搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铸造奥氏体不锈钢中铁素体与奥氏体位向关系及其对声衰减的影响

罗忠兵 董慧君 马志远 邹龙江 朱效磊 林莉

引用本文:
Citation:

铸造奥氏体不锈钢中铁素体与奥氏体位向关系及其对声衰减的影响

罗忠兵, 董慧君, 马志远, 邹龙江, 朱效磊, 林莉

Orientation relationship between ferrite and austenite and its influence on ultrasonic attenuation in cast austenitic stainless steel

Luo Zhong-Bing, Dong Hui-Jun, Ma Zhi-Yuan, Zou Long-Jiang, Zhu Xiao-Lei, Lin Li
PDF
导出引用
  • 研究了铸造奥氏体不锈钢中铁素体与奥氏体位向关系及其对超声散射衰减的影响.利用电子背散射衍射技术表征了两相的晶体取向及其位向关系,基于真实的铁素体形貌建立了二维声传播各向异性模型并利用时域有限差分法进行了计算,分析了不同位向关系、铁素体形貌特征对声衰减系数的影响规律并进行了实验验证.结果表明:铸造奥氏体不锈钢奥氏体晶粒中散布着形状复杂的铁素体,典型铁素体形貌为条状和岛状;铁素体与奥氏体的位向关系以Kurdjumov-Sachs关系为主,少量满足Nishiyama-Wassermann关系.对声传播过程进行计算,发现两相位向关系和铁素体形貌协同作用影响超声波传播,在较高检测频率(15 MHz)下对散射衰减的影响不能忽略.结合“原位”实验对奥氏体<101>柱状晶粒的声衰减影响因素进行了定量分析,发现对于单一铸造奥氏体晶粒,晶粒内部取向不均匀性、奥氏体-铁素体位向关系以及奥氏体晶粒内铁素体形态都是超声散射衰减的主要原因.
    Cast austenitic stainless steel (CASS) is widely used in important engineering components, which has a two-phase microstructure, i.e.austenite and ferrite. With slow cooling rate during solidification procedure, the austenite grain is coarse and the morphology of ferrite is complex. Due to the remarkable elasticity anisotropy of austenite, the resulting structural noise makes the recognition of macroscopic defects quite difficult in ultrasonic testing. To improve the signal-to-noise ratio, the ultrasonic testing frequency is generally small, about 0.5-2.0 MHz, and the ultrasonic scattering effect of ferrite is ignored. However, for submillimeter or even smaller defect and damage near the surface, the ultrasonic testing frequency should be increased to achieve a higher resolution. In these cases, how the ferrite influences the ultrasonic wave propagation behavior and the testing result is still not conclusive. Therefore, CASS Z3CN20-09M is studied as an example in this paper. Based on ultrasonic propagation modeling and “in situ” experimental design, the crystal orientation relationship between ferrite and austenite in CASS is studied and the factors influencing the ultrasonic scattering attenuation are clarified. The results would be helpful for clarifying the ultrasonic response mechanism of CASS and critical for the quantitative evaluation of small defects and early-stage damage.
    The orientation relationship between ferrite and austenite and its influence on ultrasonic scattering attenuation in CASS are studied. The crystal orientations and their relationships between two phases are characterized by the EBSD technique. A two-dimension anisotropic model is built based on the morphology of ferrite, and the ultrasonic propagation is calculated by the time domain finite difference method. The influences of orientation relationship and morphology on the longitudinal wave attenuation are analyzed and verified by “in-situ” experiments. Results show that ferrite grains with bar or island shape are distributed on the austenite grains. The orientation relationship between ferrite and austenite is mainly Kurdjumov-Sachs relationship, and only a minority of ferrite and austenite satisfy the Nishiyama-Wassermann relationship. Numerical simulation of the ultrasonic propagation under a testing frequency of 15 MHz indicates that the orientation relationships between two phases and ferrite morphologies present collaborative effects on the ultrasonic scattering attenuation, which could not be ignored. The factors influencing the ultrasonic attenuation in <101> austenite grain are quantitatively analyzed. It is found that in single austenite grains of CASS, the inhomogeneity of crystal orientation, the orientation relationship between austenite and ferrite and the ferrite morphology play an important role in determining the total ultrasonic attenuation.
    The results would provide supports for clarifying the ultrasonic response mechanism of CASS and developing the quantitative evaluation methods.
    • 基金项目: 国家自然科学基金(批准号:51705061,51475087)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51705061, 51475087).
    [1]

