搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铀在Nd2Zr2O7烧绿石中的固溶量及重离子辐照效应

王烈林 李江博 谢华 邓司浩 张可心 易发成

引用本文:
Citation:

铀在Nd2Zr2O7烧绿石中的固溶量及重离子辐照效应

王烈林, 李江博, 谢华, 邓司浩, 张可心, 易发成

Solubility and ion-irradiation effects of uranium in Nd2Zr2O7 pyrochlore

Wang Lie-Lin, Li Jiang-Bo, Xie Hua, Deng Si-Hao, Zhang Ke-Xin, Yi Fa-Cheng
PDF
导出引用
  • Nd2Zr2O7烧绿石因其稳定的物理化学性质和辐照稳定性可以作为高放废物中锕系核素的固化基材.通过溶胶凝胶–喷雾热解–高温烧结方法制备了含铀的Nd2Zr2O7烧绿石固化体;开展了Nd2Zr2O7和Nd1.9U0.1Zr2O7固化体的重离子辐照实验,辐照剂量为1 dpa和3 dpa;利用X射线衍射和Raman光谱对固化体结构进行了分析.研究发现铀在Nd2Zr2O7烧绿石体系的固溶量仅为10 at%,高价态铀掺杂导致固化体结构向无序化转变.重离子辐照实验表明,Nd2Zr2O7烧绿石基材具有较高的抗辐照稳定性;而Nd1.9U0.1Zr2O7在较低辐照剂量下,固化体烧绿石体系结构破坏,重离子辐照诱导固化体结构转变为更加无序化的萤石结构.低固溶量和抗辐照能力减弱主要是由于锕系核素烧绿石固化体的结构无序化所致.
    Nd2Zr2O7 pyrochlore with higher physicochemical and radiation stability has been considered as a host matrix for actinide immobilization of high level radioactive wastes. Uranium is a constituent and the decay-daughter product of high level radioactive wastes. It is necessary to study the solubility and ion-irradiation effect of uranium in Nd2Zr2O7 pyrochlore. The solubility of U is studied by the A site substitution in the pyrochlore structure. A series of uranium-doped zirconate pyrochlore compositions is prepared by the sol-gel-spray pyrolysis-high temperature sintering method. The structures of immobilization are studied by using X-ray diffraction (XRD) and Raman spectroscopy. The XRD and Raman spectroscopy studies reveal that the solubility limit of uranium in Nd2Zr2O7 is estimated at 10 at%. The lattice parameter of pyrochlore decreases with U content increasing, which is due to lower ionic radius of U. The immobilization structure changes from order pyrochlore to disorder structure. Further addition of U content leads to the separation of U3O8 phase in the immobilization. The U ions with high valance may be substituted at A or B site in Nd2Zr2O7 pyrochlore, which results in the A–O and B–O bond destruction. In order to keep the balance of charge, extra O ions should enter into the vacancy site, the structure of pyrochlore maybe transforms into a disorder structure. The radiation resistance of immobilization is investigated by ion-beam irradiation with 2 MeV Kr15+ ions at room temperature. The Nd2Zr2O7 and Nd1.9U0.1Zr2O7 are irradiated at doses of 1 dpa and 3 dpa, respectively. Analyses of the XRD and Raman spectroscopy data show that the Nd2Zr2O7 pyrochlore remains full pyrochlore structure even at a higher irradiation dose, which suggests that the Nd2Zr2O7 exhibits higher radiation resistance as potential immobilization. In contrast, the Nd1.9U0.1Zr2O7 immobilization shows the weaker radiation resistance, the pyrochlore structure completely transforms into a disorder fluorite structure. The A–O and B–O bonds of Nd1.9U0.1Zr2O7 pyrochlore structure are easy to destroy under ion irradiation conditions due to the disorder of pyrochlore. At the same time, the excess O ions are rearranged in U-rich pyrochlore after irradiation. Bond destruction and ion rearrangement of pyrochlore structure result in the full disorder fluorite structure. The actinides-doped pyrochlore structure is modified due to the change in physicochemical propertyof actinide, which results in the reductionof the solubility limit and radiation resistance.
      通信作者: 王烈林, wanglielin@swust.edu.cn
    • 基金项目: 国家自然科学基金(批准号:21101129,41502028)、四川省教育厅重大培育项目(批准号:17CZ0037)和西南科技大学龙山人才计划项目(批准号:18LZX649,18LZXT03)资助的课题.
      Corresponding author: Wang Lie-Lin, wanglielin@swust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 21101129, 41502028), the Major Research Program of Sichuan Education Committee of China (Grant No. 17CZ0037), and Longshan Talent Plan of SWUST, China (Grant Nos. 18LZX649, 18LZXT03).
    [1]

