搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米尺度下Si/Ge界面应力释放机制的分子动力学研究

陈仙 张静 唐昭焕

引用本文:
Citation:

纳米尺度下Si/Ge界面应力释放机制的分子动力学研究

陈仙, 张静, 唐昭焕

Molecular dynamics study of release mechanism of stress at Si/Ge interface on a nanoscale

Chen Xian, Zhang Jing, Tang Zhao-Huan
PDF
HTML
导出引用
  • 采用分子动力学方法研究了纳米尺度下硅(Si)基锗(Ge)结构的Si/Ge界面应力分布特征, 以及点缺陷层在应力释放过程中的作用机制. 结果表明: 在纳米尺度下, Si/Ge界面应力分布曲线与Ge尺寸密切相关, 界面应力下降速度与Ge尺寸存在近似的线性递减关系; 同时, 在Si/Ge界面处增加一个富含空位缺陷的缓冲层, 可显著改变Si/Ge界面应力分布, 在此基础上对比分析了点缺陷在纯Ge结构内部引起应力变化与缺陷密度的关系, 缺陷层的引入和缺陷密度的增加可加速界面应力的释放. 参考对Si/Ge界面结构的研究结果, 可在Si基纯Ge薄膜生长过程中引入缺陷层, 并对其结构进行设计, 降低界面应力水平, 进而降低界面处产生位错缺陷的概率, 提高Si基Ge薄膜质量, 这一思想在研究报道的Si基Ge膜低温缓冲层生长方法中初步得到了证实.
    In this paper, the stress distribution of Si/Ge interface and the mechanism of the point defect buffer layer in the stress release process of Si/Ge structure on a nanoscale are studied by the molecular dynamics method. The results show that in a one-dimensional interface model, the stress relaxation at the Si/Ge interface is closely related to the size of Ge of the simulation, and there is an approximately linear relationship between the decrease rate of interface stress and the size of Ge. The vacancy defect is introduced into the Ge film near the Si/Ge interface, and a point defect rich buffer layer forms, reducing the stress at the Si/Ge interface significantly. As the defect density in the buffer layer increases, the interface stress decreases step by step. Moreover, in the paper examined also is the mechanism by which the buffer layer affects the interface stress. The relationship between the stress variation caused by the point defect in the pure Ge structure and the defect density is compared and analyzed. The introduction of the defect buffer layer and the increase of the defect density can accelerate the release of the Si/Ge interface stress. The internal mechanism of the stress reduction would be that the defect introduces the compressive stress, which can offset the tensile stress generated by the lattice mismatch of the Si and Ge structure. Then the Si/Ge interface stress is reduced. Besides, as the defect density increases, the compressive stress introduced by the defect increases and the interface stress decreases. The examination shows that the introduction of the defect buffer layer into the growth of the pure Ge film on silicon can reduce the probability of the dislocation defect by structuring the buffer layer to reduce interface stress. And this method is indirectly confirmed by preliminary study of silicon-based Ge film growth with low-temperature buffer layer method.
      通信作者: 陈仙, mus_c@qq.com
      Corresponding author: Chen Xian, mus_c@qq.com
    [1]

    Fadida S, Nyns L, van Elshocht S, Eizenberg M 2017 J. Electron. Mater. 46 386Google Scholar

    [2]

    Wu H, Ye P D D 2016 IEEE T. Electron Dev. 63 3028

    [3]

    Cheng B, Li C, Liu Z, Xue C 2016 J. Semicond. 37 1

    [4]

    Mondal C, Biswas A 2013 Superlattices Microstruct. 63 277Google Scholar

    [5]

    Kamata Y 2008 Mater. Today 11 30

    [6]

    Saraswat K, Chui C O, Krishnamohan T, Kim D, Nayfeh A, Pethe A 2006 Mater. Sci. Eng. B 135 242Google Scholar

    [7]

    Wang X D, Liu C L, Thean A, Duda E, Liu R, Xie Q H, Lu S F, Barr A, White T, Nguyen B Y, Orlowski M 2004 J. Vac. Sci. Technol. B 22 373Google Scholar

    [8]

    Hartmann J M, Abbadie A, Papon A M, Holliger P, Rolland G, Billon T, Fedeli J M, Rouviere M, Vivien L, Laval S 2004 J. Appl. Phys. 95 5905Google Scholar

    [9]

    Jung J W, Lee M L, Yu S F, Fitzgerald E A, Antoniadis D A 2003 IEEE Electr. Device L. 24 460Google Scholar

    [10]

