搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多个量子节点确定性纠缠的建立

刘艳红 吴量 闫智辉 贾晓军 彭堃墀

引用本文:
Citation:

多个量子节点确定性纠缠的建立

刘艳红, 吴量, 闫智辉, 贾晓军, 彭堃墀

Deterministic quantum entanglement among multiple quantum nodes

Liu Yan-Hong, Wu Liang, Yan Zhi-Hui, Jia Xiao-Jun, Peng Kun-Chi
PDF
HTML
导出引用
  • 量子纠缠是一种重要的量子资源, 在多个空间分离的量子存储器间建立确定性的量子纠缠, 然后在用户控制的时刻将所存储的量子纠缠转移到量子信道中进行信息的分发和传送, 这对于实现量子信息网络是至关重要的. 本文介绍了用光学参量放大器制备与铷原子D1吸收线对应的非经典光场, 而且在三个空间分离的原子系综中确定性量子纠缠的产生、存储和转移. 利用电磁感应透明光和原子相互作用的原理, 将制备的多组分光场纠缠态模式映射到三个远距离的原子系综以建立原子自旋波之间的纠缠. 然后, 存储在原子系综中的纠缠态通过三个量子通道, 纠缠态的量子噪声被转移到三束空间分离的正交纠缠光场. 三束释放的光场间纠缠的存在验证了该系统具有保持多组分纠缠的能力. 这个方案实现了三个量子节点间的纠缠, 并且可以直接扩展到具有更多节点的量子网络, 为未来实现大型量子网络通信奠定了基础.
    Quantum entanglement is a significant quantum resource, which plays a central role in quantum communication. For realizing quantum information network, it is important to establish deterministic quantum entanglement among multiple spatial-separated quantum memories, and then the stored entanglement is transferred into the quantum channels for distributing and transmitting the quantum information at the user-control time. Firstly, we introduce the scheme of deterministic generation polarization squeezed state at 795 nm. A pair of quadrature amplitude squeezed optical fields are prepared by two degenerate optical parameter amplifiers pumped by a laser at 398 nm, and then the polarization squeezed state of light appears by combining the generated two quadrature amplitude squeezed optical beams on a polarizing beam splitter. Secondly, we present the experimental demonstration of tripartite polarization entanglement described by Stokes operators of optical field. The quadrature tripartite entangled states of light corresponding to the resonance with D1 line of rubidium atoms are transformed into the continuous-variable polarization entanglement via polarization beam splitter with three bright local optical beams. Finally, we propose the generation, storage and transfer of deterministic quantum entanglement among three spatially separated atomic ensembles. By the method of electromagnetically induced transparency light-matter interaction, the optical multiple entangled state is mapped into three distant atomic ensembles to build the entanglement among three atomic spin waves. Then, the quantum noise of entanglement stored in the atomic ensembles is transferred to the three space-seperated quadrature entangled light fields through three quantum channels. The existence of entanglement among the three released beams verifies that the system has the ability to maintain the multipartite entanglement. This protocol realizes the entanglement among three distant quantum nodes, and it can be extended to quantum network with more quantum nodes. All of these lay the foundation for realizing the large-scale quantum network communication in the future.
      通信作者: 贾晓军, jiaxj@sxu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2016YFA0301402)、国家自然科学基金(批准号: 61775127, 11474190, 11654002)、山西青年三晋学者项目、山西省回国留学人员科研资助项目和山西省“1331工程”重点学科建设计划资助的课题.
      Corresponding author: Jia Xiao-Jun, jiaxj@sxu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2016YFA0301402), the National Natural Science Foundation of China (Grant Nos. 61775127, 11474190, 11654002), the Program for Sanjin Scholars of Shanxi Province, China, the Shanxi Scholarship Council of China, and the Fund for Shanxi “1331 Project” Key Subjects Construction, China.
    [1]

    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Żukowski M 2012 Rev. Mod. Phys. 84 777Google Scholar

    [2]

    Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513Google Scholar

    [3]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar

    [4]

    Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706Google Scholar

    [5]