    Ewing R C 1994 IAEA SR. 186 32

    [2]

    Luo S G, Yang J W, Zhu X Z 2000 Acta Chim. Sin. 58 1608 (in Chinese) [罗上庚, 杨建文, 朱鑫璋 2000 化学学报 58 1608]

    [3]

    Alain C, Constantin M 2003 Phys. Rev. B 67 174102

    [4]

    Ewing R C 2005 Earth Planet Sci. Lett. 229 165

    [5]

    Weber W J, Ewing R C 2000 Science 289 2051

    [6]

    Sickafus K E, Minervini L, Grimes R W, Valdez J A, IshimaruM, Li F, McClellan K J, Hartmann T 2000 Science 289 478

    [7]

    Wang S X, Begg B D, Wang L M, Ewing R C, Weber W J, Kutty KV G 1999 J. Mater. Res. 14 4470

    [8]

    Chakoumakos B C, Ewing R C 1985 Mater. Res. Soc. Symp. Proc. 44 641

    [9]

    Belin R C, Valenza P J, Raison P E, Tillard M 2008 J. Alloy. Compd. 448 321

    [10]

    Kulkarni N K, Sampath S, Venugopal V 2000 J. Nucl. Mater. 281 95

    [11]

    Yamazaki S, Yamashita T, Matsui T, Takanori N 2001 J. Nucl. Mater. 294 183

    [12]

    Lian J, Zu X T, Kutty K V G, Chen J, Wang L M, Ewing R C 2002 Phys. Rev. B 66 054108

    [13]

    Kutty K V G, Asuvathraman R, Madhavan R R, Hrudananda J 2005 J. Phys. Chem. Solids 66 596

    [14]

    Vandenborre M T, Husson E, Chatry J P, Michel D 1983 J. Raman Spectrosc. 14 63

    [15]

    Brown S, Gupta H C, Alonso A J, Martínez-Lope M J 2004 Phys. Rev. B 69 054434

    [16]

    Mandal B P, Pandey M, Tyagi A K J 2010 J. Nucl. Mater. 406 238

    [17]

    Lang M, Zhang F X, Ewing R C, LianJ, Christina T, Wang Z W 2009 J. Mater. Res. 24 1322

    [18]

    Zhao M Z, Simon C, Middleburgh, Massey D L R, Lumpkin G R, Brendan J K, Peter E R B, Emily R 2013 J. Phys. Chem. C 117 26740

    [19]

    Wang L L, Xie H, Chen Q Y, Wang Q, Deng C, Long Y (in Chinese) [王烈林, 谢华, 陈青云, 王茜, 邓超, 龙勇 2015 原子能科学技术 49 1012]

    [20]

    Begg B D, Hess N J, McCready D E, Thevuthasanb S, Weber W J 2001 J. Nucl. Mater. 289 188

  • [1]

    Ewing R C 1994 IAEA SR. 186 32

    [2]

    Luo S G, Yang J W, Zhu X Z 2000 Acta Chim. Sin. 58 1608 (in Chinese) [罗上庚, 杨建文, 朱鑫璋 2000 化学学报 58 1608]

    [3]

    Alain C, Constantin M 2003 Phys. Rev. B 67 174102

    [4]

    Ewing R C 2005 Earth Planet Sci. Lett. 229 165

    [5]