    Li S L, Wang Y L, Wang H, Xin C S, Wang X T 2016 J. Nucl. Mater. 469 262

    [2]

    Lach T G, Byun T S, Leonard K J 2017 J. Nucl. Mater. 497 139

    [3]

    Wang Z X, Xue F, Jiang J W, Ti W X, Yu W W 2011 Eng. Fail. Anal. 18 403

    [4]

    Chen W Y, Li M M, Kirk M A, Baldo P M, Lian T G 2016 J. Nucl. Mater. 471 184

    [5]

    Lan B, Lowe M J S, Dunne F P E 2015 J. Mech. Phys. Solids 83 221

    [6]

    Ramuhalli P, Good M S, Diaz A A, Anderson M T, Watson B E, Peters T J, Dixit M, Bond L J 2009 Ultrasonic Characterization of Cast Austenitic Stainless Steel Microstructure: Discrimination between Equiaxed-and Columnar-grain Material-an Interim Study (Washington: Pacific Northwest National Laboratory) p5

    [7]

    Sakamoto K, Furukawa T, Komura I, Kamiyama Y, Mihara T 2012 E-J. Adv. Maint. 4 5

    [8]

    Chen Y, Luo Z B, Zhou Q, Zou L J, Lin L 2015 Ultrasonics 59 31

    [9]

    Tabatabaeipour M, Hettler J, Delrue S, van Den Abeele K 2016 NDT&E Int. 80 23

    [10]

    Islam M D, Arai Y, Araki W 2015 Ultrasonics 56 354

    [11]

    Toozandehjani M, Matori K A, Ostovan F, Mustapha F, Zahari N I, Oskoueian A 2015 J. Mater. Sci. 50 2643

    [12]

    El Rayes M M, El-Danaf E A, Almajid A A 2015 J. Mater. Process. Tech. 216 188

    [13]

    Inoue H, Koseki T 2017 Acta Mater. 124 430

    [14]

    Smith R J, Li W Q, Coulson J, Clark M, Somekh M G, Sharples S D 2014 Meas. Sci. Technol. 25 055902

    [15]

    Chassignole B, Guerjouma R E, Ploix M A, Fouquet T 2010 NDT & E Int. 43 273

    [16]

    Wang Y Q, Li N, Yang B 2015 Corros. Eng. Sci. Tech. 50 330

    [17]

    Fu J W, Sun J J, Cen X, Zhang X M, Li F, Wu Y C 2018 Mater. Charact. 139 241

    [18]

    Miyamoto G, Karube Y, Furuhara T 2016 Acta Metall. 103 370

    [19]

    Marinelli M C, Bartali A E, Signorelli J W, Evrard P, Aubin V, Alvarez-Armas I, Degallaix-Moreuil S 2009 Mater. Sci. Eng. A 509 81

    [20]

    Besson J, Devillers-Guerville L, Pineau A 2000 Eng. Fract. Mech. 67 169

    [21]

    Brooks J A, Thompson A W 1991 Int. Mater. Rev. 36 16

    [22]

    Huang Y 1991 A User-material Subroutine Incropora-ting Single Crystal Plasticity in the ABAQUS Finite Element Program (Cambridge: Harvard University) p2

    [23]

    Auld B A 1973 Acoustic Fields and Waves in Solids (Melbourne: Krieger) pp73-74

    [24]

    Kim S A, Johnson W L 2007 Mater. Sci. Eng. A 452-453 633

    [25]

    Li H P, Zhao G Q, He L F 2008 Mater. Sci. Eng. A 478 276

    [26]

    Xia Y B 1995 Prog. Nat. Sci. 5 546

    [27]

    Merkulov L G 1956 Sov. Phys. Tech. Phys. 1 59

    [28]

    Smith R L 1982 Ultrasonics 20 211

    [29]

    Papadakis E P 1963 J. Appl. Phys. 34 265

  • [1]

    Li S L, Wang Y L, Wang H, Xin C S, Wang X T 2016 J. Nucl. Mater. 469 262

    [2]