    Goo J S, Xiang Q, Takamura Y, Arasnia F, Paton E N, Besser P, Pan J, Lin M R 2003 IEEE Electr. Device L. 24 568Google Scholar

    [11]

    Fossum J G, Zhang W M 2003 IEEE T. Electron Dev. 50 1042Google Scholar

    [12]

    Oh J, Campbell J C, Thomas S G, Bharatan S, Thoma R, Jasper C, Jones R E, Zirkle T E 2002 IEEE J. Quantum Elect. 38 1238Google Scholar

    [13]

    王尘, 许怡红, 李成, 林海军 2017 物理学报 66 198502Google Scholar

    Wang C, Xu Y H, Li C, Lin H J 2017 Acta Phys. Sin. 66 198502Google Scholar

    [14]

    王兴军, 苏昭棠, 周治平 2015 中国科学: 物理学 力学 天文学 45 014201

    Wang X J, Su Z T, Zhou Z P 2015 Sci. Sin.: Phys. Mech. Astron. 45 014201

    [15]

    周志文, 贺敬凯, 王瑞春 2011 物理 40 799

    Zhou Z W, He J K, Wang R C 2011 Physics 40 799 (in Chinese)

    [16]

    Oye M M, Shahrjerdi D, Ok I, Hurst J B, Lewis S D, Dey S, Kelly D Q, Joshi S, Mattord T J, Yu X, Wistey M A, Harris Jr J S, Holmes Jr A L,, Lee J C, Banerjee S K 2007 J. Vac. Sci. Technol. B 25 1098

    [17]

    Currie M T, Samavedam S B, Langdo T A, Leitz C W, Fitzgerald E A 1998 Appl. Phys. Lett. 72 1718Google Scholar

    [18]

    Samavedam S B, Fitzgerald E A 1997 J. Appl. Phys. 81 3108Google Scholar

    [19]

    Loo R, Wang G, Souriau L, Lin J C, Takeuchi S, Brammertz G, Caymax M 2010 J. Electrochem. Soc. 157 H13Google Scholar

    [20]

    汪建元, 王尘, 李成, 陈松岩 2015 物理学报 64 128102Google Scholar

    Wang J Y, Wang C, Li C, Chen S Y 2015 Acta Phys. Sin. 64 128102Google Scholar

    [21]

    Lee K H, Bao S, Chong G Y, Tan Y H, Fitzgerald E A, Tan C S 2015 APL Mater. 3 362

    [22]

    Wu P H, Huang Y S, Hsu H P, Li C, Huang S H, Tiong K K 2014 Appl. Phys. Lett. 104 943

    [23]

    Yamamoto Y, Zaumseil P, Arguirov T, Kittler M, Tillack B 2011 Solid State Electron. 60 2Google Scholar

    [24]

    Hartmann J M, Papon A M, Destefaniz V, Billon T 2008 J. Cryst. Growth 310 5287Google Scholar

    [25]

    Loh T H, Nguyen H S, Tung C H, Trigg A D, Lo G Q, Balasubramanian N, Kwong D L, Tripathy S 2007 Appl. Phys. Lett. 90 092108Google Scholar

    [26]

    周志文, 沈晓霞, 李世国 2016 半导体技术 41 133

    Zhou Z W, Shen X X, Li S G 2016 Semiconductor Technology 41 133

    [27]

    周志文, 贺敬凯, 李成, 余金中 2011 光电子·激光 22 1030

    Zhou Z W, He J K, Li C, Yu J Z 2011 Journal of Optoelectronics · Laser 22 1030

    [28]

    Chen D, Wei X, Xue Z Y, Bian J T, Wang G, Zhang M, Di Z F, Liu S 2014 J. Cryst. Growth 386 38Google Scholar

    [29]

    Chen D, Xue Z, Wei X, Wang G, Ye L, Zhang M, Wang D, Liu S 2014 Appl. Surf. Sci. 299 1Google Scholar

    [30]

    Kasper E, Lyutovich K, Bauer M, Oehme M 1998 Thin Solid Films 336 319Google Scholar

    [31]

    Knights A P, Gwilliam R M, Sealy B J, Grasby T J, Parry C P, Fulgoni D J F, Phillips P J, Whall T E, Parker E H C, Coleman P G 2001 J. Appl. Phys. 89 76Google Scholar

    [32]

    Kasper E, Lyutovich K 2004 Solid State Electron. 48 1257Google Scholar

    [33]

    Tersoff J 1986 Phys. Rev. Lett. 56 632Google Scholar

    [34]

