搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FeSe基超导单晶与薄膜研究新进展:自旋向列序、电子相分离及高临界参数

董晓莉 金魁 袁洁 周放 张广铭 赵忠贤

引用本文:
Citation:

FeSe基超导单晶与薄膜研究新进展:自旋向列序、电子相分离及高临界参数

董晓莉, 金魁, 袁洁, 周放, 张广铭, 赵忠贤

New progress of FeSe-based superconducting single crystals and films: Spin nematicity, electronic phase separation, and high critical parameters

Dong Xiao-Li, Jin Kui, Yuan Jie, Zhou Fang, Zhang Guang-Ming, Zhao Zhong-Xian
PDF
导出引用
  • FeSe基超导体的超导临界温度可大范围调控,物理现象丰富,是非常规超导机理研究的热点.由于较高的超导临界参数及易于加工等特点,FeSe基超导体在超导应用开发方面也日益受到重视.大尺寸高质量的单晶和薄膜形态的FeSe基超导材料,对于相关基础科学研究和应用开发都极为重要.作者近年来先后开发和发明了水热离子交换(ion-exchange)、离子脱插(ion-deintercalation)、基底辅助水热外延生长方法,成功解决了二元FeSe和插层(Li,Fe)OHFeSe超导体高质量单晶和薄膜的生长和物性调控难题.进而在相关物理问题的研究中取得新进展,包括发现二元FeSe中自旋向列序与超导电性密切相关,观测到(Li,Fe)OHFeSe中的电子相分离现象.此外,(Li,Fe)OHFeSe超导薄膜呈现很高的超导临界电流密度和上临界磁场,其应用前景值得关注.
    High-quality superconducting single crystals and thin films play an important role in the basic research and application of high-Tc superconductivity. In these two aspects, iron-based superconductors feature the merit of rich physical phenomena and high superconducting critical parameters (including the transition temperature Tc, the upper critical field Hc2 and the critical current density Jc). By developing ion-exchange and ion-de-intercalation method, we successfully synthesize a series of high-quality and sizable (Li,Fe)OHFeSe and FeSe single crystal samples. We observe Ising spin nematicity (below Tsn), and the universal linear relationship between Tc and Tsn in FeSe single crystals, indicating that the superconductivity is closely related to the spin nematicity driven by stripe antiferromagnetic spin fluctuations. In (Li,Fe)OHFeSe single crystals, we observe the coexistence of an AFM state (below Tafm~125 K) together with the SC state. We explain the coexistence by electronic phase separation, similar to that in high-Tc cuprates and iron arsenides, and establish a complete phase diagram for (Li,Fe)OHFeSe system. Here, we also make a brief introduction about our latest progress in growing a high-quality single-crystalline superconducting film of (Li,Fe)OHFeSe. The film is prepared by a hydrothermal epitaxial method. The high crystalline quality of the film is demonstrated by x-ray diffraction results, showing a single (001) orientation with a small crystal mosaic of 0.22 in terms of the full width at half maximum of the rocking curve, as well as an excellent in-plane orientation by the -scan of (101) plane. Its bulk superconducting transition temperature Tc of 42.4 K is characterized by both zero electrical resistance and diamagnetization measurements. Based on systematic magnetoresistance measurements, the values of upper critical field Hc2 are estimated at 79.5 T and 443 T for the magnetic field perpendicular and parallel to the ab plane, respectively. Moreover, a large critical current density Jc of a value over 0.5 MA/cm2 is achieved at~20 K. Such a (Li,Fe)OHFeSe film is not only important for the fundamental research for understanding the high-Tc mechanism, but also promises the high-Tc superconductivity applications, especially in high-performance electronic devices and large scientific facilities such as superconducting accelerator.
      通信作者: 董晓莉, dong@iphy.ac.cn;zhxzhao@iphy.ac.cn ; 赵忠贤, dong@iphy.ac.cn;zhxzhao@iphy.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2017YFA0303003,2016YFA0300300)、国家自然科学基金(批准号:11574370)和中国科学院前沿科学重点研究计划及先导B计划(批准号:QYZDY-SSW-SLH001,QYZDY-SSW-SLH008,XDB07020100)资助的课题.
      Corresponding author: Dong Xiao-Li, dong@iphy.ac.cn;zhxzhao@iphy.ac.cn ; Zhao Zhong-Xian, dong@iphy.ac.cn;zhxzhao@iphy.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2017YFA0303003, 2016YFA0300300), the National Natural Science Foundation of China (Grant No. 11574370), and the Strategic Priority Research Program and Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant Nos. QYZDY-SSW-SLH001, QYZDY-SSW-SLH008, XDB07020100).
    [1]