    Lach T G, Byun T S, Leonard K J 2017 J. Nucl. Mater. 497 139

    [3]

    Wang Z X, Xue F, Jiang J W, Ti W X, Yu W W 2011 Eng. Fail. Anal. 18 403

    [4]

    Chen W Y, Li M M, Kirk M A, Baldo P M, Lian T G 2016 J. Nucl. Mater. 471 184

    [5]

    Lan B, Lowe M J S, Dunne F P E 2015 J. Mech. Phys. Solids 83 221

    [6]

    Ramuhalli P, Good M S, Diaz A A, Anderson M T, Watson B E, Peters T J, Dixit M, Bond L J 2009 Ultrasonic Characterization of Cast Austenitic Stainless Steel Microstructure: Discrimination between Equiaxed-and Columnar-grain Material-an Interim Study (Washington: Pacific Northwest National Laboratory) p5

    [7]

    Sakamoto K, Furukawa T, Komura I, Kamiyama Y, Mihara T 2012 E-J. Adv. Maint. 4 5

    [8]

    Chen Y, Luo Z B, Zhou Q, Zou L J, Lin L 2015 Ultrasonics 59 31

    [9]

    Tabatabaeipour M, Hettler J, Delrue S, van Den Abeele K 2016 NDT&E Int. 80 23

    [10]

    Islam M D, Arai Y, Araki W 2015 Ultrasonics 56 354

    [11]

    Toozandehjani M, Matori K A, Ostovan F, Mustapha F, Zahari N I, Oskoueian A 2015 J. Mater. Sci. 50 2643

    [12]

    El Rayes M M, El-Danaf E A, Almajid A A 2015 J. Mater. Process. Tech. 216 188

    [13]

    Inoue H, Koseki T 2017 Acta Mater. 124 430

    [14]

    Smith R J, Li W Q, Coulson J, Clark M, Somekh M G, Sharples S D 2014 Meas. Sci. Technol. 25 055902

    [15]

    Chassignole B, Guerjouma R E, Ploix M A, Fouquet T 2010 NDT & E Int. 43 273

    [16]

    Wang Y Q, Li N, Yang B 2015 Corros. Eng. Sci. Tech. 50 330

    [17]

    Fu J W, Sun J J, Cen X, Zhang X M, Li F, Wu Y C 2018 Mater. Charact. 139 241

    [18]

    Miyamoto G, Karube Y, Furuhara T 2016 Acta Metall. 103 370

    [19]

    Marinelli M C, Bartali A E, Signorelli J W, Evrard P, Aubin V, Alvarez-Armas I, Degallaix-Moreuil S 2009 Mater. Sci. Eng. A 509 81

    [20]

    Besson J, Devillers-Guerville L, Pineau A 2000 Eng. Fract. Mech. 67 169

    [21]

    Brooks J A, Thompson A W 1991 Int. Mater. Rev. 36 16

    [22]

    Huang Y 1991 A User-material Subroutine Incropora-ting Single Crystal Plasticity in the ABAQUS Finite Element Program (Cambridge: Harvard University) p2

    [23]

    Auld B A 1973 Acoustic Fields and Waves in Solids (Melbourne: Krieger) pp73-74

    [24]

    Kim S A, Johnson W L 2007 Mater. Sci. Eng. A 452-453 633

    [25]

    Li H P, Zhao G Q, He L F 2008 Mater. Sci. Eng. A 478 276

    [26]

    Xia Y B 1995 Prog. Nat. Sci. 5 546

    [27]

    Merkulov L G 1956 Sov. Phys. Tech. Phys. 1 59

    [28]

    Smith R L 1982 Ultrasonics 20 211

    [29]