    Hahn K R, Puligheddu M, Colombo L 2015 Phys. Rev. B 91 195313Google Scholar

    [35]

    Ishimaru M, Yamaguchi M, Hirotsu Y 2003 Phys. Rev. B 68 136

    [36]

    Bording J K 2000 Phys. Rev. B 62 7103Google Scholar

    [37]

    Chen Z H, Yu Z Y, Lu P F, Liu Y M 2009 Chin. Phys. B 18 4591Google Scholar

    [38]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [39]

    Thompson A P, Plimpton S J, Mattson W 2009 J. Chem. Phys. 131 154107Google Scholar

  • 图 1  Si/Ge界面模拟示意图

    Fig. 1.  Schematic diagram of simulation of Si/Ge interface.

    图 2  Si和Ge体系应力计算示意图

    Fig. 2.  Diagram of stress calculation of Si and Ge system.

    图 3  不同Ge尺寸下Si/Ge界面应力的变化

    Fig. 3.  Variation of stress at Si/Ge interface under different sizes of Ge.

    图 4  应力下降到200 MPa的位置与界面间距LGstress与Ge尺寸的关系

    Fig. 4.  Relationship between distance LGstress and Ge when stress is relaxed to 200 MPa.

    图 5  缓冲层缺陷密度对Si/Ge界面应力的影响

    Fig. 5.  Effect of different point defect density on stress at Si/Ge interface in buffer layer.

    图 6  不同密度的空位缺陷对应力的影响规律

    Fig. 6.  Effect of different point defect density on the stress.

    图 7  Si/Ge界面应力差及单缺陷产生的应力差与缺陷密度的关系

    Fig. 7.  Relationship of the Si/Ge interface stress difference and the single defect interface stress difference with the defect density.

    表 1  Tersoff势函数参数[33]

    Table 1.  Parameters of Tersoff potential function[33].

    参数SiGe
    A/eV1.8308×1031.769×103
    B/eV4.7118×1024.1923×102
    λ−12.47992.4451
    μ−11.73221.7047
    β1.1000×10−69.0166×10−7
    n7.8734×10−17.5627×10−1
    c1.0039×1051.0643×105
    d1.6217×1011.5652×101
    h−5.9825×10−1−4.3884×10−1
    R2.72.8
    S3.03.1
     注: ${\chi _{{\rm Si} -{\rm Ge}}} = 1.00061$.
    下载: 导出CSV
  • [1]

    Fadida S, Nyns L, van Elshocht S, Eizenberg M 2017 J. Electron. Mater. 46 386Google Scholar

    [2]

    Wu H, Ye P D D 2016 IEEE T. Electron Dev. 63 3028

    [3]

    Cheng B, Li C, Liu Z, Xue C 2016 J. Semicond. 37 1

    [4]

    Mondal C, Biswas A 2013 Superlattices Microstruct. 63 277Google Scholar

    [5]

    Kamata Y 2008 Mater. Today 11 30

    [6]

    Saraswat K, Chui C O, Krishnamohan T, Kim D, Nayfeh A, Pethe A 2006 Mater. Sci. Eng. B 135 242Google Scholar

    [7]

    Wang X D, Liu C L, Thean A, Duda E, Liu R, Xie Q H, Lu S F, Barr A, White T, Nguyen B Y, Orlowski M 2004 J. Vac. Sci. Technol. B 22 373Google Scholar

    [8]

    Hartmann J M, Abbadie A, Papon A M, Holliger P, Rolland G, Billon T, Fedeli J M, Rouviere M, Vivien L, Laval S 2004 J. Appl. Phys. 95 5905Google Scholar

    [9]

    Jung J W, Lee M L, Yu S F, Fitzgerald E A, Antoniadis D A 2003 IEEE Electr. Device L. 24 460Google Scholar

    [10]

    Goo J S, Xiang Q, Takamura Y, Arasnia F, Paton E N, Besser P, Pan J, Lin M R 2003 IEEE Electr. Device L. 24 568Google Scholar

    [11]

    Fossum J G, Zhang W M 2003 IEEE T. Electron Dev. 50 1042Google Scholar

    [12]

    Oh J, Campbell J C, Thomas S G, Bharatan S, Thoma R, Jasper C, Jones R E, Zirkle T E 2002 IEEE J. Quantum Elect. 38 1238Google Scholar

    [13]

    王尘, 许怡红, 李成, 林海军 2017 物理学报 66 198502Google Scholar

    Wang C, Xu Y H, Li C, Lin H J 2017 Acta Phys. Sin. 66 198502Google Scholar

    [14]