    Johnston D C 2010 Adv. Phys. 59 803

    [2]

    Paglione J, Greene R L 2010 Nat. Phys. 6 645

    [3]

    Stewart G R 2011 Rev. Mod. Phys. 83 1589

    [4]

    Dagotto E 2013 Rev. Mod. Phys. 85 849

    [5]

    Chen X, Dai P, Feng D, Xiang T, Zhang F C 2014 National Science Review 1 371

    [6]

    Putti M, Pallecchi I, Bellingeri E, Cimberle M R, Tropeano M, Ferdeghini C, Palenzona A, Tarantini C, Yamamoto A, Jiang J, Jaroszynski J, Kametani F, Abraimov D, Polyanskii A, Weiss J D, Hellstrom E E, Gurevich A, Larbalestier D C, Jin R, Sales B C, Sefat A S, McGuire M A, Mandrus D, Cheng P, Jia Y, Wen H H, Lee S, Eom C B 2010 Supercond. Sci. Tech. 23 034003

    [7]

    Hosono H, Tanabe K, Takayama-Muromachi E, Kageyama H, Yamanaka S, Kumakura H, Nohara M, Hiramatsu H, Fujitsu S 2015 Science and Technology of Advanced Materials 16 033503

    [8]

    Si W, Han S J, Shi X, Ehrlich S N, Jaroszynski J, Goyal A, Li Q 2013 Nat. Commun. 4 1347

    [9]

    Huang Y, Feng Z, Ni S, Li J, Hu W, Liu S, Mao Y, Zhou H, Zhou F, Jin K, Wang H, Yuan J, Dong X, Zhao Z 2017 Chin. Phys. Lett. 34 077404

    [10]

    Fernandes R M, Chubukov A V 2017 Rep. Prog. Phys. 80 14503

    [11]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262

    [12]

    Margadonna S, Takabayashi Y, Ohishi Y, Mizuguchi Y, Takano Y, Kagayama T, Nakagawa T, Takata M, Prassides K 2009 Phys. Rev. B 80 064506

    [13]

    Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G, Felser C 2009 Nat. Mater. 8 630

    [14]

    Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G, Shibauchi T 2016 Nat. Commun. 7 12146

    [15]

    Sun J P, Ye G Z, Shahi P, Yan J Q, Matsuura K, Kontani H, Zhang G M, Zhou Q, Sales B C, Shibauchi T, Uwatoko Y, Singh D J, Cheng J G 2017 Phys. Rev. Lett. 118 147004

    [16]

    Guo J, Jin S, Wang G, Wang S, Zhu K, Zhou T, He M, Chen X 2010 Phys. Rev. B 82 180520R

    [17]

    Fang M H, Wang H D, Dong C H, Li Z J, Feng C M, Chen J, Yuan H Q 2011 EPL 94 27009

    [18]

    Ying T P, Chen X L, Wang G, Jin S F, Lai X F, Zhou T T, Zhang H, Shen S J, Wang W Y 2013 J. Am. Chem. Soc. 135 2951

    [19]

    Sun S, Wang S, Yu R, Lei H 2017 Phys. Rev. B 96 064512

    [20]

    Hatakeda T, Noji T, Kawamata T, Kato M, Koike Y 2013 J. Phys. Soc. Jpn. 82 123705

    [21]

    Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z, Chen X H 2014 Nat. Mater. 14 325

    [22]

    Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. Lett. 116 077002

    [23]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [24]

    Liu D, Zhang W, Mou D, He J, Ou Y B, Wang Q Y, Li Z, Wang L, Zhao L, He S, Peng Y, Liu X, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Hu J, Chen X, Ma X, Xue Q, Zhou X J 2012 Nat. Commun. 3 931