    Papadakis E P 1963 J. Appl. Phys. 34 265

  • [1] 程大钊, 刘彩艳, 张超然, 屈佳辉, 张静. 中子辐照奥氏体不锈钢晶内/晶间孔隙形貌演化的相场模拟. 物理学报, 2024, 73(22): 224601. doi: 10.7498/aps.73.20241353
    [2] 赵宁宁, 肖新宇, 凡凤仙, 苏明旭. 基于蒙特卡罗原理的混合颗粒三相体系声衰减计算模型研究. 物理学报, 2022, 71(7): 074303. doi: 10.7498/aps.71.20211869
    [3] 齐海东, 王晶, 陈中军, 吴忠华, 宋西平. 温度对马氏体和铁素体晶格常数影响规律. 物理学报, 2022, 71(9): 098301. doi: 10.7498/aps.71.20211954
    [4] 侯森, 胡长青, 赵梅. 利用声衰减反演气泡群分布的方法研究. 物理学报, 2021, 70(4): 044301. doi: 10.7498/aps.70.20201385
    [5] 成应晋, 杨超飞, 薛钢, 王涛, 张磊, 李梅娥. 基于第一性原理的含空位α-Fe和H原子相互作用研究. 物理学报, 2020, 69(5): 053101. doi: 10.7498/aps.69.20191775
    [6] 王大为, 王召巴, 陈友兴, 李海洋, 王浩坤. 基于双高斯衰减模型的超声回波处理方法. 物理学报, 2019, 68(8): 084303. doi: 10.7498/aps.68.20182080
    [7] 刘晓宇, 张国华, 孙其诚, 赵雪丹, 刘尚. 二维圆盘颗粒体系声学行为的数值研究. 物理学报, 2017, 66(23): 234501. doi: 10.7498/aps.66.234501
    [8] 吴文华, 翟薇, 胡海豹, 魏炳波. 液体材料超声处理过程中声场和流场的分布规律研究. 物理学报, 2017, 66(19): 194303. doi: 10.7498/aps.66.194303
    [9] 孙明健, 刘婷, 程星振, 陈德应, 闫锋刚, 冯乃章. 基于多模态信号的金属材料缺陷无损检测方法. 物理学报, 2016, 65(16): 167802. doi: 10.7498/aps.65.167802
    [10] 孙健明, 于洁, 郭霞生, 章东. 基于分数导数研究高强度聚焦超声的非线性声场. 物理学报, 2013, 62(5): 054301. doi: 10.7498/aps.62.054301
    [11] 彭京思, 彭虎. 一种适用于超声多普勒血流速度测量的混沌调频连续波的研究. 物理学报, 2012, 61(24): 248701. doi: 10.7498/aps.61.248701
    [12] 张鹏利, 林书玉. 声场作用下两空化泡相互作用的研究. 物理学报, 2009, 58(11): 7797-7801. doi: 10.7498/aps.58.7797
    [13] 成泰民. 有限温度下二维Heisenberg铁磁系统的声子衰减. 物理学报, 2007, 56(2): 1066-1074. doi: 10.7498/aps.56.1066
    [14] 袁艳红, 侯 洵, 高 恒. 超声处理对ZnO薄膜光致发光特性的影响. 物理学报, 2006, 55(1): 446-449. doi: 10.7498/aps.55.446
    [15] 李凤英, 傅顺声, 王汝菊, M.H.Manghnani. 钠玻璃与钛玻璃在静水压下的弹性性能. 物理学报, 2000, 49(11): 2129-2132. doi: 10.7498/aps.49.2129
    [16] 朱为勇, 王耀俊, 宁伟. 纤维复合媒质中的超声衰减. 物理学报, 1996, 45(1): 58-64. doi: 10.7498/aps.45.58
    [17] 李玉璞, 王佩璇, 张国光, 马如璋, 刘家瑞, 朱沛然, 邱长青. He在HR-1型不锈钢中的捕获与释放研究. 物理学报, 1989, 38(7): 1122-1126. doi: 10.7498/aps.38.1122
    [18] 王雅谷, 王业宁. 钼酸钆晶体铁弹相变的超声衰减和内耗. 物理学报, 1985, 34(4): 520-527. doi: 10.7498/aps.34.520
    [19] 潘正良, 王双全, 李广义. 钢在疲劳过程中的超声衰减. 物理学报, 1985, 34(1): 134-139. doi: 10.7498/aps.34.134
    [20] 庄育智, 李有柯. 18/8型不锈钢中σ-相的形成. 物理学报, 1954, 10(4): 321-332. doi: 10.7498/aps.10.321
计量
  • 文章访问数:  7268
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-28
  • 修回日期:  2018-09-18
  • 刊出日期:  2018-12-05

/

返回文章
返回