    王兴军, 苏昭棠, 周治平 2015 中国科学: 物理学 力学 天文学 45 014201

    Wang X J, Su Z T, Zhou Z P 2015 Sci. Sin.: Phys. Mech. Astron. 45 014201

    [15]

    周志文, 贺敬凯, 王瑞春 2011 物理 40 799

    Zhou Z W, He J K, Wang R C 2011 Physics 40 799 (in Chinese)

    [16]

    Oye M M, Shahrjerdi D, Ok I, Hurst J B, Lewis S D, Dey S, Kelly D Q, Joshi S, Mattord T J, Yu X, Wistey M A, Harris Jr J S, Holmes Jr A L,, Lee J C, Banerjee S K 2007 J. Vac. Sci. Technol. B 25 1098

    [17]

    Currie M T, Samavedam S B, Langdo T A, Leitz C W, Fitzgerald E A 1998 Appl. Phys. Lett. 72 1718Google Scholar

    [18]

    Samavedam S B, Fitzgerald E A 1997 J. Appl. Phys. 81 3108Google Scholar

    [19]

    Loo R, Wang G, Souriau L, Lin J C, Takeuchi S, Brammertz G, Caymax M 2010 J. Electrochem. Soc. 157 H13Google Scholar

    [20]

    汪建元, 王尘, 李成, 陈松岩 2015 物理学报 64 128102Google Scholar

    Wang J Y, Wang C, Li C, Chen S Y 2015 Acta Phys. Sin. 64 128102Google Scholar

    [21]

    Lee K H, Bao S, Chong G Y, Tan Y H, Fitzgerald E A, Tan C S 2015 APL Mater. 3 362

    [22]

    Wu P H, Huang Y S, Hsu H P, Li C, Huang S H, Tiong K K 2014 Appl. Phys. Lett. 104 943

    [23]

    Yamamoto Y, Zaumseil P, Arguirov T, Kittler M, Tillack B 2011 Solid State Electron. 60 2Google Scholar

    [24]

    Hartmann J M, Papon A M, Destefaniz V, Billon T 2008 J. Cryst. Growth 310 5287Google Scholar

    [25]

    Loh T H, Nguyen H S, Tung C H, Trigg A D, Lo G Q, Balasubramanian N, Kwong D L, Tripathy S 2007 Appl. Phys. Lett. 90 092108Google Scholar

    [26]

    周志文, 沈晓霞, 李世国 2016 半导体技术 41 133

    Zhou Z W, Shen X X, Li S G 2016 Semiconductor Technology 41 133

    [27]

    周志文, 贺敬凯, 李成, 余金中 2011 光电子·激光 22 1030

    Zhou Z W, He J K, Li C, Yu J Z 2011 Journal of Optoelectronics · Laser 22 1030

    [28]

    Chen D, Wei X, Xue Z Y, Bian J T, Wang G, Zhang M, Di Z F, Liu S 2014 J. Cryst. Growth 386 38Google Scholar

    [29]

    Chen D, Xue Z, Wei X, Wang G, Ye L, Zhang M, Wang D, Liu S 2014 Appl. Surf. Sci. 299 1Google Scholar

    [30]

    Kasper E, Lyutovich K, Bauer M, Oehme M 1998 Thin Solid Films 336 319Google Scholar

    [31]

    Knights A P, Gwilliam R M, Sealy B J, Grasby T J, Parry C P, Fulgoni D J F, Phillips P J, Whall T E, Parker E H C, Coleman P G 2001 J. Appl. Phys. 89 76Google Scholar

    [32]

    Kasper E, Lyutovich K 2004 Solid State Electron. 48 1257Google Scholar

    [33]

    Tersoff J 1986 Phys. Rev. Lett. 56 632Google Scholar

    [34]

    Hahn K R, Puligheddu M, Colombo L 2015 Phys. Rev. B 91 195313Google Scholar

    [35]

    Ishimaru M, Yamaguchi M, Hirotsu Y 2003 Phys. Rev. B 68 136

    [36]

    Bording J K 2000 Phys. Rev. B 62 7103Google Scholar

    [37]

    Chen Z H, Yu Z Y, Lu P F, Liu Y M 2009 Chin. Phys. B 18 4591Google Scholar

    [38]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [39]

    Thompson A P, Plimpton S J, Mattson W 2009 J. Chem. Phys. 131 154107Google Scholar

