搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于重复编码的海上可见光通信大气信道建模

郑晓桐 郭立新 程明建 李江挺

引用本文:
Citation:

基于重复编码的海上可见光通信大气信道建模

郑晓桐, 郭立新, 程明建, 李江挺

Atmospheric channel model of maritime visible light communication based on repeated coding

Zheng Xiao-Tong, Guo Li-Xin, Cheng Ming-Jian1\2, Li Jiang-Ting
PDF
导出引用
  • 可见光通信作为一种新型无线通信技术,在海上舰船场景中的应用吸引了广泛的关注.海上可见光通信系统受多种因素的影响,包括海浪随机起伏和大气湍流,大气湍流将导致可见光信号的强度随机波动,降低可见光通信系统在大气中的链路质量.本文基于对数正态衰减分布,建立了采用重复编码的海上可见光通信的链路评估模型.在此基础上,根据Pierson-Moskowitz海谱,分析了海上风速、大气折射率结构常数、能见度、重复编码分集度以及接收器孔径对可见光通信系统平均误码率的影响.本文提出的海上大气链路评估模型可为海上可见光通信网络的搭建提供重要参考.
    Visible light communication (VLC) is a new type of wireless communication technology, and its applications in offshore ships and ship-shore lamp signal systems are drawing increasing attention as a supplement of communication net. In maritime environment, VLC system is affected by many factors, of which the wave fluctuation and atmospheric turbulence are the most noticeable. The turbulence will make signal intensity fluctuate randomly, and thus reducing the performance of VLC system operating in the atmosphere. To establish an effective VLC network in the actual marine environment, an effective channel transmission model needs to be established and used to study the performance of the maritime VLC link. Considering large aperture diameter receiver with the aperture averaging effect, log-normal distribution model is employed to deduce the mathematical expression of average bit error rate of maritime VLC system in atmospheric turbulence. By using time-diversity to transmit interleaved symbols with repeated coding in a maritime VLC system, it is possible to ensure that the code-word passes through multiple channels to resist the deep fade performance, and to reduce the bit error rate due to the occurrence of deep fading in a single channel. In the actual application process, in order to improve the system performance, the average signal-to-noise ratio usually increases with the transmission power increasing, but for a VLC system, there are some difficulties in making the high-power high-rate visible light transmitters. And the power will produce light pollution and even damage the naked eye. The implementation of the repetitive coding principle is simple, and in some special cases it is even better than the complex orthogonal space-time coding and other schemes, so studying the system performance of the repetitive coding scheme is of considerable value for practical application. Based on the modified Pierson-Moskowitz spectrum, the effect of wave height, transmission distance, atmospheric turbulence intensity, receiver aperture size and visibility on the average bit error rate of VLC system are analyzed. The performance of the VLC system between lighthouse and ship is affected by the fluctuations of the sea waves, and the average bit error rate changes with randomness and complexity like the sea waves in a short distance. As the wind speed increases, the marine environment becomes worse and the average bit error rate is undulate. The average bit error rate of maritime VLC increases with the increasing of transmission distance and atmospheric turbulence intensity, and with the decreasing of receiver aperture size, wavelength and average signal-to-noise ratio. Atmospheric turbulence intensity and visibility have a significant effect on the system performance, and it should be emphatically considered to take measures to reduce the influence. Increasing receiver aperture and repetitive coding are effective to a certain extent. In the present work a new model is proposed for evaluating the performance of a maritime VLC system and providing reference for practical application.
      通信作者: 郭立新, lxguo@xidian.edu.cn
    • 基金项目: 陕西省重点产业创新链(群)资助项目(批准号:2017ZDCXL-GY-06-02)、脉冲激光国家重点实验室开放基金(批准号:SKL2016KF05)、中央高校基本科研业务费(批准号:CJT150502)、西安电子科技大学研究生创新基金(批准号:20108183448)和华为公司创新研究计划(批准号:HO2017050001AG)资助的课题.
      Corresponding author: Guo Li-Xin, lxguo@xidian.edu.cn
    • Funds: Project supported by the Key Industrial Innovation Chain Project in Industrial Domain of Shaanxi Province, China (Grant No. 2017ZDCXL-GY-06-02), the Open Research Fund of State Key Laboratory of Pulsed Power Laser Technology, China (Grant No. SKL2016KF05), the Fundamental Research Fund for the Central Universities, China (Grant No. CJT150502), the Innovation Fund of Xidian University, China (Grant No. 20108183448), and the Huawei Innovation Research Program, China (Grant No. HO2017050001AG).
    [1]