    [25]

    Tan S Y, Zhang Y, Xia M, Ye Z R, Chen F, Xie X, Peng R, Xu D F, Fan Q, Xu H C, Jiang J, Zhang T, Lai X C, Xiang T, Hu J P, Xie B P, Feng D L 2013 Nat. Mater. 12 634

    [26]

    Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H, Shen Z X 2014 Nature 515 245

    [27]

    McQueen T M, Williams A J, Stephens P W, Tao J, Zhu Y, Ksenofontov V, Casper F, Felser C, Cava R J 2009 Phys. Rev. Lett. 103 057002

    [28]

    Fernandes R M, Chubukov A V, Schmalian J 2014 Nat. Phys. 10 97

    [29]

    Baek S H, Efremov D V, Ok J M, Kim J S, van den Brink J, Buchner B 2015 Nat. Mater. 14 210

    [30]

    Wang F, Kivelson S A, Lee D H 2015 Nat. Phys. 11 959

    [31]

    Yu R, Si Q 2015 Phys. Rev. Lett. 115 116401

    [32]

    Onari S, Yamakawa Y, Kontani H 2016 Phys. Rev. Lett. 116 227001

    [33]

    Tanatar M A, Bohmer A E, Timmons E I, Schutt M, Drachuck G, Taufour V, Kothapalli K, Kreyssig A, Bud'ko S L, Canfield P C, Fernandes R M, Prozorov R 2016 Phys. Rev. Lett. 117 127001

    [34]

    Wang Q, Shen Y, Pan B, Hao Y, Ma M, Zhou F, Steffens P, Schmalzl K, Forrest T R, Abdel-Hafiez M, Chen X, Chareev D A, Vasiliev A N, Bourges P, Sidis Y, Cao H, Zhao J 2016 Nat. Mater. 15 159

    [35]

    Xu H C, Niu X H, Xu D F, Jiang J, Yao Q, Chen Q Y, Song Q, Abdel-Hafiez M, Chareev D A, Vasiliev A N, Wang Q S, Wo H L, Zhao J, Peng R, Feng D L 2016 Phys. Rev. Lett. 117 157003

    [36]

    Yuan D, Yuan J, Huang Y, Ni S, Feng Z, Zhou H, Mao Y, Jin K, Zhang G, Dong X, Zhou F, Zhao Z 2016 Phys. Rev. B 94 060506R

    [37]

    Zhao L, Liang A, Yuan D, Hu Y, Liu D, Huang J, He S, Shen B, Xu Y, Liu X, Yu L, Liu G, Zhou H, Huang Y, Dong X, Zhou F, Liu K, Lu Z, Zhao Z, Chen C, Xu Z, Zhou X J 2016 Nat. Commun. 7 10608

    [38]

    Niu X H, Peng R, Xu H C, Yan Y J, Jiang J, Xu D F, Yu T L, Song Q, Huang Z C, Wang Y X, Xie B P, Lu X F, Wang N Z, Chen X H, Sun Z, Feng D L 2015 Phys. Rev. B 92 060504

    [39]

    Yin J X, Wu Z, Wang J H, Ye Z Y, Gong J, Hou X Y, Shan L, Li A, Liang X J, Wu X X, Li J, Ting C S, Wang Z Q, Hu J P, Hor P H, Ding H, Pan S H 2015 Nat. Phys. 11 543

    [40]

    Wang D, Kong L, Fan P, Chen H, Sun Y, Du S, Schneeloch J, Zhong R D, Gu G D, Fu L, Ding H, Gao H 2017 arXiv1706.06074

    [41]

    Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z, Wen J, Gu G D, Ding H, Shin S 2018 Science 360 182

    [42]

    Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Wen C H P, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X, Feng D L 2018 arXiv1807.01278

    [43]

    Dong X, Jin K, Yuan D, Zhou H, Yuan J, Huang Y, Hua W, Sun J, Zheng P, Hu W, Mao Y, Ma M, Zhang G, Zhou F, Zhao Z 2015 Phys. Rev. B 92 064515

    [44]

