搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

异常双钙钛矿A2BB'O6氧化物的多铁性

吴枚霞 李满荣

引用本文:
Citation:

异常双钙钛矿A2BB'O6氧化物的多铁性

吴枚霞, 李满荣

Multiferroic properties of exotic double perovskite A2BB' O6

Wu Mei-Xia, Li Man-Rong
PDF
导出引用
  • 异常钙钛矿结构氧化物是多铁性材料家族中研究得最为广泛的体系之一.本文从ABO3钙钛矿结构出发,引入了异常A2BB'O6双钙钛矿材料,首先简要介绍了传统及异常A2BB'O6双钙钛矿氧化物的结构特点;然后讨论了A2BB'O6多铁性材料的研究进展,包括A位为Mn,Ni等过渡金属离子的极性磁体多铁性材料和A2CoMnO6(A=Lu,Y,Yb,Lu)以及Mn2FeSbO6等第Ⅱ类多铁性材料;最后,在以上基础上展望了异常A2BB'O6双钙钛矿多铁性研究中存在的问题及新型多铁性材料研究的方向.
    Multiferroic material in which there co-exist at least two of the ferro-phases,namely ferroelectricity,(anti-) ferromagnetism,and ferroelasticity,has attracted considerable attention in recent years due to its intriguing physics and potential applications for advanced multifunctional devices.However,multiferroic materials are rare due to the contradictory requirements between electrical polarization and magnetism.So far,only several compounds have been reported to show above-room temperature multiferroics.Thus,it is essential to search for new materials.The two most significant strategies to obtain multiferroics are 1) to incorporate magnetic transition-metal ions into polar structures to obtain polar magnets,and 2) to introduce special magnetic structure to drive ferroelectricity (the so-called type-Ⅱ multiferroics).Exotic double perovskite-related oxide A2BB'O6 with small A-site cations is one of the most extensively studied multiferroic families in recent years. The small A-site cations give small perovskite tolerance factor (t),and mostly high-pressure synthesis is required to stabilize the exotic perovskite structure.The crystal structure of exotic A2BB' O6 oxides can crystallize into either the centrosymmetric alumina corundum (AL),ilmenite (IL),or distorted GdFeO3-type perovskite structure,or the polar LiNbO3(LN),Ni3TeO6(NTO),or ordered ilmenite (OIL) structure.The polar LN,NTO,and OIL structures can accommodate magnetic transition-metal ions at both the A and B/B'sites in octahedral coordination,giving enhanced magnetic interactions and thus robust magneto-electric effect and high spontaneous polarization as well (usually above 50 C/cm-2,more than twice that in the renown BaTiO3),examples include the LN-type Mn2FeNbO6,and Mn2FeTaO6,OIL-type Mn2FeMoO6,and NTO-type Mn2FeMoO6,Mn2FeWO6,and Mn2MnWO6.These polar magnets show potential multiferroic responses even above room temperature (e.g.,ferromagnetic ordering temperature up to 340 K in NTO-type Mn2FeMoO6) and magnetoelectric coupling effect as in Mn2MnWO6.Magnetoelectric coupling can also arise in centrosymmetric IL structure in the absence of helical spin structure,such as those that are observed in Mn2FeSbO6,which exhibits colinear ferrimagnetic spin arrangement but magnetostriction induced antiferroelectricity.The corundum derivatives (AL,LN,IL,OIL,and NTO) and perovskite phases are competitive,depending on the electron configuration and synthesis pressure,and usually higher pressure favors the formation of perovskite structure.Compared with polar magnets in the corundum family,the exotic double perovskite adopts distorted GdFeO3-type structure (P21/n) with eight-coordination of the A-sites.In some double perovskite materials,the electric polarization can be induced by the special magnetic order,such as the ⇈⇊ magnetic structure induced type-Ⅱ multiferroics exemplified by A2CoMnO6(A=Lu,Y,Yb,Lu).In this review paper,we first compare the structure features of conventional and exotic double perovskite A2BB'O6 derived from the simple ABO3 analog,then summarize the recent progress of multiferroics in exotic double perovskite family,such as the polar magnets with transition-metal (Mn and Ni) cations at the A sites,type-Ⅱ multiferroic Mn2FeSbO6,and A2CoMnO6(A=Lu,Y,Yb,Lu). Finally,the problems and prospection of multiferroics in exotic double perovskite A2BB'O6 are also discussed to give a reference for the future research.
      通信作者: 李满荣, limanrong@mail.sysu.edu.cn
    • 基金项目: 国家青年千人计划资助的课题.
      Corresponding author: Li Man-Rong, limanrong@mail.sysu.edu.cn
    • Funds: Project supported by One Thousand Youth Talents Program of China.
    [1]