    Huo M R, Qin J L, Cheng J L, Yan Z H, Qin Z Z, Su X L, Jia X J, Xie C D, Peng K C 2018 Sci. Adv. 4 eaas9401Google Scholar

    [6]

    Pan J W, Bouwmeester D, Weinfurter H, Zeilinger A 1998 Phys. Rev. Lett. 80 3891Google Scholar

    [7]

    Jia X J, Su X L, Pan Q, Gao J R, Xie C D, Peng K C 2004 Phys. Rev. Lett. 93 250503Google Scholar

    [8]

    Takeda S, Fuwa M, van Loock P, Furusawa A 2015 Phys. Rev. Lett. 114 100501Google Scholar

    [9]

    Chen Y A, Zhang A N, Zhao Z, Zhou X Q, Lu C Y, Peng C Z, Yang T, Pan J W 2005 Phys. Rev. Lett. 95 200502Google Scholar

    [10]

    Lance A M, Symul T, Bowen W P, Sanders B C, Lam P K 2004 Phys. Rev. Lett. 92 177903Google Scholar

    [11]

    Zhou Y Y, Yu J, Yan Z H, Jia X J, Zhang J, Xie C D, Peng K C 2018 Phys. Rev. Lett. 121 150502Google Scholar

    [12]

    Cai X D, Wu D, Su Z S, Chen M C, Wang X L, Li L, Liu N L, Lu C Y, Pan J W 2015 Phys. Rev. Lett. 114 110504Google Scholar

    [13]

    Su X L, Hao S H, Deng X W, Ma L Y, Wang M H, Jia X J, Xie C D, Peng K C 2013 Nat. Commun. 4 2828Google Scholar

    [14]

    Kimble H J 2008 Nature 453 1023Google Scholar

    [15]

    Glöckl O, Heersink J, Korolkova N, Leuchs G, Lorenz S 2003 J. Opt. B: Quantum Semiclass. Opt. 5 S492Google Scholar

    [16]

    Iskhakov T Sh, Agafonov I N, Chekhova M V, Leuchs G 2012 Phys. Rev. Lett. 109 150502Google Scholar

    [17]

    Hosseini M, Sparkes B M, Campbell G, Lam P K, Buchler B C 2011 Nat. Commun. 2 174Google Scholar

    [18]

    Parigi V, Ambrosio V, Arnold C, Marrucci L, Sciarrino F, Laurat J 2015 Nat. Commun. 6 7706Google Scholar

    [19]

    Yan Z H, Jia X J 2017 Quantum Sci. Technol. 2 024003Google Scholar

    [20]

    Pu Y F, Jiang N, Chang W, Yang H X, Li C, Duan L M 2017 Nat. Commun. 8 15359Google Scholar

    [21]

    Colangelo G, Ciurana F M, Bianchet L C, Sewell R J, Mitchell M W 2017 Nature 543 525Google Scholar

    [22]

    Specht H P, Nolleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S, Rempe G 2011 Nature 473 190Google Scholar

    [23]

    Facon A, Dietsche E K, Grosso D, Haroche S, Raimond J M, Brune M, Gleyzes S 2016 Nature 535 262Google Scholar

    [24]

    Stute A, Casabone B, Schindler P, Monz T, Schmidt P O, Brandstätter B, Northup T E, Blatt R 2012 Nature 485 482Google Scholar

    [25]

    Hucul D, Inlek I V, Vittorini G, Crocker C, Debnath S, Clark S M, Monroe C 2014 Nat. Phys. 11 37Google Scholar

    [26]

    Fiore V, Yang Y, Kuzyk M C, Barbour R, Tian L, Wang H 2011 Phys. Rev. Lett. 107 133601Google Scholar

    [27]

    Lee H, Suh M G, Chen T, Li J, Diddams S A, Vahala K J 2013 Nat. Commun. 4 2468Google Scholar

    [28]

    Riedinger R, Hong S, Norte R A, Slater J A, Shang J, Krause A G, Anant V, Aspelmeyer M, Gröblacher S 2016 Nature 530 313Google Scholar

    [29]

    Kiesewetter S, Teh R Y, Drummond P D, Reid M D 2017 Phys. Rev. Lett. 119 023601Google Scholar