    Yuan D, Huang Y, Ni S, Zhou H, Mao Y, Hu W, Yuan J, Jin K, Zhang G, Dong X, Zhou F 2016 Chin. Phys. B 25 077404

    [45]

    Dong X, Zhou H, Yang H, Yuan J, Jin K, Zhou F, Yuan D, Wei L, Li J, Wang X, Zhang G, Zhao Z 2015 J. Am. Chem. Soc. 137 66

    [46]

    Mao Y, Li J, Huan Y, Yuan J, Li Z A, Chai K, Ma M, Ni S, Tian J, Liu S, Zhou H, Zhou F, Li J, Zhang G, Jin K, Dong X, Zhao Z 2018 Chin. Phys. Lett. 35 057402

    [47]

    McQueen T M, Williams A J, Stephens P W, Tao J, Zhu Y, Ksenofontov V, Casper F, Felser C, Cava R J 2009 Phys. Rev. Lett. 103 057002

    [48]

    Glasbrenner J K, Mazin I I, Jeschke H O, Hirschfeld P J, Fernandes R M, Valenti R 2015 Nat. Phys. 11 953

    [49]

    Chubukov A V, Khodas M, Fernandes R M 2016 Phys. Rev. X 6 041045

    [50]

    Hu Y, Ren X, Zhang R, Luo H, Kasahara S, Watashige T, Shibauchi T, Dai P, Zhang Y, Matsuda Y, Li Y 2016 Phys. Rev. B 93 060504R

    [51]

    Kang J, Fernandes R M 2016 Phys. Rev. Lett. 117 217003

    [52]

    Wang W K, Liu Y, Yang J Y, Du H F, Ning W, Ling L S, Tong W, Qu Z, Yang Z R, Tian M L, Zhang Y H 2016 Chin. Phys. Lett. 33 057401

    [53]

    Yamakawa Y, Onari S, Kontani H 2016 Phys. Rev. X 6 021032

    [54]

    Du Z, Yang X, Lin H, Fang D, Du G, Xing J, Yang H, Zhu X, Wen H H 2016 Nat. Commun. 7 10565

    [55]

    Khasanov R, Zhou H, Amato A, Guguchia Z, Morenzoni E, Dong X, Zhang G, Zhao Z 2016 Phys. Rev. B 93 224512

    [56]

    Zhou X, Borg C K H, Lynn J W, Saha S R, Paglione J, Rodriguez E E 2016 J. Mater. Chem. C 4 3934

    [57]

    Ma M, Wang L, Bourges P, Sidis Y, Danilkin S, Li Y 2017 Phys. Rev. B 95 100504

    [58]

    Pan B, Shen Y, Hu D, Feng Y, Park J T, Christianson A D, Wang Q, Hao Y, Wo H, Yin Z, Maier T A, Zhao J 2017 Nat. Commun. 8 123

    [59]

    Wang Z, Yuan J, Wosnitza J, Zhou H, Huang Y, Jin K, Zhou F, Dong X, Zhao Z 2017 J. Phys.: Condens. Matter 29 025701

    [60]

    Sun J P, Shahi P, Zhou H X, Huang Y L, Chen K Y, Wang B S, Ni S L, Li N N, Zhang K, Yang W G, Uwatoko Y, Xing G, Sun J, Singh D J, Jin K, Zhou F, Zhang G M, Dong X L, Zhao Z X, Cheng J G 2018 Nat. Commun. 9 380

  • [1]

    Johnston D C 2010 Adv. Phys. 59 803

    [2]

    Paglione J, Greene R L 2010 Nat. Phys. 6 645

    [3]

    Stewart G R 2011 Rev. Mod. Phys. 83 1589

    [4]

    Dagotto E 2013 Rev. Mod. Phys. 85 849

    [5]

    Chen X, Dai P, Feng D, Xiang T, Zhang F C 2014 National Science Review 1 371

    [6]

    Putti M, Pallecchi I, Bellingeri E, Cimberle M R, Tropeano M, Ferdeghini C, Palenzona A, Tarantini C, Yamamoto A, Jiang J, Jaroszynski J, Kametani F, Abraimov D, Polyanskii A, Weiss J D, Hellstrom E E, Gurevich A, Larbalestier D C, Jin R, Sales B C, Sefat A S, McGuire M A, Mandrus D, Cheng P, Jia Y, Wen H H, Lee S, Eom C B 2010 Supercond. Sci. Tech. 23 034003

