搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轴压和扭转复合载荷作用下氮化硼纳米管屈曲行为的分子动力学模拟

曾强 张晨利

引用本文:
Citation:

轴压和扭转复合载荷作用下氮化硼纳米管屈曲行为的分子动力学模拟

曾强, 张晨利

Buckling behavior of boron nitride nanotubes under combined axial compression and torsion via molecular dynamics simulations

Zeng Qiang, Zhang Chen-Li
PDF
导出引用
  • 采用分子动力学方法模拟了氮化硼纳米管在轴压和扭转复合荷载作用下的屈曲和后屈曲行为.在各加载比例下,给出了初始线性变形阶段和后屈曲阶段原子间相互作用力的变化,确定了屈曲临界荷载关系.通过对屈曲模态的细致研究,从微观变形机理上分析了纳米管对不同外荷载力学响应的差异.研究结果表明,扶手型和锯齿型纳米管均呈现出非线性的屈曲临界荷载关系,复合加载下的屈曲行为具有强烈的尺寸依赖性.温度升高将导致屈曲临界荷载的下降,且温度的影响随加载比例的变化而变化.无论在简单加载或复合加载中,同尺寸的碳纳米管均比氮化硼纳米管具有更强地抵抗屈曲荷载的能力.
    Buckling behavior of boron nitride nanotubes under combined axial compression and torsion is presented by using molecular dynamics simulation. In order to study the effect of helicity and nanotube size, three groups of nanotubes are considered. The first group is a pair of boron nitride nanotubes with a similar geometry but different helicities, the second group includes three armchair naotubes having equal length but different radii, and three armchair (8, 8)-nanotubes with different lengths form the third group. The simulation is conducted by applying Nose-Hoover thermostat in a temperature range from 50 K to 1200 K. Based on the interatomic interactions given by Tersoff-type potentials, the molecular dynamics method is used to study variations of atomic interaction in initial linear deformation and postbuckling stages with various load-proportional parameters, and to determine the interactive buckling loads relationship. By comparing typical buckling modes under different loads, it is found that the boron nitride nanotube experiences complex micro-deformation processes, resulting in different variations of atomic interaction and strain energies. When the axial compressive load is relatively large, the change of atomic interaction for boron nitride nanotubes under combined loads is similar to that found under the pure axial compression. The onset of buckling leads to the abrupt releasing of strain energy. As the torsional load is relatively large, the nanotube shows torsion-like buckling behavior, no obvious reduction of strain energy is observed after the critical point. The present simulation results show that both the armchair and zigzag nanotubes exhibit nonlinear interactive buckling load relationships. Rise in temperature results in the decrease of interactive buckling load, and the effect of temperature varies with the value of load-proportional parameter. That is, the axial compressive load is relatively large, and the effect of temperature is more significant. It is found that the buckling behavior in the case of combined loading is strongly size dependent. The interactive critical axial and shear stress decrease as nanotube radius or length increases. The studies also reveal that under both simple loading and combined load condition, carbon nanotubes possess higher buckling loads than those of boron nitride nanotubes with a similar geometry, which provides valuable guidance for forming carbon and boron nitride hybrid nanotubes as well as coaxial nanotubes with superior mechanical properties.
    • 基金项目: 上海市自然科学基金(批准号:15ZR1423900)资助的课题.
    • Funds: Project supported by the Natural Science Foundation of Shanghai (Grant No. 15ZR1423900).
    [1]

    Rubio A, Corkill J L, Cohen M L 1994 Phys. Rev. B 49 5081

    [2]

    Chopra N G, Luyken R J, Cherrey K, Crespi V H, Cohen M L, Louie S G, Zettl A 1995 Science 269 966

    [3]

    Garel J, Leven I, Zhi C, Nagapriya K S, Popovitz-Biro R, Golberg D, Bando Y, Hod O, Joselevich E 2012 Nano Lett. 12 6347

    [4]

    Ansari R, Ajori S 2014 Phys. Lett. A 378 2876

    [5]

    Blase X, Rubio A, Louie S G 1994 Europhys. Lett. 28 335

    [6]

    Liao M L, Wang Y C, Ju S P, Lien T W, Huang L F 2011 J. Appl. Phys. 110 054310

    [7]

    Wang J, Li H, Li Y, Yu H, He Y, Song X 2011 Physica E 44 286

    [8]

    Wei X, Wang M S, Bando Y, Golberg D 2010 Adv. Mater. 22 4895

    [9]

    Wei R, Tian Y, Eichhorn V, Fatikow S 2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO) Xi'an, China August 29-September 1, 2012 p301

    [10]

    Ajori S, Ansari R 2014 Curr. Appl. Phys. 14 1072

    [11]