    Tian G, Zhang F, Yao J, Fan H, Li P, Li Z, Song X, Zhang X, Qin M, Zeng M, Zhang Z, Yao J, Gao X, Liu J 2016 ACS Nano 10 1025

    [2]

    Li H B, Lu N, Zhang Q, Wang Y, Feng D, Chen T, Yang S, Duan Z, Li Z, Shi Y, Wang W, Wang W H, Jin K, Liu H, Ma J, Gu L, Nan C, Yu P 2017 Nat. Commun. 8 2156

    [3]

    Zhou L, Dai J, Chai Y, Zhang H, Dong S, Cao H, Calder S, Yin Y, Wang X, Shen X, Liu Z, Saito T, Shimakawa Y, Hojo H, Ikuhara Y, Azuma M, Hu Z, Sun Y, Jin C, Long Y 2017 Adv. Mater. 29 1703435

    [4]

    Yu P, Chu Y, Ramesh R 2012 Phil. Trans. R. Soc. A 370 4856

    [5]

    Zhao L, Lu Z, Zhang F, Tian G, Song X, Li Z, Huang K, Zhang Z, Qin M, Wu S, Lu X, Zeng M, Gao X, Dai J, Liu J 2015 Sci. Rep. 5 9680

    [6]

    Khomskii D 2009 Physics 2 20

    [7]

    Wang Y, Pascut G L, Gao B, Tyson T A, Haule K, Kiryukhin V, Cheong S W 2015 Sci. Rep. 5 12268

    [8]

    Caignaert V, Maignan A, Singh K, Simon C, Pralong V, Raveau B, Mitchell J F, Zheng H, Huq A, Chapon L C 2013 Phys. Rev. B 88 174403

    [9]

    Ghara S, Suard E, Fauth F, Tran T T, Halasyamani P S, Iyo A, Rodrg uez-Carvajal J, Sundaresan A 2017 Phys. Rev. B 95 224416

    [10]

    Chi Z H, Jin C Q 2007 Prog. Phys. 27 225 (in Chinese) [迟振华, 靳常青 2007 物理学进展 27 225]

    [11]

    Wang K F, Liu J M, Wang Y 2009 Prog. Phys. 29 215 (in Chinese) [段纯刚 2009 物理学进展 29 215]

    [12]

    Sun Y 2014 Physics 43 166 (in Chinese) [孙阳 2014 物理 43 166]

    [13]

    Cheong S W, Mostovoy M 2007 Nat. Mater. 6 13

    [14]

    Fiebig M 2005 J. Phys. D: Appl. Phys. 38 R123

    [15]

    Dong S, Xiang H J 2014 Physics 43 173 (in Chinese) [董帅, 向红军 2014 物理 43 173]

    [16]

    Liu J M, Nan C W 2014 Physics 43 88 (in Chinese) [刘俊明, 南策文 2014 物理 43 88]

    [17]

    Smolenskii G A, Chupis I E 1982 Sov. Phys. Usp. 25 475

    [18]

    Bokov V, Mylnikova I, Smolenskii G 1962 Sov. Phys. Jetp-Ussr 15 447

    [19]

    Ivanov S A, Tellgren R, Rundlof H, Thomas N W, Ananta S 2000 J. Phys.: Condens. Matter 12 2393

    [20]

    Wang J, Neaton J, Zheng H, Nagarajan V, Ogale S, Liu B, Viehland D, Vaithyanathan V, Schlom D, Waghmare U 2003 Science 299 1719

    [21]

    Dho J, Qi X, Kim H, MacManus-Driscoll J L, Blamire M G 2006 Adv. Mater. 18 1445

    [22]