    [30]

    Flurin E, Roch N, Pillet J D, Mallet F, Huard B 2015 Phys. Rev. Lett. 114 090503Google Scholar

    [31]

    Saglamyurek E, Sinclair N, Jin J, Slater J A, Oblak D, Bussieres F, George M, Ricken R, Sohler W, Tittel W 2011 Nature 469 512Google Scholar

    [32]

    Zhong M, Hedges M P, Ahlefeldt R L, Bartholomew J G, Beavan S E, Wittig S E, Longdell J J, Sellars M J 2015 Nature 517 177Google Scholar

    [33]

    Gao W B, Fallahi P, Togan E, Miguel-Sanchez J, Imamoglu A 2012 Nature 491 426Google Scholar

    [34]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar

    [35]

    Chou C W, de Riedmatten H, Felinto D, Polyakov S V, van Enk S J, Kimble H J 2005 Nature 438 828Google Scholar

    [36]

    Yuan Z S, Chen Y A, Zhao B, Chen S, Schmiedmayer J, Pan J W 2008 Nature 454 1098Google Scholar

    [37]

    Choi K S, Deng H, Laurat J, Kimble H J 2008 Nature 452 67Google Scholar

    [38]

    Zhang W, Ding D S, Dong M X, Shi S, Wang K, Liu S L, Li Y, Zhou Z Y, Shi B S, Guo G C 2016 Nat. Commun. 7 13514Google Scholar

    [39]

    Choi K S, Goban A, Papp S B, van Enk S J, Kimble H J 2010 Nature 468 412Google Scholar

    [40]

    Julsgaard B, Kozhekin A E, Polzik E S 2001 Nature 413 400Google Scholar

    [41]

    Krauter H, Muschik C A, Jensen K, Wasilewski W, Petersen J M, Cirac J I, Polzik E S 2011 Phys. Rev. Lett. 107 080503Google Scholar

    [42]

    Ou Z Y 2008 Phys. Rev. A 78 023819Google Scholar

    [43]

    Yang X H, Zhou Y Y, Xiao M 2013 Sci. Rep. 3 3479Google Scholar

    [44]

    Liu Y H, Yan Z H, Jia X J, Xie C D 2016 Sci. Rep. 6 25715Google Scholar

    [45]

    Yadsanappleby H, Serafini A 2011 Phys. Lett. A 375 1864Google Scholar

    [46]

    Tikhonov K S, Golubeva T Y, Golubev Y M 2015 Opt. Spectrosc. 118 773Google Scholar

    [47]

    Honda K, Akamatsu D, Arikawa M, Yokoi Y, Akiba K, Nagatsuka S, Tanimura T, Furusawa A, Kozuma M 2008 Phys. Rev. Lett. 100 093601Google Scholar

    [48]

    Appel J, Figueroa E, Korystov D, Lobino M, Lvovsky A I 2008 Phys. Rev. Lett. 100 093602Google Scholar

    [49]

    Jensen K, Wasilewski W, Krauter H, Fernholz T, Nielsen B M, Owari M, Plenio M B, Serafini A, Wolf M M, Polzik E S 2011 Nat. Phys. 7 13Google Scholar

    [50]

    Yan Z H, Wu L, Jia X J, Liu Y H, Deng R J, Li S J, Wang H, Xie C D, Peng K C 2017 Nat. Commun. 8 718Google Scholar

    [51]

    Grangien P, Slusheg R E, Yurke B, LaPorta A 1987 Phys. Rev. Lett. 59 2153Google Scholar

    [52]

    Polzik E S, Carri J, Kimble H J 1992 Phys. Rev. Lett. 68 3020Google Scholar

    [53]

    孙恒信, 刘奎, 张俊香, 郜江瑞 2015 物理学报 64 234210Google Scholar

    Sun H X, Liu K, Zhang J X, Gao J R 2015 Acta Phys. Sin. 64 234210Google Scholar

    [54]

    左小杰, 孙颍榕, 闫智辉, 贾晓军 2018 物理学报 67 134202Google Scholar

    Zuo X J, Sun Y R, Yan Z H, Jia X J 2018 Acta Phys. Sin. 67 134202Google Scholar

    [55]