    Xiong Q L, Tian X G 2015 AIP Adv. 5 107215

    [12]

    Ali S, Salman E N, Amin H S, Abolfazl Z S 2012 Phys. Status Solidi A 209 1266

    [13]

    Salman E N, Ali S 2013 Physica E 50 29

    [14]

    Cong Z, Lee S 2018 Compos. Struct. 194 80

    [15]

    Badjian H, Setoodeh A R 2017 Physica B 507 156

    [16]

    Yan H, Tang Y, Su J 2014 Appl. Phys. A 114 331

    [17]

    Plimpton S J 1995 J. Comput. Phys. 117 1

    [18]

    Albe K, Möller W, Heinig K H 1997 Radiat. Eff. Defects in Solids 141 85

    [19]

    Albe K, Möller W 1998 Comput. Mater. Sci. 10 111

    [20]

    Tersoff J 1989 Phys. Rev. B 39 5566

    [21]

    Li T, Tang Z, Huang Z, Yu J 2017 Physica E 85 137

    [22]

    Zhang J, Peng X 2017 Mater. Chem. Phys. 198 250

    [23]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [24]

    Ansari R, Ajori S 2015 Appl. Phys. A 120 1399

    [25]

    Jing L, Tay R Y, Li H, Tsang S H, Huang J, Tan D, Zhang B, Teo E H T, Tok A L Y 2016 Nanoscale 8 11114

    [26]

    Chen Y, Zou J, Campbell S J, Le Caer G L 2004 Appl. Phys. Lett. 84 2430

  • [1]

    Rubio A, Corkill J L, Cohen M L 1994 Phys. Rev. B 49 5081

    [2]

    Chopra N G, Luyken R J, Cherrey K, Crespi V H, Cohen M L, Louie S G, Zettl A 1995 Science 269 966

    [3]

    Garel J, Leven I, Zhi C, Nagapriya K S, Popovitz-Biro R, Golberg D, Bando Y, Hod O, Joselevich E 2012 Nano Lett. 12 6347

    [4]

    Ansari R, Ajori S 2014 Phys. Lett. A 378 2876

    [5]

    Blase X, Rubio A, Louie S G 1994 Europhys. Lett. 28 335

    [6]

    Liao M L, Wang Y C, Ju S P, Lien T W, Huang L F 2011 J. Appl. Phys. 110 054310

    [7]

    Wang J, Li H, Li Y, Yu H, He Y, Song X 2011 Physica E 44 286

    [8]

    Wei X, Wang M S, Bando Y, Golberg D 2010 Adv. Mater. 22 4895

    [9]

    Wei R, Tian Y, Eichhorn V, Fatikow S 2012 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO) Xi'an, China August 29-September 1, 2012 p301

    [10]

    Ajori S, Ansari R 2014 Curr. Appl. Phys. 14 1072

    [11]

    Xiong Q L, Tian X G 2015 AIP Adv. 5 107215

    [12]

    Ali S, Salman E N, Amin H S, Abolfazl Z S 2012 Phys. Status Solidi A 209 1266

    [13]

    Salman E N, Ali S 2013 Physica E 50 29

    [14]

    Cong Z, Lee S 2018 Compos. Struct. 194 80

    [15]

    Badjian H, Setoodeh A R 2017 Physica B 507 156

    [16]

    Yan H, Tang Y, Su J 2014 Appl. Phys. A 114 331

    [17]

    Plimpton S J 1995 J. Comput. Phys. 117 1

    [18]

    Albe K, Möller W, Heinig K H 1997 Radiat. Eff. Defects in Solids 141 85

    [19]

    Albe K, Möller W 1998 Comput. Mater. Sci. 10 111

    [20]

    Tersoff J 1989 Phys. Rev. B 39 5566

    [21]

    Li T, Tang Z, Huang Z, Yu J 2017 Physica E 85 137

    [22]

    Zhang J, Peng X 2017 Mater. Chem. Phys. 198 250

    [23]

    Hoover W G 1985 Phys. Rev. A 31 1695

    [24]

    Ansari R, Ajori S 2015 Appl. Phys. A 120 1399

    [25]

    Jing L, Tay R Y, Li H, Tsang S H, Huang J, Tan D, Zhang B, Teo E H T, Tok A L Y 2016 Nanoscale 8 11114

    [26]