    Mo Q Y, Zhao Y L 2011 Acta Phys. Sin. 60 072902 (in Chinese)[莫秋燕, 赵彦立 2015 物理学报 60 072902]

    [2]

    Jovicic A, Li J, Richardson T, Research Q 2013 IEEE Commun. Mag. 51 26

    [3]

    Grobe L, Paraskevopoulos A, Hilt J, Schulz D, Lassak F, Hartlieb F, Kottke C, Jungnickel V, Langer K, Institute H H 2013 IEEE Commun. Mag. 51 60

    [4]

    Chai S R, Guo L X 2015 Acta Phys. Sin. 64 060301 (in Chinese)[柴水荣, 郭立新 2015 物理学报 64 060301]

    [5]

    Ergul O, Dinc E, Akan O B 2015 Phys. Commun. 17 72

    [6]

    Vetelino F S, Young C, Andrews L, Recolons J 2007 Appl. Opt. 46 2099

    [7]

    Pang G, Kwan T, Chan C H, Liu H 1999 IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems Proceedings Tokyo, Japan, October 5-8, 1999 p788

    [8]

    Zhu N, Zhong Q, Zhu J 2008 Optoelectronic Materials and Devices Ⅲ Hangzhou, China, October 26-30, 2008 p71350E-1

    [9]

    Kim H, Sewaiwar A, Chung Y H 2015 J. Opt. Soc. Korea 19 514

    [10]

    Kim H, Chung Y H 2015 J. Korea Inst. Inf. Commun. Eng. 19 1773

    [11]

    Kim H J, Tiwari S V, Chung Y H 2016 Chin. Opt. Lett. 14 050607

    [12]

    Lin Y X, Ai Y, Shan X, Liu H Y 2014 J. Optoelectron. Laser 25 478 (in Chinese)[林贻翔, 艾勇, 单欣, 刘宏阳 2014 光电子·激光 25 478]

    [13]

    Safari M, Uysal M 2008 IEEE Trans. Wireless Commun. 7 5441

    [14]

    Wang T Y, Zhuang S L 2009 International Conference on Optical Instrumentation and Technology Shanghai, China, October 19-22, 2009 p251

    [15]

    Sewaiwar A, Han P P, Tiwari S V, Chung Y H 2015 J. Opt. Soc. Korea 19 74

    [16]

    Ghassemlooy Z, Popoola W, Rajbhandari S 2012 Optical Wireless Communications System and Channel Modelling with MATLAB (Florida: CRC Press) pp138-146

    [17]

    Grayshan K J, Vetelino F S, Young C Y 2008 Waves Random Complex Medium 18 173

    [18]

    Cheng M J, Guo L X, Zhang Y X 2015 Opt. Express 23 32606

    [19]

    Naboulsi M C A, Sizun H 2004 Opt. Eng. 43 319

    [20]

    Li Y Q, Wu Z S, Zhang Y Y, Zhang H L 2012 Adv. Mater. Res. 571 337

    [21]

    Gracheva M E, Gurvich A S 1965 Soviet Radiophys. 8 717

    [22]

    Cheng M J, Zhang Y X, Gao J, Wang F, Zhao F 2014 Appl. Opt. 53 4011

    [23]

    Tse D, Viswanath P 2005 Fundamentals of Wireless Communication (Cambridge: Cambridge University Press) p62

    [24]

    Li F 2013 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)[李菲 2013 博士学位论文(合肥: 中国科学技术大学)]

  • [1]

    Mo Q Y, Zhao Y L 2011 Acta Phys. Sin. 60 072902 (in Chinese)[莫秋燕, 赵彦立 2015 物理学报 60 072902]

    [2]