    Weber W J, Ewing R C 2000 Science 289 2051

    [6]

    Sickafus K E, Minervini L, Grimes R W, Valdez J A, IshimaruM, Li F, McClellan K J, Hartmann T 2000 Science 289 478

    [7]

    Wang S X, Begg B D, Wang L M, Ewing R C, Weber W J, Kutty KV G 1999 J. Mater. Res. 14 4470

    [8]

    Chakoumakos B C, Ewing R C 1985 Mater. Res. Soc. Symp. Proc. 44 641

    [9]

    Belin R C, Valenza P J, Raison P E, Tillard M 2008 J. Alloy. Compd. 448 321

    [10]

    Kulkarni N K, Sampath S, Venugopal V 2000 J. Nucl. Mater. 281 95

    [11]

    Yamazaki S, Yamashita T, Matsui T, Takanori N 2001 J. Nucl. Mater. 294 183

    [12]

    Lian J, Zu X T, Kutty K V G, Chen J, Wang L M, Ewing R C 2002 Phys. Rev. B 66 054108

    [13]

    Kutty K V G, Asuvathraman R, Madhavan R R, Hrudananda J 2005 J. Phys. Chem. Solids 66 596

    [14]

    Vandenborre M T, Husson E, Chatry J P, Michel D 1983 J. Raman Spectrosc. 14 63

    [15]

    Brown S, Gupta H C, Alonso A J, Martínez-Lope M J 2004 Phys. Rev. B 69 054434

    [16]

    Mandal B P, Pandey M, Tyagi A K J 2010 J. Nucl. Mater. 406 238

    [17]

    Lang M, Zhang F X, Ewing R C, LianJ, Christina T, Wang Z W 2009 J. Mater. Res. 24 1322

    [18]

    Zhao M Z, Simon C, Middleburgh, Massey D L R, Lumpkin G R, Brendan J K, Peter E R B, Emily R 2013 J. Phys. Chem. C 117 26740

    [19]

    Wang L L, Xie H, Chen Q Y, Wang Q, Deng C, Long Y (in Chinese) [王烈林, 谢华, 陈青云, 王茜, 邓超, 龙勇 2015 原子能科学技术 49 1012]

    [20]

    Begg B D, Hess N J, McCready D E, Thevuthasanb S, Weber W J 2001 J. Nucl. Mater. 289 188