    Vahlbruch H, Chelkowski S, Hage B 2006 Phys. Rev. Lett. 97 011101Google Scholar

    [56]

    万振菊, 冯晋霞, 孙志妮, 要立婷, 张宽收 2014 量子光学学报 20 271Google Scholar

    Wan Z J, Feng J X, Sun Z N, Yao L T, Zhang K S 2014 Acta Sin. Quantum Opt. 20 271Google Scholar

    [57]

    Korolkova N, Leuchs G, Loudon R, Ralph T C, Silberhorn C 2002 Phys. Rev. A 65 052306Google Scholar

    [58]

    Peuntinger C, Heim B, Müller C R, Gabriel C, Marquardt C, Leuchs G 2014 Phys. Rev. Lett. 113 060502Google Scholar

    [59]

    Josse V, Dantan A, Vernac L, Bramati A, Pinard M, Giacobino E 2003 Phys. Rev. Lett. 91 103601Google Scholar

    [60]

    Bowen W P, Schnabel R, Bachor H A, Lam P K 2002 Phys. Rev. Lett. 88 093601Google Scholar

    [61]

    Wu L, Liu Y H, Deng R J, Yan Z H, Jia X J, Peng K C 2016 J. Opt. Soc. Am. B 33 2296Google Scholar

    [62]

    Josse V, Dantan A, Vernac L, Bramati A, Pinard M, Giacobino E 2004 Phys. Rev. Lett. 92 123601Google Scholar

    [63]

    闫智辉, 贾晓军, 谢常德, 彭堃墀 2012 物理学报 61 014206Google Scholar

    Yan Z H, Jia X J, Xie C D, Peng K C 2012 Acta Phys. Sin. 61 014206Google Scholar

    [64]

    Jia X J, Yan Z H, Duan Z Y, Su X L, Wang H, Xie C D, Peng K C 2012 Phys. Rev. Lett. 109 253604Google Scholar

    [65]

    Su X L, Zhao Y P, Hao S H, Jia X J, Xie C D, Peng K C 2012 Opt. Lett. 37 5178Google Scholar

    [66]

    Yan Z H, Jia X J 2015 J. Opt. Soc. Am. B 32 2139Google Scholar

    [67]

    Wu L, Yan Z H, Liu Y H, Deng R J, Jia X J, Xie C D, Peng K C 2016 Appl. Phys. Lett. 108 161102Google Scholar

    [68]

    Teh R Y, Reid M D 2014 Phys. Rev. A 90 062337Google Scholar

    [69]

    Duan L M, Giedke G, Cirac J I, Zoller P 2000 Phys. Rev. Lett. 84 2722Google Scholar

    [70]

    Bowen W P, Treps N, Schnabel R, Lam P K 2002 Phys. Rev. Lett. 89 253601Google Scholar

    [71]

    van Loock P, Furusawa A 2003 Phys. Rev. A 67 052315Google Scholar

    [72]

    Hofmann H F, Takeuchi S 2003 Phys. Rev. A 68 032103Google Scholar

    [73]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar

    [74]

    Lvovsky A I, Sander B C, Tittel W 2009 Nat. Photon. 3 706Google Scholar

    [75]

    Duan L M, Monroe C 2010 Rev. Mod. Phys. 82 1209Google Scholar

    [76]

    Hammerer K, Sørensen A S, Polzik E S 2010 Rev. Mod. Phys. 82 1041Google Scholar

    [77]

    Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar

    [78]

    Wootton J R 2012 J. Mod. Opt. 59 1717Google Scholar

    [79]

    Bussières F, Sangouard N, Afzelius M, de Riedmatten H, Simon C, Tittel W 2013 J. Mod. Opt. 60 1519Google Scholar

    [80]

    Northup T E, Blatt R 2014 Nat. Photon. 8 356Google Scholar

    [81]

    Phillips D F, Fleischhauer A, Mair A, Walsworth R L 2001 Phys. Rev. Lett. 86 783Google Scholar

    [82]

    Fleischhayer M, Lukin M 2002 Phys. Rev. A 65 022314Google Scholar

    [83]