    Jovicic A, Li J, Richardson T, Research Q 2013 IEEE Commun. Mag. 51 26

    [3]

    Grobe L, Paraskevopoulos A, Hilt J, Schulz D, Lassak F, Hartlieb F, Kottke C, Jungnickel V, Langer K, Institute H H 2013 IEEE Commun. Mag. 51 60

    [4]

    Chai S R, Guo L X 2015 Acta Phys. Sin. 64 060301 (in Chinese)[柴水荣, 郭立新 2015 物理学报 64 060301]

    [5]

    Ergul O, Dinc E, Akan O B 2015 Phys. Commun. 17 72

    [6]

    Vetelino F S, Young C, Andrews L, Recolons J 2007 Appl. Opt. 46 2099

    [7]

    Pang G, Kwan T, Chan C H, Liu H 1999 IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems Proceedings Tokyo, Japan, October 5-8, 1999 p788

    [8]

    Zhu N, Zhong Q, Zhu J 2008 Optoelectronic Materials and Devices Ⅲ Hangzhou, China, October 26-30, 2008 p71350E-1

    [9]

    Kim H, Sewaiwar A, Chung Y H 2015 J. Opt. Soc. Korea 19 514

    [10]

    Kim H, Chung Y H 2015 J. Korea Inst. Inf. Commun. Eng. 19 1773

    [11]

    Kim H J, Tiwari S V, Chung Y H 2016 Chin. Opt. Lett. 14 050607

    [12]

    Lin Y X, Ai Y, Shan X, Liu H Y 2014 J. Optoelectron. Laser 25 478 (in Chinese)[林贻翔, 艾勇, 单欣, 刘宏阳 2014 光电子·激光 25 478]

    [13]

    Safari M, Uysal M 2008 IEEE Trans. Wireless Commun. 7 5441

    [14]

    Wang T Y, Zhuang S L 2009 International Conference on Optical Instrumentation and Technology Shanghai, China, October 19-22, 2009 p251

    [15]

    Sewaiwar A, Han P P, Tiwari S V, Chung Y H 2015 J. Opt. Soc. Korea 19 74

    [16]

    Ghassemlooy Z, Popoola W, Rajbhandari S 2012 Optical Wireless Communications System and Channel Modelling with MATLAB (Florida: CRC Press) pp138-146

    [17]

    Grayshan K J, Vetelino F S, Young C Y 2008 Waves Random Complex Medium 18 173

    [18]

    Cheng M J, Guo L X, Zhang Y X 2015 Opt. Express 23 32606

    [19]

    Naboulsi M C A, Sizun H 2004 Opt. Eng. 43 319

    [20]

    Li Y Q, Wu Z S, Zhang Y Y, Zhang H L 2012 Adv. Mater. Res. 571 337

    [21]

    Gracheva M E, Gurvich A S 1965 Soviet Radiophys. 8 717

    [22]

    Cheng M J, Zhang Y X, Gao J, Wang F, Zhao F 2014 Appl. Opt. 53 4011

    [23]

    Tse D, Viswanath P 2005 Fundamentals of Wireless Communication (Cambridge: Cambridge University Press) p62

    [24]

    Li F 2013 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)[李菲 2013 博士学位论文(合肥: 中国科学技术大学)]