    Azuma M, Takata K, Saito T, Ishiwata S, Shimakawa Y, Takano M 2005 J. Am. Chem. Soc. 127 8889

    [23]

    Nechache R, Cojocaru C V, Harnagea C, Nauenheim C, Nicklaus M, Ruediger A, Rosei F, Pignolet A 2011 Adv. Mater. 23 1724

    [24]

    Shi L, Bai F M 2011 J. Chin. Cera. Soc. 39 550 (in Chinese) [石雷, 白飞明 2011 硅酸盐学报 39 550]

    [25]

    Kwei G H, Lawson A C, Billinge S J L, Cheong S W 1993 J. Phys. Chem. 97 2368

    [26]

    Cai G H, Greenblatt M, Li M R 2017 Chem. Mater. 29 5447

    [27]

    Živkovi I, Pra K, Zaharko O, Berger H 2010 J. Phys.: Condens. Matter 22 056002

    [28]

    Oh Y S, Artyukhin S, Yang J J, Zapf V, Kim J W, Vanderbilt D, Cheong S W 2014 Nat. Commun. 5 3201

    [29]

    Ivanov S A, Mathieu R, Nordblad P, Tellgren R, Ritter C, Politova E, Kaleva G, Mosunov A, Stefanovich S, Weil M 2013 Chem. Mater. 25 935

    [30]

    Solana-Madruga E, Dos santos-Garcia A J, Arvalo-Lpez A M, vila-Brande D, Ritter C, Attfield J P, Sez-Puche R 2015 Dalton Trans. 44 20441

    [31]

    Li M R, McCabe E E, Stephens P W, Croft M, Collins L, Kalinin S V, Deng Z, Retuerto M, Gupta A S, Padmanabhan H, Gopalan V, Grams C P, Hemberger J, Orlandi F, Manuel P, Li W M, Jin C Q, Walker D, Greenblatt M 2017 Nat. Commun. 8 2037

    [32]

    Li M R, Croft M, Stephens P W, Ye M, Vanderbilt D, Retuerto M, Deng Z, Grams C P, Hemberger J, Hadermann J, Li W M, Jin C Q, Saouma F O, Jang J I, Akamatsu H, Gopalan V, Walker D, Greenblatt M 2015 Adv. Mater. 27 2177

    [33]

    Li M R, Walker D, Retuerto M, Sarkar T, Hadermann J, Stephens P W, Croft M, Ignatov A, Grams C P, Hemberger J, Nowik I, Halasyamani P S, Tran T T, Mukherjee S, Dasgupta T S, Greenblatt M 2013 Angew. Chem. Int. Ed. 52 8406

    [34]

    Li M R, Retuerto M, Walker D, Sarkar T, Stephens P W, Mukherjee S, Dasgupta T S, Hodges J P, Croft M, Grams C P, Hemberger J, Snchez-Bentez J, Huq A, Saouma F O, Jang J I, Greenblatt M 2014 Angew. Chem. Int. Ed. 53 10774

    [35]

    Li M R, Retuerto M, Stephens P W, Croft M, Sheptyakov D, Pomjakushin V, Deng Z, Akamatsu H, Gopalan V, Snchez-Bentez J, Saouma F O, Jang J I, Walker D, Greenblatt M 2016 Angew. Chem. Int. Ed. 128 10016

    [36]

    Li M R, Stephens P W, Retuerto M, Sarkar T, Grams C P, Hemberger J, Croft M C, Walker D, Greenblatt M 2014 J. Am. Chem. Soc. 136 8508

    [37]

    Wang P S, Ren W, Bellaiche L, Xiang H J 2015 Phys. Rev. Lett. 114 147204

    [38]

    Song G, Zhang W 2016 Sci. Rep. 6 20133

    [39]

    Zhao L, Du C H, Komarek A C 2017 Phys. Status Solidi: Rap. Res. Lett. 11 1700073

    [40]

    Ivanov S, Nordblad P, Mathieu R, Tellgren R, Politova E, Andr G 2011 Eur. J. Inorg. Chem. 2011 4691

    [41]

    Ye M, Vanderbilt D 2016 Phys. Rev. B 93 134303

    [42]