    邓瑞婕, 闫智辉, 贾晓军 2017 物理学报 66 074201Google Scholar

    Deng R J, Yan Z H, Jia X J 2017 Acta Phys. Sin. 66 074201Google Scholar

    [84]

    Julsgaard B, Sherson J, Cirac J I, Fiurasek J, Polzik E S 2004 Nature 432 482Google Scholar

    [85]

    Hétet G, Longdell J J, Sellars M J, Lam P K, Buchler B C 2008 Phys. Rev. Lett. 101 203601Google Scholar

    [86]

    Moiseev S, Kröll S 2001 Phys. Rev. Lett. 87 173601Google Scholar

    [87]

    Fleischhauer M, Lukin M D 2000 Phys. Rev. Lett. 84 5094Google Scholar

    [88]

    杨胜军 2014 博士学位论文 (合肥: 中国科学技术大学)

    Yang S J 2014 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [89]

    Alexander A L, Longdell J J, Sellars M J, Manson N B 2006 Phys. Rev. Lett. 96 043602Google Scholar

    [90]

    Ding D S, Zhang W, Zhou Z Y, Shi S, Xiang G Y, Wang X S, Jiang Y K, Shi B S, Guo G C 2015 Phys. Rev. Lett. 114 050502Google Scholar

    [91]

    Simon R 2000 Phys. Rev. Lett. 84 2726Google Scholar

    [92]

    温馨, 韩亚帅, 刘金玉, 白乐乐, 何军, 王军民 2018 物理学报 67 024207Google Scholar

    Wen X, Han Y S, Liu J Y, Bai L L, He J, Wang J M 2018 Acta Phys. Sin. 67 024207Google Scholar

    [93]

    吴量, 刘艳红, 邓瑞婕, 闫智辉, 贾晓军 2017 光学学报 37 0527001Google Scholar

    Wu L, Liu Y H, Deng R J, Yan Z H, Jia X J 2017 Acta Opt. Sin. 37 0527001Google Scholar

    [94]

    Yokoyama S, Ukai R, Armstrong S C, Sornphiphatphong C, Kaji T, Suzuki S, Yoshikawa J, Yonezawa H, Menicucci N C, Furusawa A 2013 Nat. Photon. 7 982Google Scholar

    [95]

    Roslund J, Medeiros R, Jiang S, Fabre C, Treps N 2014 Nat. Photon. 8 109Google Scholar

    [96]

    Phillips N B, Gorshkov A V, Novikova I 2011 Phys. Rev. A 83 063823Google Scholar

    [97]

    Lobino M, Kupchak C, Figueroa E, Lvovsky A I 2009 Phys. Rev. Lett. 102 203601Google Scholar

    [98]

    Lauk N, O’Brien C, Fleischhauer M 2013 Phys. Rev. A 88 013823Google Scholar

    [99]

    Barrett S D 2010 New J. Phys. 12 093032Google Scholar

    [100]

    Datta A, Zhang L J, Nunn J, Langford N K, Feito A, Plenio M B, Walmsley I A 2012 Phys. Rev. Lett. 108 060502Google Scholar

    [101]

    Bao X H, Reingruber A, Dietrich P, Rui J, Dück A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517Google Scholar

    [102]

    Yang S J, Wang X J, Bao X H, Pan J W 2016 Nat. Photon. 10 381Google Scholar

    [103]

    Saunders D J, Munns J H D, Champion T F M, Qiu C, Kaczmarek K T, Poem E, Ledingham P M, Walmsley A I, Nunn J 2016 Phys. Rev. Lett. 116 090501Google Scholar

    [104]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

  • 图 1  偏振压缩光场制备原理图

    Fig. 1.  Schematic of generation system of polarization squeezing.

    图 2  Stokes分量(a) ${\hat S_0}$, (b) ${\hat S_1}$, (c)${\hat S_2}$, (d) ${\hat S_3}$的量子噪声的实验测量(HWP, 二分之一波片; QWP, 四分之一波片; PBS, 偏振分束棱镜; +/−, 功率加法/减法器)

    Fig. 2.  Measurement of quantum noise of Stokes component (a) ${\hat S_0}$, (b) ${\hat S_1}$, (c) ${\hat S_2}$, (d) ${\hat S_3}$. HWP, half-wave plate; QWP, quarter-wave plate; PBS, polarization beam splitter; +/−, positive/negative power combiner.

