, Wang C Y, Wang J T 2012 Comput. Phys. Commun. 183 1749

    [34]

    Karazhanov S, Ravindran P, Grossner U, Kjekhus A, Fjellvag H, Svensson B G 2006 J. Cryst. Growth 287 162

    [35]

    Tang Y H, Zhang H, Cui L X, Ouyang C Y, Shi S Q, Tang W H, Li H, Chen L Q 2012 J. Power Sources 197 28

    [36]

    Cui L X, Tang Y H, Zhang H, Hector Jr L G, Ouyang C Y, Shi S Q, Li H, Chen L Q 2012 Phys. Chem. Chem. Phys. 14 1923

    [37]

    Huang D, Persson C 2013 Thin Solid Films 535 265

    [38]

    Ma L C, Zhang J M, Xu K W 2013 Physica E 50 1

    [39]

    Kresse G, Joubert D P 1999 Phys. Rev. B 59 1758

    [40]

    Hall S R, Szymański J T, Stewart J M 1978 Can. Mineral 16 131

    [41]

    He X C, Shen H L 2011 Physica B 406 4604

    [42]

    Chen S Y, Gong X W, Walsh A, Wei S H 2009 Appl. Phys. Lett. 94 041903

    [43]

    Han G, Lu J H, Wang M, Li D Y 2016 Mater. Rev. 30 50 (in Chinese) [韩贵, 陆金花, 王敏, 李丹阳 2016 材料导报 30 50]

    [44]

    Persson C 2010 J. Appl. Phys. 107 053710

    [45]

    Reshak A H, Nouneh K, Kityk I V, Bila J, Auluck S, Kamarudin H, Sekkat Z 2014 Int. J. Electrochem. Sci. 9 955

    [46]

    Li D F, Zu X T, Xiao H Y, Liu K Z 2009 J. Alloys Compd. 467 557

    [47]

    Chen L J, Tang Y H, Cui L X, Ouyang C Y, Shi S Q 2013 J. Power Sources 234 69

    [48]

    Chen L L, Wang X F, Shi S Q, Cui Y Y, Luo H J, Gao Y F 2016 Appl. Surf. Sci. 367 507

    [49]

    Henkelman G, Arnaldsson A, Jónsson H 2006 Comput. Mater. Sci. 36 354

  • [1] 赵俊, 姚璨, 曾晖. 新型正交相BN单层半导体有毒气体吸附性能及电输运性能的理论研究. 物理学报, 2024, 73(12): 126802. doi: 10.7498/aps.73.20231621
    [2] 朱洪强, 罗磊, 吴泽邦, 尹开慧, 岳远霞, 杨英, 冯庆, 贾伟尧. 利用掺杂提高石墨烯吸附二氧化氮的敏感性及光学性质的理论计算. 物理学报, 2024, 73(20): 203101. doi: 10.7498/aps.73.20240992
    [3] 李俊炜, 贾维敏, 吕沙沙, 魏雅璇, 李正操, 王金涛. 氢气在γ-U (100) /Mo表面吸附行为的第一性原理研究. 物理学报, 2022, 71(22): 226601. doi: 10.7498/aps.71.20220631
    [4] 李小林, 袁坤, 何嘉乐, 刘洪峰, 张建波, 周阳. NH3在TaC(0001)表面吸附和解离的第一性原理研究. 物理学报, 2022, 71(1): 017103. doi: 10.7498/aps.71.20210400
    [5] 林明月, 巨博, 李燕, 陈雪莲. 2-溴对苯二甲酸钝化的全无机钙钛矿电池的性能. 物理学报, 2021, 70(12): 128803. doi: 10.7498/aps.70.20202005
    [6] 李小林, 袁坤, 何嘉乐, 刘洪峰, 张建波, 周阳. NH3在TaC(0001)表面吸附和解离的第一性原理研究*. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210400
    [7] 杨剑群, 董磊, 刘超铭, 李兴冀, 徐鹏飞. Si3N4钝化层对横向PNP双极晶体管电离辐射损伤的影响机理. 物理学报, 2018, 67(16): 168501. doi: 10.7498/aps.67.20172215
    [8] 刘坤, 王福合, 尚家香. NiTi(110)表面氧原子吸附的第一性原理研究. 物理学报, 2017, 66(21): 216801. doi: 10.7498/aps.66.216801
    [9] 姜平国, 汪正兵, 闫永播. 三氧化钨表面氢吸附机理的第一性原理研究. 物理学报, 2017, 66(8): 086801. doi: 10.7498/aps.66.086801
    [10] 刘峰斌, 陈文彬, 崔岩, 屈敏, 曹雷刚, 杨越. 活性质吸附氢修饰金刚石表面的第一性原理研究. 物理学报, 2016, 65(23): 236802. doi: 10.7498/aps.65.236802
    [11] 贺艳斌, 贾建峰, 武海顺. N2H4在NiFe(111)合金表面吸附稳定性和电子结构的第一性原理研究. 物理学报, 2015, 64(20): 203101. doi: 10.7498/aps.64.203101
    [12] 黄艳平, 袁健美, 郭刚, 毛宇亮. 硅烯饱和吸附碱金属原子的第一性原理研究. 物理学报, 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [13] 罗强, 唐斌, 张智, 冉曾令. H2S在Fe(100)面吸附的第一性原理研究. 物理学报, 2013, 62(7): 077101. doi: 10.7498/aps.62.077101
    [14] 张杨, 黄燕, 陈效双, 陆卫. InSb(110)表面S,O原子吸附的第一性原理研究. 物理学报, 2013, 62(20): 206102. doi: 10.7498/aps.62.206102
    [15] 房彩红, 尚家香, 刘增辉. 氧在Nb(110)表面吸附的第一性原理研究. 物理学报, 2012, 61(4): 047101. doi: 10.7498/aps.61.047101
    [16] 张祥, 刘邦武, 夏洋, 李超波, 刘杰, 沈泽南. Al2O3钝化及其在晶硅太阳电池中的应用. 物理学报, 2012, 61(18): 187303. doi: 10.7498/aps.61.187303
    [17] 李琦, 范广涵, 熊伟平, 章勇. ZnO 极性表面及其N原子吸附机理的第一性原理研究. 物理学报, 2010, 59(6): 4170-4177. doi: 10.7498/aps.59.4170
    [18] 陈玉红, 曹一杰, 任宝兴. Ti原子在Al(110)表面吸氢过程中催化作用的第一性原理研究. 物理学报, 2010, 59(11): 8015-8020. doi: 10.7498/aps.59.8015
    [19] 赵巍, 汪家道, 刘峰斌, 陈大融. H2O分子在Fe(100), Fe(110), Fe(111)表面吸附的第一性原理研究. 物理学报, 2009, 58(5): 3352-3358. doi: 10.7498/aps.58.3352
    [20] 魏彦薇, 杨宗献. Au在Zr掺杂的CeO2(110)面吸附的第一性原理研究. 物理学报, 2008, 57(11): 7139-7144. doi: 10.7498/aps.57.7139
计量
  • 文章访问数:  6890
  • PDF下载量:  131
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-09
  • 修回日期:  2018-05-24
  • 刊出日期:  2019-08-20

/

返回文章
返回