    [7]

    Hosono H, Tanabe K, Takayama-Muromachi E, Kageyama H, Yamanaka S, Kumakura H, Nohara M, Hiramatsu H, Fujitsu S 2015 Science and Technology of Advanced Materials 16 033503

    [8]

    Si W, Han S J, Shi X, Ehrlich S N, Jaroszynski J, Goyal A, Li Q 2013 Nat. Commun. 4 1347

    [9]

    Huang Y, Feng Z, Ni S, Li J, Hu W, Liu S, Mao Y, Zhou H, Zhou F, Jin K, Wang H, Yuan J, Dong X, Zhao Z 2017 Chin. Phys. Lett. 34 077404

    [10]

    Fernandes R M, Chubukov A V 2017 Rep. Prog. Phys. 80 14503

    [11]

    Hsu F C, Luo J Y, Yeh K W, Chen T K, Huang T W, Wu P M, Lee Y C, Huang Y L, Chu Y Y, Yan D C, Wu M K 2008 Proc. Natl. Acad. Sci. USA 105 14262

    [12]

    Margadonna S, Takabayashi Y, Ohishi Y, Mizuguchi Y, Takano Y, Kagayama T, Nakagawa T, Takata M, Prassides K 2009 Phys. Rev. B 80 064506

    [13]

    Medvedev S, McQueen T M, Troyan I A, Palasyuk T, Eremets M I, Cava R J, Naghavi S, Casper F, Ksenofontov V, Wortmann G, Felser C 2009 Nat. Mater. 8 630

    [14]

    Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G, Shibauchi T 2016 Nat. Commun. 7 12146

    [15]

    Sun J P, Ye G Z, Shahi P, Yan J Q, Matsuura K, Kontani H, Zhang G M, Zhou Q, Sales B C, Shibauchi T, Uwatoko Y, Singh D J, Cheng J G 2017 Phys. Rev. Lett. 118 147004

    [16]

    Guo J, Jin S, Wang G, Wang S, Zhu K, Zhou T, He M, Chen X 2010 Phys. Rev. B 82 180520R

    [17]

    Fang M H, Wang H D, Dong C H, Li Z J, Feng C M, Chen J, Yuan H Q 2011 EPL 94 27009

    [18]

    Ying T P, Chen X L, Wang G, Jin S F, Lai X F, Zhou T T, Zhang H, Shen S J, Wang W Y 2013 J. Am. Chem. Soc. 135 2951

    [19]

    Sun S, Wang S, Yu R, Lei H 2017 Phys. Rev. B 96 064512

    [20]

    Hatakeda T, Noji T, Kawamata T, Kato M, Koike Y 2013 J. Phys. Soc. Jpn. 82 123705

    [21]

    Lu X F, Wang N Z, Wu H, Wu Y P, Zhao D, Zeng X Z, Luo X G, Wu T, Bao W, Zhang G H, Huang F Q, Huang Q Z, Chen X H 2014 Nat. Mater. 14 325

    [22]

    Lei B, Cui J H, Xiang Z J, Shang C, Wang N Z, Ye G J, Luo X G, Wu T, Sun Z, Chen X H 2016 Phys. Rev. Lett. 116 077002

    [23]

    Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402

    [24]

    Liu D, Zhang W, Mou D, He J, Ou Y B, Wang Q Y, Li Z, Wang L, Zhao L, He S, Peng Y, Liu X, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Hu J, Chen X, Ma X, Xue Q, Zhou X J 2012 Nat. Commun. 3 931

    [25]

    Tan S Y, Zhang Y, Xia M, Ye Z R, Chen F, Xie X, Peng R, Xu D F, Fan Q, Xu H C, Jiang J, Zhang T, Lai X C, Xiang T, Hu J P, Xie B P, Feng D L 2013 Nat. Mater. 12 634

    [26]

    Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H, Shen Z X 2014 Nature 515 245

    [27]

    McQueen T M, Williams A J, Stephens P W, Tao J, Zhu Y, Ksenofontov V, Casper F, Felser C, Cava R J 2009 Phys. Rev. Lett. 103 057002