  • [1] 桑丽霞, 李志康. Au-TiO2光电极界面声子热输运特性的分子动力学模拟. 物理学报, 2024, 73(10): 103105. doi: 10.7498/aps.73.20240026
    [2] 张硕, 龙连春, 刘静毅, 杨洋. 分子动力学方法研究缺陷对铁单质薄膜磁致伸缩的影响. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211177
    [3] 朱琪, 王升涛, 赵福祺, 潘昊. 层错四面体对单晶铜层裂行为影响的分子动力学研究. 物理学报, 2020, 69(3): 036201. doi: 10.7498/aps.69.20191425
    [4] 梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿. 非对称纳米通道内界面热阻的分子动力学研究. 物理学报, 2020, 69(22): 224701. doi: 10.7498/aps.69.20200491
    [5] 胡海洋, 陈吉堃, 邵飞, 吴勇, 孟康康, 李志鹏, 苗君, 徐晓光, 王嘉鸥, 姜勇. 应力下SmNiO3钙钛矿氧化物薄膜材料的电导与红外光电导. 物理学报, 2019, 68(2): 026701. doi: 10.7498/aps.68.20181513
    [6] 李锐, 刘腾, 陈翔, 陈思聪, 符义红, 刘琳. 界面结构对Cu/Ni多层膜纳米压痕特性影响的分子动力学模拟. 物理学报, 2018, 67(19): 190202. doi: 10.7498/aps.67.20180958
    [7] 兰生, 李焜, 高新昀. 基于分子动力学的石墨炔纳米带空位缺陷的导热特性. 物理学报, 2017, 66(13): 136801. doi: 10.7498/aps.66.136801
    [8] 简小刚, 张允华. 温度对金刚石涂层膜基界面力学性能的影响. 物理学报, 2015, 64(4): 046701. doi: 10.7498/aps.64.046701
    [9] 王成龙, 王庆宇, 张跃, 李忠宇, 洪兵, 苏折, 董良. SiC/C界面辐照性能的分子动力学研究. 物理学报, 2014, 63(15): 153402. doi: 10.7498/aps.63.153402
    [10] 刘海, 李启楷, 何远航. CL20-TNT共晶高温热解的ReaxFF/lg反应力场分子动力学模拟. 物理学报, 2013, 62(20): 208202. doi: 10.7498/aps.62.208202
    [11] 王建伟, 宋亦旭, 任天令, 李进春, 褚国亮. F等离子体刻蚀Si中Lag效应的分子动力学模拟. 物理学报, 2013, 62(24): 245202. doi: 10.7498/aps.62.245202
    [12] 柯川, 赵成利, 苟富均, 赵勇. 分子动力学模拟H原子与Si的表面相互作用. 物理学报, 2013, 62(16): 165203. doi: 10.7498/aps.62.165203
    [13] 唐翠明, 赵锋, 陈晓旭, 陈华君, 程新路. Al与α-Fe2O3纳米界面铝热反应的从头计算分子动力学研究. 物理学报, 2013, 62(24): 247101. doi: 10.7498/aps.62.247101
    [14] 周化光, 林鑫, 王猛, 黄卫东. Cu固液界面能的分子动力学计算. 物理学报, 2013, 62(5): 056803. doi: 10.7498/aps.62.056803
    [15] 张忠强, 丁建宁, 刘珍, Y. Xue, 程广贵, 凌智勇. 碳纳米管-聚乙烯复合材料界面力学特性分析. 物理学报, 2012, 61(12): 126202. doi: 10.7498/aps.61.126202
    [16] 贺平逆, 宁建平, 秦尤敏, 赵成利, 苟富均. 低能Cl原子刻蚀Si(100)表面的分子动力学模拟. 物理学报, 2011, 60(4): 045209. doi: 10.7498/aps.60.045209
    [17] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟. 物理学报, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [18] 陈敏, 侯氢. 分子动力学方法研究钛中预存缺陷对氦融合的影响. 物理学报, 2010, 59(2): 1185-1189. doi: 10.7498/aps.59.1185
    [19] 周宗荣, 王 宇, 夏源明. γ-TiAl金属间化合物面缺陷能的分子动力学研究. 物理学报, 2007, 56(3): 1526-1531. doi: 10.7498/aps.56.1526
    [20] 戴永兵, 沈荷生, 张志明, 何贤昶, 胡晓君, 孙方宏, 莘海维. 金刚石/硅(001)异质界面的分子动力学模拟研究. 物理学报, 2001, 50(2): 244-250. doi: 10.7498/aps.50.244
计量
  • 文章访问数:  8014
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-14
  • 修回日期:  2018-11-15
  • 上网日期:  2019-01-01
  • 刊出日期:  2019-01-20

/

返回文章
返回