    Chen Y, Zou J, Campbell S J, Le Caer G L 2004 Appl. Phys. Lett. 84 2430

  • [1] 韩同伟, 李选政, 赵泽若, 顾叶彤, 马川, 张小燕. 不同荷载作用下二维硼烯的力学性能及变形破坏机理. 物理学报, 2024, 73(11): 116201. doi: 10.7498/aps.73.20240066
    [2] 任俊文, 姜国庆, 陈志杰, 魏华超, 赵莉华, 贾申利. 氮化硼纳米管表面结构设计及其对环氧复合电介质性能调控机理. 物理学报, 2024, 73(2): 027703. doi: 10.7498/aps.73.20230708
    [3] 陈令修, 王慧山, 姜程鑫, 陈晨, 王浩敏. 六方氮化硼表面石墨烯纳米带生长与物性研究. 物理学报, 2019, 68(16): 168102. doi: 10.7498/aps.68.20191036
    [4] 肖佳勇, 谭兴毅, 杨贝贝, 任达华, 左安友, 傅华华. 氮化硼纳米带功能化碳纳米管的热自旋输运性质. 物理学报, 2019, 68(5): 057301. doi: 10.7498/aps.68.20181968
    [5] 袁剑辉, 雷钦文, 刘其城. 碳纳米管与氮化硼纳米管内铝纳米线的形成及其复合结构抗压特性的模拟研究. 物理学报, 2019, 68(18): 186101. doi: 10.7498/aps.68.20190137
    [6] 高潭华, 郑福昌, 王晓春. 半氢化石墨烯与单层氮化硼复合体系的电子结构和磁性的调控. 物理学报, 2018, 67(16): 167101. doi: 10.7498/aps.67.20180538
    [7] 李彰明, 曾文秀, 高美连, 罗智斌. 典型荷载条件下淤泥孔径分布特征核磁共振试验研究. 物理学报, 2014, 63(5): 057401. doi: 10.7498/aps.63.057401
    [8] 李彰明, 曾文秀, 高美连. 不同荷载水平及速率下超软土水相核磁共振试验研究. 物理学报, 2014, 63(1): 018202. doi: 10.7498/aps.63.018202
    [9] 唐晶晶, 冯妍卉, 李威, 崔柳, 张欣欣. 碳纳米管电缆式复合材料的热导率. 物理学报, 2013, 62(22): 226102. doi: 10.7498/aps.62.226102
    [10] 王道俊. 氮化硼纳米片的电子结构和自旋调控. 物理学报, 2013, 62(5): 057302. doi: 10.7498/aps.62.057302
    [11] 张召富, 耿朝晖, 王鹏, 胡耀乔, 郑宇斐, 周铁戈. 5d过渡金属原子掺杂氮化硼纳米管的第一性原理计算. 物理学报, 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [12] 季顺迎, 李鹏飞, 陈晓东. 冲击荷载下颗粒物质缓冲性能的试验研究. 物理学报, 2012, 61(18): 184703. doi: 10.7498/aps.61.184703
    [13] 姚小虎, 张晓晴, 韩强. 轴向冲击载荷作用下双壁碳纳米管的动力屈曲. 物理学报, 2011, 60(9): 096202. doi: 10.7498/aps.60.096202
    [14] 李永宏, 刘福生, 马海云, 程小理, 马小娟, 孙燕云, 张明建, 薛学东. 动态荷载下石英玻璃的透光性及损伤演化研究. 物理学报, 2010, 59(3): 2104-2108. doi: 10.7498/aps.59.2104
    [15] 姚小虎, 韩 强. 热力耦合作用下双层碳纳米管的扭转屈曲. 物理学报, 2008, 57(8): 5056-5062. doi: 10.7498/aps.57.5056
    [16] 王 磊, 张洪武, 王晋宝. 范德华力对双壁碳纳米管轴向压缩屈曲行为的影响. 物理学报, 2007, 56(3): 1506-1513. doi: 10.7498/aps.56.1506
    [17] 何开华, 郑 广, 吕 涛, 陈 刚, 姬广富. 高压对氮化硼纳米管的几何结构、电子结构和光学性质的影响. 物理学报, 2006, 55(6): 2908-2913. doi: 10.7498/aps.55.2908
    [18] 谢根全, 韩 旭, 龙述尧, 田建辉. 基于非局部弹性理论的单壁碳纳米管轴向受压屈曲研究. 物理学报, 2005, 54(9): 4192-4197. doi: 10.7498/aps.54.4192
    [19] 王震遐, 李学鹏, 余礼平, 马余刚, 何国伟, 胡岗, 陈一, 段晓峰. 电子辐照诱发固态相变导致的氮化硼纳米结构生长. 物理学报, 2002, 51(3): 620-624. doi: 10.7498/aps.51.620
    [20] 李剑锋, 姚连增, 蔡维理, 牟季美. 氮化硼包覆纳米氧化锌体系的光致发光特性研究. 物理学报, 2001, 50(8): 1623-1626. doi: 10.7498/aps.50.1623
计量
  • 文章访问数:  6114
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-10
  • 修回日期:  2018-09-10
  • 刊出日期:  2019-12-20

/

返回文章
返回