    [28]

    Fernandes R M, Chubukov A V, Schmalian J 2014 Nat. Phys. 10 97

    [29]

    Baek S H, Efremov D V, Ok J M, Kim J S, van den Brink J, Buchner B 2015 Nat. Mater. 14 210

    [30]

    Wang F, Kivelson S A, Lee D H 2015 Nat. Phys. 11 959

    [31]

    Yu R, Si Q 2015 Phys. Rev. Lett. 115 116401

    [32]

    Onari S, Yamakawa Y, Kontani H 2016 Phys. Rev. Lett. 116 227001

    [33]

    Tanatar M A, Bohmer A E, Timmons E I, Schutt M, Drachuck G, Taufour V, Kothapalli K, Kreyssig A, Bud'ko S L, Canfield P C, Fernandes R M, Prozorov R 2016 Phys. Rev. Lett. 117 127001

    [34]

    Wang Q, Shen Y, Pan B, Hao Y, Ma M, Zhou F, Steffens P, Schmalzl K, Forrest T R, Abdel-Hafiez M, Chen X, Chareev D A, Vasiliev A N, Bourges P, Sidis Y, Cao H, Zhao J 2016 Nat. Mater. 15 159

    [35]

    Xu H C, Niu X H, Xu D F, Jiang J, Yao Q, Chen Q Y, Song Q, Abdel-Hafiez M, Chareev D A, Vasiliev A N, Wang Q S, Wo H L, Zhao J, Peng R, Feng D L 2016 Phys. Rev. Lett. 117 157003

    [36]

    Yuan D, Yuan J, Huang Y, Ni S, Feng Z, Zhou H, Mao Y, Jin K, Zhang G, Dong X, Zhou F, Zhao Z 2016 Phys. Rev. B 94 060506R

    [37]

    Zhao L, Liang A, Yuan D, Hu Y, Liu D, Huang J, He S, Shen B, Xu Y, Liu X, Yu L, Liu G, Zhou H, Huang Y, Dong X, Zhou F, Liu K, Lu Z, Zhao Z, Chen C, Xu Z, Zhou X J 2016 Nat. Commun. 7 10608

    [38]

    Niu X H, Peng R, Xu H C, Yan Y J, Jiang J, Xu D F, Yu T L, Song Q, Huang Z C, Wang Y X, Xie B P, Lu X F, Wang N Z, Chen X H, Sun Z, Feng D L 2015 Phys. Rev. B 92 060504

    [39]

    Yin J X, Wu Z, Wang J H, Ye Z Y, Gong J, Hou X Y, Shan L, Li A, Liang X J, Wu X X, Li J, Ting C S, Wang Z Q, Hu J P, Hor P H, Ding H, Pan S H 2015 Nat. Phys. 11 543

    [40]

    Wang D, Kong L, Fan P, Chen H, Sun Y, Du S, Schneeloch J, Zhong R D, Gu G D, Fu L, Ding H, Gao H 2017 arXiv1706.06074

    [41]

    Zhang P, Yaji K, Hashimoto T, Ota Y, Kondo T, Okazaki K, Wang Z, Wen J, Gu G D, Ding H, Shin S 2018 Science 360 182

    [42]

    Liu Q, Chen C, Zhang T, Peng R, Yan Y J, Wen C H P, Lou X, Huang Y L, Tian J P, Dong X L, Wang G W, Bao W C, Wang Q H, Yin Z P, Zhao Z X, Feng D L 2018 arXiv1807.01278

    [43]

    Dong X, Jin K, Yuan D, Zhou H, Yuan J, Huang Y, Hua W, Sun J, Zheng P, Hu W, Mao Y, Ma M, Zhang G, Zhou F, Zhao Z 2015 Phys. Rev. B 92 064515

    [44]

    Yuan D, Huang Y, Ni S, Zhou H, Mao Y, Hu W, Yuan J, Jin K, Zhang G, Dong X, Zhou F 2016 Chin. Phys. B 25 077404

    [45]