  • [1] 陈宇鹏, 史路林, 王瑜玉, 程锐, 杨杰, 陈良文, 范伟丽, 董俊煜. GeV重离子束辐照LiF引起的晶体内部结构改变. 物理学报, 2024, 73(15): 156401. doi: 10.7498/aps.73.20240717
    [2] 李洋帆, 郭红霞, 张鸿, 白如雪, 张凤祁, 马武英, 钟向丽, 李济芳, 卢小杰. 双沟槽SiC 金属-氧化物-半导体型场效应管重离子单粒子效应. 物理学报, 2024, 73(2): 026103. doi: 10.7498/aps.73.20231440
    [3] 彭超, 雷志锋, 张战刚, 何玉娟, 陈义强, 路国光, 黄云. 重离子辐照导致的SiC肖特基势垒二极管损伤机理. 物理学报, 2022, 71(17): 176101. doi: 10.7498/aps.71.20220628
    [4] 黎素芬, 李凯乐, 张全虎, 蔡幸福. 铀材料快中子多重性测量方程推导. 物理学报, 2022, 71(9): 091401. doi: 10.7498/aps.71.20211653
    [5] 叶浩, 黄印博, 王琛, 刘国荣, 卢兴吉, 曹振松, 黄尧, 齐刚, 梅海平. 激光烧蚀-吸收光谱测量铀同位素比实验研究. 物理学报, 2021, 70(16): 163201. doi: 10.7498/aps.70.20210193
    [6] 柯海波, 蒲朕, 张培, 张鹏国, 徐宏扬, 黄火根, 刘天伟, 王英敏. 铀基非晶合金的发展现状. 物理学报, 2017, 66(17): 176104. doi: 10.7498/aps.66.176104
    [7] 张洁, 钟昊玟, 沈杰, 梁国营, 崔晓军, 张小富, 张高龙, 颜莎, 喻晓, 乐小云. 强脉冲离子束辐照金属材料烧蚀产物特性分析. 物理学报, 2017, 66(5): 055202. doi: 10.7498/aps.66.055202
    [8] 丁兆楠, 杨义涛, 宋银, 张丽卿, 缑洁, 张崇宏, 罗广南. 高能重离子辐照的低活化钢硬化效应. 物理学报, 2017, 66(11): 112501. doi: 10.7498/aps.66.112501
    [9] 刘本琼, 谢雷, 段晓溪, 孙光爱, 陈波, 宋建明, 刘耀光, 汪小琳. 铀的结构相变及力学性能的第一性原理计算. 物理学报, 2013, 62(17): 176104. doi: 10.7498/aps.62.176104
    [10] 金宝, 蔡军, 陈义学. 放射性核素铀在针铁矿中的占位研究. 物理学报, 2013, 62(8): 087101. doi: 10.7498/aps.62.087101
    [11] 严小松, 刘荣, 鹿心鑫, 蒋励, 王玫, 林菊芳. 贫化铀/聚乙烯球壳交替系统中铀-238中子俘获率的测量与分析. 物理学报, 2012, 61(10): 102801. doi: 10.7498/aps.61.102801
    [12] 孙家法, 王玮. 型烧绿石氧化物超导体AOs2O6 (A=K, Rb) 的声子软化与超导电性. 物理学报, 2012, 61(13): 137402. doi: 10.7498/aps.61.137402
    [13] 卢喜瑞, 董发勤, 胡淞, 王晓丽, 吴彦霖. 模拟核素固化体Gd2Zr2-xCexO7(0≤ x≤ 2.0)的物相及化学稳定性研究. 物理学报, 2012, 61(15): 152401. doi: 10.7498/aps.61.152401
    [14] 段涛, 卢喜瑞, 刘小楠, 竹文坤, 黄叶菊. Gd2-xNdxZr2O7(Nd=An(Ⅲ), 0≤ x ≤ 2.0)模拟固化体固溶量与其物相、密度、硬度之间的关系. 物理学报, 2012, 61(21): 212801. doi: 10.7498/aps.61.212801
    [15] 王玮, 孙家法, 刘楣, 刘甦. β型烧绿石结构氧化物超导体AOs2O6(A=K,Rb,Cs)电子能带结构的第一性原理计算. 物理学报, 2009, 58(8): 5632-5639. doi: 10.7498/aps.58.5632
    [16] 宋 银, 王志光, 魏孔芳, 张崇宏, 刘纯宝, 臧 航, 周丽宏. 退火对He注入及随后208Pb27+辐照的Al2O3单晶PL谱的影响. 物理学报, 2007, 56(1): 551-555. doi: 10.7498/aps.56.551
    [17] 吴 迪, 宫 野, 刘金远, 王晓钢, 刘 悦, 马腾才. 强流脉冲离子束辐照靶材烧蚀效应二维数值研究. 物理学报, 2006, 55(1): 398-402. doi: 10.7498/aps.55.398
    [18] 孙友梅, 刘 杰, 张崇宏, 王志光, 金运范, 段敬来, 宋 银. 快重离子辐照聚酰亚胺潜径迹的电子能损效应. 物理学报, 2005, 54(11): 5269-5273. doi: 10.7498/aps.54.5269
    [19] 苏良碧, 杨卫桥, 董永军, 徐 军, 周国清. U:CaF2晶体的分凝特性与光谱性质. 物理学报, 2004, 53(11): 3956-3960. doi: 10.7498/aps.53.3956
    [20] 铀核之自裂. 物理学报, 1953, 9(1): 3-14. doi: 10.7498/aps.9.3
计量
  • 文章访问数:  6382
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-20
  • 修回日期:  2018-07-25
  • 刊出日期:  2018-10-05

/

返回文章
返回