    图 3  偏振压缩光Stokes分量的量子噪声[61] (a) ${\hat S_0}$; (b) $\hat S{}_1$; (c) ${\hat S_2}$; (d) ${\hat S_3}$

    Fig. 3.  Quantum noises of Stokes component of polarization squeezedlight[61]: (a) ${\hat S_0}$; (b) ${\hat S_1}$; (c) ${\hat S_2}$; (d) ${\hat S_3}$.

    图 4  偏振纠缠制备原理图

    Fig. 4.  Schematic for the generation system of polarization entanglement.

    图 5  三组分偏振纠缠态产生方案(BS1, 光学分束器1; BS2, 光学分束器2; PBS1, 偏振分束棱镜1; PBS2, 偏振分束棱镜2; PBS3, 偏振分束棱镜3)

    Fig. 5.  Schematic for the generation of tripartite polarization entangled state. BS1, beam splitter1; BS2, beam splitter2; PBS1, polarization beam splitter1; PBS2, polarization beam splitter2; PBS3, polarization beam splitter3.

    图 6  分析频率在1—6 MHz间测量的Stokes关联方差 (a) ${{\text{δ }}^2}({\hat S_{{2_{{d_2}}}}} - {\hat S_{{2_{{d_3}}}}})$; (b) ${{\text{δ }}^2}({g_1}{\hat S_{{3_{{d_1}}}}} + {\hat S_{{3_{{d_2}}}}} + {\hat S_{{3_{d3}}}})$; (c) ${{\text{δ }}^2}({\hat S_{{2_{{d_1}}}}} - {\hat S_{{2_{d3}}}})$; (d) ${{\text{δ }}^2}({\hat S_{{3_{{d_1}}}}} + {g_2}{\hat S_{{3_{{d_2}}}}} + {\hat S_{{3_{d3}}}})$; (e) ${{\text{δ }}^2}({\hat S_{{2_{{d_1}}}}} - {\hat S_{{2_{d2}}}})$; (f) ${{\text{δ }}^2}({\hat S_{{3_{{d_1}}}}} + {\hat S_{{3_{{d_2}}}}} + {g_3}{\hat S_{{3_{d3}}}})$

    Fig. 6.  Measured correlation variances of (a) ${{\text{δ }}^2}({\hat S_{{2_{{d_2}}}}} - {\hat S_{{2_{{d_3}}}}})$, (b) ${{\text{δ }}^2}({g_1}{\hat S_{{3_{{d_1}}}}} + {\hat S_{{3_{{d_2}}}}} + {\hat S_{{3_{d3}}}})$, (c) ${{\text{δ }}^2}({\hat S_{{2_{{d_1}}}}} - {\hat S_{{2_{d3}}}})$, (d) ${{\text{δ }}^2}({\hat S_{{3_{{d_1}}}}} + {g_2}{\hat S_{{3_{{d_2}}}}} + {\hat S_{{3_{d3}}}})$, (e) ${{\text{δ }}^2}({\hat S_{{2_{{d_1}}}}} - {\hat S_{{2_{d2}}}})$, (f) ${{\text{δ }}^2}({\hat S_{{3_{{d_1}}}}} + {\hat S_{{3_{{d_2}}}}} + {g_3}{\hat S_{{3_{d3}}}})$ over the analysis frequency rangefrom 1 to 6 MHz.

    图 7  原子系综纠缠示意图

    Fig. 7.  Schematic of atom-atom entanglement generation system.

    图 8  三原子系综纠缠实验装置图

    Fig. 8.  Experimental device diagram of quantum entanglement among three distant atomic ensembles.

    图 9  信号光与控制光的时序控制图

    Fig. 9.  Sequence control of signal and control light.

    图 10  测量的输入模式和释放模式的关联方差

    Fig. 10.  Measured normalized correlation variances of input and released optical submodes.