    Choi Y J, Yi H T, Lee S, Huang Q, Kiryukhin V, Cheong S W 2008 Phys. Rev. Lett. 100 047601

    [43]

    Tokura Y, Seki S, Nagaosa N 2014 Rep. Prog. Phys. 77 076501

    [44]

    Yez-Vilar S, Mun E D, Zapf V S, Ueland B G, Gardner J S, Thompson J D, Singleton J, Snchez-Andjar M, Mira J, Biskup N, Sears-Rodr guez M A, Batista C D 2011 Phys. Rev. B 84 134427

    [45]

    Sharma G, Saha J, Kaushik S, Siruguri V, Patnaik S 2013 Appl. Phys. Lett. 103 012903

    [46]

    Blasco J, Garca-Muoz J, Garca J, Stankiewicz J, Subas G, Ritter C, Rodrguez-Velamazn J 2015 Appl. Phys. Lett. 107 012902

    [47]

    Choi H Y, Moon J Y, Kim J H, Choi Y J, Lee N 2017 Crystals 7 67

    [48]

    Yi W, Princep A J, Guo Y, Johnson R D, Khalyavin D, Manuel P, Senyshyn A, Presniakov I A, Sobolev A V, Matsushita Y 2015 Inorg. Chem. 54 8012

    [49]

    Dos santos-Garca A J, Solana-Madruga E, Ritter C, Andrada-Chacn A, Snchez-Bentez J, Mompean F J, Garcia-Hernandez M, Sez-Puche R, Schmidt R 2017 Angew. Chem. Int. Ed. 129 4438

    [50]

    Mathieu R, Ivanov S A, Solovyev I V, Bazuev G V, Anil Kumar P, Lazor P, Nordblad P 2013 Phys. Rev. B 87 014408

    [51]

    Zhao H J, Ren W, Yang Y, iguez J, Chen X M, Bellaiche L 2014 Nat. Commun. 5 4021

  • [1]

    Tian G, Zhang F, Yao J, Fan H, Li P, Li Z, Song X, Zhang X, Qin M, Zeng M, Zhang Z, Yao J, Gao X, Liu J 2016 ACS Nano 10 1025

    [2]

    Li H B, Lu N, Zhang Q, Wang Y, Feng D, Chen T, Yang S, Duan Z, Li Z, Shi Y, Wang W, Wang W H, Jin K, Liu H, Ma J, Gu L, Nan C, Yu P 2017 Nat. Commun. 8 2156

    [3]

    Zhou L, Dai J, Chai Y, Zhang H, Dong S, Cao H, Calder S, Yin Y, Wang X, Shen X, Liu Z, Saito T, Shimakawa Y, Hojo H, Ikuhara Y, Azuma M, Hu Z, Sun Y, Jin C, Long Y 2017 Adv. Mater. 29 1703435

    [4]

    Yu P, Chu Y, Ramesh R 2012 Phil. Trans. R. Soc. A 370 4856

    [5]

    Zhao L, Lu Z, Zhang F, Tian G, Song X, Li Z, Huang K, Zhang Z, Qin M, Wu S, Lu X, Zeng M, Gao X, Dai J, Liu J 2015 Sci. Rep. 5 9680

    [6]

    Khomskii D 2009 Physics 2 20

    [7]

    Wang Y, Pascut G L, Gao B, Tyson T A, Haule K, Kiryukhin V, Cheong S W 2015 Sci. Rep. 5 12268

    [8]

    Caignaert V, Maignan A, Singh K, Simon C, Pralong V, Raveau B, Mitchell J F, Zheng H, Huq A, Chapon L C 2013 Phys. Rev. B 88 174403

    [9]

    Ghara S, Suard E, Fauth F, Tran T T, Halasyamani P S, Iyo A, Rodrg uez-Carvajal J, Sundaresan A 2017 Phys. Rev. B 95 224416

    [10]

    Chi Z H, Jin C Q 2007 Prog. Phys. 27 225 (in Chinese) [迟振华, 靳常青 2007 物理学进展 27 225]

    [11]

    Wang K F, Liu J M, Wang Y 2009 Prog. Phys. 29 215 (in Chinese) [段纯刚 2009 物理学进展 29 215]

    [12]

    Sun Y 2014 Physics 43 166 (in Chinese) [孙阳 2014 物理 43 166]