  • [1] 刘宇韬, 徐苗, 付兴虎, 付广伟. 大气湍流对空间相干光通信的相干探测性能影响. 物理学报, 2024, 73(10): 104206. doi: 10.7498/aps.73.20231885
    [2] 王明军, 席建霞, 王婉柔, 李勇俊, 张佳琳. 声波扰动对大气湍流内外尺度与折射率功率谱函数的影响分析. 物理学报, 2023, 72(12): 124303. doi: 10.7498/aps.72.20230003
    [3] 艾则孜姑丽·阿不都克热木, 陶志炜, 刘世韦, 李艳玲, 饶瑞中, 任益充. 大气湍流对接收光场时间相干特性的影响. 物理学报, 2022, 71(23): 234201. doi: 10.7498/aps.71.20221202
    [4] 闫玠霖, 韦宏艳, 蔡冬梅, 贾鹏, 乔铁柱. 大气湍流信道中聚焦涡旋光束轨道角动量串扰特性. 物理学报, 2020, 69(14): 144203. doi: 10.7498/aps.69.20200243
    [5] 徐启伟, 王佩佩, 曾镇佳, 黄泽斌, 周新星, 刘俊敏, 李瑛, 陈书青, 范滇元. 基于深度卷积神经网络的大气湍流相位提取. 物理学报, 2020, 69(1): 014209. doi: 10.7498/aps.69.20190982
    [6] 程知, 谭逢富, 靖旭, 何枫, 侯再红. 双孔差分闪烁法测量大气湍流的理论与实验研究. 物理学报, 2016, 65(7): 074205. doi: 10.7498/aps.65.074205
    [7] 蔡冬梅, 遆培培, 贾鹏, 王东, 刘建霞. 非均匀采样的功率谱反演大气湍流相位屏的快速模拟. 物理学报, 2015, 64(22): 224217. doi: 10.7498/aps.64.224217
    [8] 柯熙政, 王姣. 大气湍流中部分相干光束上行和下行传输偏振特性的比较. 物理学报, 2015, 64(22): 224204. doi: 10.7498/aps.64.224204
    [9] 柯熙政, 谌娟, 杨一明. 在大气湍流斜程传输中拉盖高斯光束的轨道角动量的研究. 物理学报, 2014, 63(15): 150301. doi: 10.7498/aps.63.150301
    [10] 李晓庆, 王涛, 季小玲. 球差光束在大气湍流中传输特性的实验研究. 物理学报, 2014, 63(13): 134209. doi: 10.7498/aps.63.134209
    [11] 蔡冬梅, 王昆, 贾鹏, 王东, 刘建霞. 功率谱反演大气湍流随机相位屏采样方法的研究. 物理学报, 2014, 63(10): 104217. doi: 10.7498/aps.63.104217
    [12] 李成强, 张合勇, 王挺峰, 刘立生, 郭劲. 高斯-谢尔模光束在大气湍流中传输的相干特性研究. 物理学报, 2013, 62(22): 224203. doi: 10.7498/aps.62.224203
    [13] 李晓庆, 季小玲, 朱建华. 大气湍流中光束的高阶强度矩. 物理学报, 2013, 62(4): 044217. doi: 10.7498/aps.62.044217
    [14] 刘扬阳, 吕群波, 张文喜. 大气湍流畸变对空间目标清晰干涉成像仿真研究. 物理学报, 2012, 61(12): 124201. doi: 10.7498/aps.61.124201
    [15] 马阎星, 王小林, 周朴, 马浩统, 赵海川, 许晓军, 司磊, 刘泽金, 赵伊君. 大气湍流对多抖动法相干合成技术中相位调制信号的影响. 物理学报, 2011, 60(9): 094211. doi: 10.7498/aps.60.094211
    [16] 李晋红, 吕百达. 部分相干涡旋光束通过大气湍流上行和下行传输的比较研究. 物理学报, 2011, 60(7): 074205. doi: 10.7498/aps.60.074205
    [17] 刘飞, 季小玲. 双曲余弦高斯列阵光束在湍流大气中的光束传输因子. 物理学报, 2011, 60(1): 014216. doi: 10.7498/aps.60.014216
    [18] 黎芳, 唐华, 江月松, 欧军. 拉盖尔-高斯光束在湍流大气中的螺旋谱特性. 物理学报, 2011, 60(1): 014204. doi: 10.7498/aps.60.014204
    [19] 季小玲. 大气湍流对径向分布高斯列阵光束扩展和方向性的影响. 物理学报, 2010, 59(1): 692-698. doi: 10.7498/aps.59.692
    [20] 陈晓文, 汤明玥, 季小玲. 大气湍流对部分相干厄米-高斯光束空间相干性的影响. 物理学报, 2008, 57(4): 2607-2613. doi: 10.7498/aps.57.2607
计量
  • 文章访问数:  7028
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-07
  • 修回日期:  2018-08-04
  • 刊出日期:  2018-11-05

/

返回文章
返回