    表 1  释放光模正交分量不同组合的归一化关联方差

    Table 1.  Values of normalized correlation variances for different combinations.

    不同组合的关联方差输入模式/dB原子自旋波/dB释放模式/dB
    $\left\langle {{{\text{δ}}^2}({{\hat X}_2} - {{\hat X}_3})} \right\rangle $−3.30 ± 0.05−0.56 ± 0.03−0.37 ± 0.03
    $\left\langle {{{\text{δ}}^2}({g_1}{{\hat P}_1} + {{\hat P}_2} + {{\hat P}_3})} \right\rangle $−2.93 ± 0.05−0.15 ± 0.02−0.10 ± 0.02
    $\left\langle {{{\text{δ}}^2}({{\hat X}_1} - {{\hat X}_3})} \right\rangle $−3.25 ± 0.05−0.53 ± 0.03−0.35 ± 0.03
    $\left\langle {{{\text{δ}}^2}({{\hat P}_1} + {g_2}{{\hat P}_2} + {{\hat P}_3})} \right\rangle $−2.91 ± 0.05−0.15 ± 0.02−0.10 ± 0.02
    $\left\langle {{{\text{δ}}^2}({{\hat X}_1} - {{\hat X}_2})} \right\rangle $−3.25 ± 0.05−0.52 ± 0.03−0.34 ± 0.03
    $\left\langle {{{\text{δ}}^2}({g_1}{{\hat P}_2} + {{\hat P}_2} + {{\hat P}_3})} \right\rangle $−2.90 ± 0.05−0.14 ± 0.02−0.09 ± 0.02
    下载: 导出CSV
  • [1]

    Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, Żukowski M 2012 Rev. Mod. Phys. 84 777Google Scholar

    [2]

    Braunstein S L, van Loock P 2005 Rev. Mod. Phys. 77 513Google Scholar

    [3]

    Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar

    [4]

    Furusawa A, Sørensen J L, Braunstein S L, Fuchs C A, Kimble H J, Polzik E S 1998 Science 282 706Google Scholar

    [5]

    Huo M R, Qin J L, Cheng J L, Yan Z H, Qin Z Z, Su X L, Jia X J, Xie C D, Peng K C 2018 Sci. Adv. 4 eaas9401Google Scholar

    [6]

    Pan J W, Bouwmeester D, Weinfurter H, Zeilinger A 1998 Phys. Rev. Lett. 80 3891Google Scholar

    [7]

    Jia X J, Su X L, Pan Q, Gao J R, Xie C D, Peng K C 2004 Phys. Rev. Lett. 93 250503Google Scholar

    [8]

    Takeda S, Fuwa M, van Loock P, Furusawa A 2015 Phys. Rev. Lett. 114 100501Google Scholar

    [9]

    Chen Y A, Zhang A N, Zhao Z, Zhou X Q, Lu C Y, Peng C Z, Yang T, Pan J W 2005 Phys. Rev. Lett. 95 200502Google Scholar

    [10]

    Lance A M, Symul T, Bowen W P, Sanders B C, Lam P K 2004 Phys. Rev. Lett. 92 177903Google Scholar

    [11]

    Zhou Y Y, Yu J, Yan Z H, Jia X J, Zhang J, Xie C D, Peng K C 2018 Phys. Rev. Lett. 121 150502Google Scholar

    [12]

    Cai X D, Wu D, Su Z S, Chen M C, Wang X L, Li L, Liu N L, Lu C Y, Pan J W 2015 Phys. Rev. Lett. 114 110504Google Scholar

    [13]

    Su X L, Hao S H, Deng X W, Ma L Y, Wang M H, Jia X J, Xie C D, Peng K C 2013 Nat. Commun. 4 2828Google Scholar

    [14]

    Kimble H J 2008 Nature 453 1023Google Scholar

    [15]

    Glöckl O, Heersink J, Korolkova N, Leuchs G, Lorenz S 2003 J. Opt. B: Quantum Semiclass. Opt. 5 S492Google Scholar

    [16]