    [13]

    Cheong S W, Mostovoy M 2007 Nat. Mater. 6 13

    [14]

    Fiebig M 2005 J. Phys. D: Appl. Phys. 38 R123

    [15]

    Dong S, Xiang H J 2014 Physics 43 173 (in Chinese) [董帅, 向红军 2014 物理 43 173]

    [16]

    Liu J M, Nan C W 2014 Physics 43 88 (in Chinese) [刘俊明, 南策文 2014 物理 43 88]

    [17]

    Smolenskii G A, Chupis I E 1982 Sov. Phys. Usp. 25 475

    [18]

    Bokov V, Mylnikova I, Smolenskii G 1962 Sov. Phys. Jetp-Ussr 15 447

    [19]

    Ivanov S A, Tellgren R, Rundlof H, Thomas N W, Ananta S 2000 J. Phys.: Condens. Matter 12 2393

    [20]

    Wang J, Neaton J, Zheng H, Nagarajan V, Ogale S, Liu B, Viehland D, Vaithyanathan V, Schlom D, Waghmare U 2003 Science 299 1719

    [21]

    Dho J, Qi X, Kim H, MacManus-Driscoll J L, Blamire M G 2006 Adv. Mater. 18 1445

    [22]

    Azuma M, Takata K, Saito T, Ishiwata S, Shimakawa Y, Takano M 2005 J. Am. Chem. Soc. 127 8889

    [23]

    Nechache R, Cojocaru C V, Harnagea C, Nauenheim C, Nicklaus M, Ruediger A, Rosei F, Pignolet A 2011 Adv. Mater. 23 1724

    [24]

    Shi L, Bai F M 2011 J. Chin. Cera. Soc. 39 550 (in Chinese) [石雷, 白飞明 2011 硅酸盐学报 39 550]

    [25]

    Kwei G H, Lawson A C, Billinge S J L, Cheong S W 1993 J. Phys. Chem. 97 2368

    [26]

    Cai G H, Greenblatt M, Li M R 2017 Chem. Mater. 29 5447

    [27]

    Živkovi I, Pra K, Zaharko O, Berger H 2010 J. Phys.: Condens. Matter 22 056002

    [28]

    Oh Y S, Artyukhin S, Yang J J, Zapf V, Kim J W, Vanderbilt D, Cheong S W 2014 Nat. Commun. 5 3201

    [29]

    Ivanov S A, Mathieu R, Nordblad P, Tellgren R, Ritter C, Politova E, Kaleva G, Mosunov A, Stefanovich S, Weil M 2013 Chem. Mater. 25 935

    [30]

    Solana-Madruga E, Dos santos-Garcia A J, Arvalo-Lpez A M, vila-Brande D, Ritter C, Attfield J P, Sez-Puche R 2015 Dalton Trans. 44 20441

    [31]

    Li M R, McCabe E E, Stephens P W, Croft M, Collins L, Kalinin S V, Deng Z, Retuerto M, Gupta A S, Padmanabhan H, Gopalan V, Grams C P, Hemberger J, Orlandi F, Manuel P, Li W M, Jin C Q, Walker D, Greenblatt M 2017 Nat. Commun. 8 2037

    [32]

    Li M R, Croft M, Stephens P W, Ye M, Vanderbilt D, Retuerto M, Deng Z, Grams C P, Hemberger J, Hadermann J, Li W M, Jin C Q, Saouma F O, Jang J I, Akamatsu H, Gopalan V, Walker D, Greenblatt M 2015 Adv. Mater. 27 2177

    [33]

    Li M R, Walker D, Retuerto M, Sarkar T, Hadermann J, Stephens P W, Croft M, Ignatov A, Grams C P, Hemberger J, Nowik I, Halasyamani P S, Tran T T, Mukherjee S, Dasgupta T S, Greenblatt M 2013 Angew. Chem. Int. Ed. 52 8406

    [34]

    Li M R, Retuerto M, Walker D, Sarkar T, Stephens P W, Mukherjee S, Dasgupta T S, Hodges J P, Croft M, Grams C P, Hemberger J, Snchez-Bentez J, Huq A, Saouma F O, Jang J I, Greenblatt M 2014 Angew. Chem. Int. Ed. 53 10774