    Dong X, Zhou H, Yang H, Yuan J, Jin K, Zhou F, Yuan D, Wei L, Li J, Wang X, Zhang G, Zhao Z 2015 J. Am. Chem. Soc. 137 66

    [46]

    Mao Y, Li J, Huan Y, Yuan J, Li Z A, Chai K, Ma M, Ni S, Tian J, Liu S, Zhou H, Zhou F, Li J, Zhang G, Jin K, Dong X, Zhao Z 2018 Chin. Phys. Lett. 35 057402

    [47]

    McQueen T M, Williams A J, Stephens P W, Tao J, Zhu Y, Ksenofontov V, Casper F, Felser C, Cava R J 2009 Phys. Rev. Lett. 103 057002

    [48]

    Glasbrenner J K, Mazin I I, Jeschke H O, Hirschfeld P J, Fernandes R M, Valenti R 2015 Nat. Phys. 11 953

    [49]

    Chubukov A V, Khodas M, Fernandes R M 2016 Phys. Rev. X 6 041045

    [50]

    Hu Y, Ren X, Zhang R, Luo H, Kasahara S, Watashige T, Shibauchi T, Dai P, Zhang Y, Matsuda Y, Li Y 2016 Phys. Rev. B 93 060504R

    [51]

    Kang J, Fernandes R M 2016 Phys. Rev. Lett. 117 217003

    [52]

    Wang W K, Liu Y, Yang J Y, Du H F, Ning W, Ling L S, Tong W, Qu Z, Yang Z R, Tian M L, Zhang Y H 2016 Chin. Phys. Lett. 33 057401

    [53]

    Yamakawa Y, Onari S, Kontani H 2016 Phys. Rev. X 6 021032

    [54]

    Du Z, Yang X, Lin H, Fang D, Du G, Xing J, Yang H, Zhu X, Wen H H 2016 Nat. Commun. 7 10565

    [55]

    Khasanov R, Zhou H, Amato A, Guguchia Z, Morenzoni E, Dong X, Zhang G, Zhao Z 2016 Phys. Rev. B 93 224512

    [56]

    Zhou X, Borg C K H, Lynn J W, Saha S R, Paglione J, Rodriguez E E 2016 J. Mater. Chem. C 4 3934

    [57]

    Ma M, Wang L, Bourges P, Sidis Y, Danilkin S, Li Y 2017 Phys. Rev. B 95 100504

    [58]

    Pan B, Shen Y, Hu D, Feng Y, Park J T, Christianson A D, Wang Q, Hao Y, Wo H, Yin Z, Maier T A, Zhao J 2017 Nat. Commun. 8 123

    [59]

    Wang Z, Yuan J, Wosnitza J, Zhou H, Huang Y, Jin K, Zhou F, Dong X, Zhao Z 2017 J. Phys.: Condens. Matter 29 025701

    [60]

    Sun J P, Shahi P, Zhou H X, Huang Y L, Chen K Y, Wang B S, Ni S L, Li N N, Zhang K, Yang W G, Uwatoko Y, Xing G, Sun J, Singh D J, Jin K, Zhou F, Zhang G M, Dong X L, Zhao Z X, Cheng J G 2018 Nat. Commun. 9 380