    [35]

    Li M R, Retuerto M, Stephens P W, Croft M, Sheptyakov D, Pomjakushin V, Deng Z, Akamatsu H, Gopalan V, Snchez-Bentez J, Saouma F O, Jang J I, Walker D, Greenblatt M 2016 Angew. Chem. Int. Ed. 128 10016

    [36]

    Li M R, Stephens P W, Retuerto M, Sarkar T, Grams C P, Hemberger J, Croft M C, Walker D, Greenblatt M 2014 J. Am. Chem. Soc. 136 8508

    [37]

    Wang P S, Ren W, Bellaiche L, Xiang H J 2015 Phys. Rev. Lett. 114 147204

    [38]

    Song G, Zhang W 2016 Sci. Rep. 6 20133

    [39]

    Zhao L, Du C H, Komarek A C 2017 Phys. Status Solidi: Rap. Res. Lett. 11 1700073

    [40]

    Ivanov S, Nordblad P, Mathieu R, Tellgren R, Politova E, Andr G 2011 Eur. J. Inorg. Chem. 2011 4691

    [41]

    Ye M, Vanderbilt D 2016 Phys. Rev. B 93 134303

    [42]

    Choi Y J, Yi H T, Lee S, Huang Q, Kiryukhin V, Cheong S W 2008 Phys. Rev. Lett. 100 047601

    [43]

    Tokura Y, Seki S, Nagaosa N 2014 Rep. Prog. Phys. 77 076501

    [44]

    Yez-Vilar S, Mun E D, Zapf V S, Ueland B G, Gardner J S, Thompson J D, Singleton J, Snchez-Andjar M, Mira J, Biskup N, Sears-Rodr guez M A, Batista C D 2011 Phys. Rev. B 84 134427

    [45]

    Sharma G, Saha J, Kaushik S, Siruguri V, Patnaik S 2013 Appl. Phys. Lett. 103 012903

    [46]

    Blasco J, Garca-Muoz J, Garca J, Stankiewicz J, Subas G, Ritter C, Rodrguez-Velamazn J 2015 Appl. Phys. Lett. 107 012902

    [47]

    Choi H Y, Moon J Y, Kim J H, Choi Y J, Lee N 2017 Crystals 7 67

    [48]

    Yi W, Princep A J, Guo Y, Johnson R D, Khalyavin D, Manuel P, Senyshyn A, Presniakov I A, Sobolev A V, Matsushita Y 2015 Inorg. Chem. 54 8012

    [49]

    Dos santos-Garca A J, Solana-Madruga E, Ritter C, Andrada-Chacn A, Snchez-Bentez J, Mompean F J, Garcia-Hernandez M, Sez-Puche R, Schmidt R 2017 Angew. Chem. Int. Ed. 129 4438

    [50]

    Mathieu R, Ivanov S A, Solovyev I V, Bazuev G V, Anil Kumar P, Lazor P, Nordblad P 2013 Phys. Rev. B 87 014408

    [51]