  • [1] 邱航强, 谢晓萌, 刘艺, 李玉科, 许晓峰, 焦文鹤. 三元钯基碲化物的单晶生长和电输运性质. 物理学报, 2022, 71(22): 227401. doi: 10.7498/aps.71.20221034
    [2] 伊长江, 王乐, 冯子力, 杨萌, 闫大禹, 王翠香, 石友国. 拓扑半金属材料的单晶生长研究进展. 物理学报, 2018, 67(12): 128102. doi: 10.7498/aps.67.20180796
    [3] 于佳, 刘通, 赵康, 潘伯津, 穆青隔, 阮彬彬, 任治安. 112型铁基化合物EuFeAs2的单晶生长与表征. 物理学报, 2018, 67(20): 207403. doi: 10.7498/aps.67.20181393
    [4] 牟刚, 马永辉. 铁基超导1111体系CaFeAsF的单晶生长和物性研究. 物理学报, 2018, 67(17): 177401. doi: 10.7498/aps.67.20181371
    [5] 张宇河, 牛冬梅, 吕路, 谢海鹏, 朱孟龙, 张红, 刘鹏, 曹宁通, 高永立. 2,7-二辛基[1]苯并噻吩并[3,2-b]苯并噻吩在Cu(100)上的吸附生长以及能级结构演化. 物理学报, 2016, 65(15): 157901. doi: 10.7498/aps.65.157901
    [6] 阮聪, 孙晓民, 宋亦旭. 元胞方法与蒙特卡洛方法相结合的薄膜生长过程模拟. 物理学报, 2015, 64(3): 038201. doi: 10.7498/aps.64.038201
    [7] 陈仙, 王炎武, 王晓艳, 安书董, 王小波, 赵玉清. 非晶氧化钛薄膜形成过程中钛离子能量对表面结构影响的机理. 物理学报, 2014, 63(24): 246801. doi: 10.7498/aps.63.246801
    [8] 颜超, 黄莉莉, 何兴道. 入射能量对Au/Au(111)薄膜生长影响的分子动力学模拟. 物理学报, 2014, 63(12): 126801. doi: 10.7498/aps.63.126801
    [9] 鲍善永, 董武军, 徐兴, 栾田宝, 李杰, 张庆瑜. 氧分压对Mg掺杂ZnO薄膜结晶质量和光学特性的影响. 物理学报, 2011, 60(3): 036804. doi: 10.7498/aps.60.036804
    [10] 孙玄, 黄煦, 王亚洲, 冯庆荣. MgB2 超薄膜的制备和性质研究. 物理学报, 2011, 60(8): 087401. doi: 10.7498/aps.60.087401
    [11] 任树洋, 任忠鸣, 任维丽. 晶粒尺寸对气相沉积薄膜磁取向生长的影响研究. 物理学报, 2011, 60(1): 016104. doi: 10.7498/aps.60.016104
    [12] 刘祖黎, 苑新喜, 魏合林, 姚凯伦. 非均一相互作用能对超薄膜生长影响的Monte Carlo模拟研究. 物理学报, 2010, 59(9): 6430-6437. doi: 10.7498/aps.59.6430
    [13] 陆杭军, 吴锋民. 非均匀基底上三维薄膜生长的模拟研究. 物理学报, 2006, 55(1): 424-429. doi: 10.7498/aps.55.424
    [14] 李 勇, 孙成伟, 刘志文, 张庆瑜. 磁控溅射ZnO薄膜生长的等离子体发射光谱研究. 物理学报, 2006, 55(8): 4232-4237. doi: 10.7498/aps.55.4232
    [15] 杨 春, 余 毅, 李言荣, 刘永华. 温度对ZnO/Al2O3(0001)界面的吸附、扩散及生长初期模式的影响. 物理学报, 2005, 54(12): 5907-5913. doi: 10.7498/aps.54.5907
    [16] 谢国锋, 王德武, 应纯同. 改进的DLA方法模拟薄膜二维生长. 物理学报, 2005, 54(5): 2212-2219. doi: 10.7498/aps.54.2212
    [17] 郑小平, 张佩峰, 刘 军, 贺德衍, 马健泰. 薄膜外延生长的计算机模拟. 物理学报, 2004, 53(8): 2687-2693. doi: 10.7498/aps.53.2687
    [18] 王晓平, 谢 峰, 石勤伟, 赵特秀. 晶格失配对异质外延超薄膜生长中成核特性的影响. 物理学报, 2004, 53(8): 2699-2704. doi: 10.7498/aps.53.2699
    [19] 陈敏, 魏合林, 刘祖黎, 姚凯伦. 沉积粒子能量对薄膜早期生长过程的影响. 物理学报, 2001, 50(12): 2446-2451. doi: 10.7498/aps.50.2446
    [20] 杨 宁, 陈光华, 张 阳, 公维宾, 朱鹤孙. 薄膜生长的理论模型与Monte Carlo模拟. 物理学报, 2000, 49(11): 2225-2229. doi: 10.7498/aps.49.2225
计量
  • 文章访问数:  6316
  • PDF下载量:  359
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-03
  • 修回日期:  2018-09-25
  • 刊出日期:  2019-10-20

/

返回文章
返回