    Zhao H J, Ren W, Yang Y, iguez J, Chen X M, Bellaiche L 2014 Nat. Commun. 5 4021

  • [1] 宋凯欣, 闵书刚, 高俊奇, 张双捷, 毛智能, 沈莹, 储昭强. 磁电机械天线的阻抗特性分析. 物理学报, 2022, 71(24): 247502. doi: 10.7498/aps.71.20220591
    [2] 安明, 董帅. 电荷媒介的磁电耦合: 从铁电场效应到电荷序铁电体. 物理学报, 2020, 69(21): 217502. doi: 10.7498/aps.69.20201193
    [3] 陈诚, 卢建安, 杜微, 王伟, 毛翔宇, 陈小兵. Nd含量对Bi6−xNdxFe1.4Ni0.6Ti3O18多晶材料多铁性的影响. 物理学报, 2019, 68(3): 037701. doi: 10.7498/aps.68.20181287
    [4] 申见昕, 尚大山, 孙阳. 基于磁电耦合效应的基本电路元件和非易失性存储器. 物理学报, 2018, 67(12): 127501. doi: 10.7498/aps.67.20180712
    [5] 刘小强, 吴淑雅, 朱晓莉, 陈湘明. Ruddlesden-Popper结构杂化非本征铁电体及其多铁性. 物理学报, 2018, 67(15): 157503. doi: 10.7498/aps.67.20180317
    [6] 袁国亮, 李爽, 任申强, 刘俊明. 激发态电荷转移有机体的多铁性研究. 物理学报, 2018, 67(15): 157509. doi: 10.7498/aps.67.20180759
    [7] 赵润, 杨浩. 多铁性钙钛矿薄膜的氧空位调控研究进展. 物理学报, 2018, 67(15): 156101. doi: 10.7498/aps.67.20181028
    [8] 黄颖妆, 齐岩, 杜安, 刘佳宏, 艾传韡, 戴海燕, 张小丽, 黄雨嫣. 复合多铁链的磁电耦合行为与外场调控. 物理学报, 2018, 67(24): 247501. doi: 10.7498/aps.67.20181561
    [9] 周龙, 王潇, 张慧敏, 申旭东, 董帅, 龙有文. 多阶有序钙钛矿多铁性材料的高压制备与物性. 物理学报, 2018, 67(15): 157505. doi: 10.7498/aps.67.20180878
    [10] 殷云宇, 王潇, 邓宏芟, 周龙, 戴建洪, 龙有文. 多种有序钙钛矿结构的高压制备与特殊物性. 物理学报, 2017, 66(3): 030201. doi: 10.7498/aps.66.030201
    [11] 刘恩华, 陈钊, 温晓莉, 陈长乐. 顺磁性La2/3Sr1/3MnO3层对Bi0.8Ba0.2FeO3薄膜多铁性能的影响. 物理学报, 2016, 65(11): 117701. doi: 10.7498/aps.65.117701
    [12] 毛翔宇, 邹保文, 孙慧, 陈春燕, 陈小兵. Co含量对Bi6Fe2-xCoxTi3O18样品多铁性的影响. 物理学报, 2015, 64(21): 217701. doi: 10.7498/aps.64.217701
    [13] 徐新河, 刘鹰, 甘月红, 刘文苗. 磁电耦合超材料本构矩阵获取方法的研究. 物理学报, 2015, 64(4): 044101. doi: 10.7498/aps.64.044101
    [14] 王美娜, 李英, 王天兴, 刘国栋. 正交多铁性材料DyMnO3的磁性质研究. 物理学报, 2013, 62(22): 227101. doi: 10.7498/aps.62.227101
    [15] 周文亮, 夏坤, 许达, 仲崇贵, 董正超, 方靖淮. 应变作用下量子顺电材料EuTiO3的磁电性质. 物理学报, 2012, 61(9): 097702. doi: 10.7498/aps.61.097702
    [16] 顾建军, 刘力虎, 岂云开, 徐芹, 张惠敏, 孙会元. 复合薄膜NiFe2 O4-BiFeO3 中的磁电耦合. 物理学报, 2011, 60(6): 067701. doi: 10.7498/aps.60.067701
    [17] 邓恒, 杨昌平, 黄昌, 徐玲芳. 双层钙钛矿La1.8Ca1.2Mn2O7磁性相关I-V非线性与电输运性质. 物理学报, 2010, 59(10): 7390-7395. doi: 10.7498/aps.59.7390
    [18] 马静, 施展, 林元华, 南策文. 准2-2型磁电多层复合材料的磁电性能. 物理学报, 2009, 58(8): 5852-5856. doi: 10.7498/aps.58.5852
    [19] 仲崇贵, 蒋青, 方靖淮, 葛存旺. 单相ABO3型多铁材料的磁电耦合及磁电性质研究. 物理学报, 2009, 58(5): 3491-3496. doi: 10.7498/aps.58.3491
    [20] 杨 颖, 李启昌, 刘俊明, 刘治国. 铁电磁体Pb(Fe1/2Nb1/2)O3的磁电性能研究. 物理学报, 2005, 54(9): 4213-4216. doi: 10.7498/aps.54.4213
计量
  • 文章访问数:  8616
  • PDF下载量:  476
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-26
  • 修回日期:  2018-05-19
  • 刊出日期:  2018-08-05

/

返回文章
返回