    Iskhakov T Sh, Agafonov I N, Chekhova M V, Leuchs G 2012 Phys. Rev. Lett. 109 150502Google Scholar

    [17]

    Hosseini M, Sparkes B M, Campbell G, Lam P K, Buchler B C 2011 Nat. Commun. 2 174Google Scholar

    [18]

    Parigi V, Ambrosio V, Arnold C, Marrucci L, Sciarrino F, Laurat J 2015 Nat. Commun. 6 7706Google Scholar

    [19]

    Yan Z H, Jia X J 2017 Quantum Sci. Technol. 2 024003Google Scholar

    [20]

    Pu Y F, Jiang N, Chang W, Yang H X, Li C, Duan L M 2017 Nat. Commun. 8 15359Google Scholar

    [21]

    Colangelo G, Ciurana F M, Bianchet L C, Sewell R J, Mitchell M W 2017 Nature 543 525Google Scholar

    [22]

    Specht H P, Nolleke C, Reiserer A, Uphoff M, Figueroa E, Ritter S, Rempe G 2011 Nature 473 190Google Scholar

    [23]

    Facon A, Dietsche E K, Grosso D, Haroche S, Raimond J M, Brune M, Gleyzes S 2016 Nature 535 262Google Scholar

    [24]

    Stute A, Casabone B, Schindler P, Monz T, Schmidt P O, Brandstätter B, Northup T E, Blatt R 2012 Nature 485 482Google Scholar

    [25]

    Hucul D, Inlek I V, Vittorini G, Crocker C, Debnath S, Clark S M, Monroe C 2014 Nat. Phys. 11 37Google Scholar

    [26]

    Fiore V, Yang Y, Kuzyk M C, Barbour R, Tian L, Wang H 2011 Phys. Rev. Lett. 107 133601Google Scholar

    [27]

    Lee H, Suh M G, Chen T, Li J, Diddams S A, Vahala K J 2013 Nat. Commun. 4 2468Google Scholar

    [28]

    Riedinger R, Hong S, Norte R A, Slater J A, Shang J, Krause A G, Anant V, Aspelmeyer M, Gröblacher S 2016 Nature 530 313Google Scholar

    [29]

    Kiesewetter S, Teh R Y, Drummond P D, Reid M D 2017 Phys. Rev. Lett. 119 023601Google Scholar

    [30]

    Flurin E, Roch N, Pillet J D, Mallet F, Huard B 2015 Phys. Rev. Lett. 114 090503Google Scholar

    [31]

    Saglamyurek E, Sinclair N, Jin J, Slater J A, Oblak D, Bussieres F, George M, Ricken R, Sohler W, Tittel W 2011 Nature 469 512Google Scholar

    [32]

    Zhong M, Hedges M P, Ahlefeldt R L, Bartholomew J G, Beavan S E, Wittig S E, Longdell J J, Sellars M J 2015 Nature 517 177Google Scholar

    [33]

    Gao W B, Fallahi P, Togan E, Miguel-Sanchez J, Imamoglu A 2012 Nature 491 426Google Scholar

    [34]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar

    [35]

    Chou C W, de Riedmatten H, Felinto D, Polyakov S V, van Enk S J, Kimble H J 2005 Nature 438 828Google Scholar

    [36]

    Yuan Z S, Chen Y A, Zhao B, Chen S, Schmiedmayer J, Pan J W 2008 Nature 454 1098Google Scholar

    [37]

    Choi K S, Deng H, Laurat J, Kimble H J 2008 Nature 452 67Google Scholar

    [38]

    Zhang W, Ding D S, Dong M X, Shi S, Wang K, Liu S L, Li Y, Zhou Z Y, Shi B S, Guo G C 2016 Nat. Commun. 7 13514Google Scholar

    [39]

    Choi K S, Goban A, Papp S B, van Enk S J, Kimble H J 2010 Nature 468 412Google Scholar

    [40]

    Julsgaard B, Kozhekin A E, Polzik E S 2001 Nature 413 400Google Scholar

    [41]

    Krauter H, Muschik C A, Jensen K, Wasilewski W, Petersen J M, Cirac J I, Polzik E S 2011 Phys. Rev. Lett. 107 080503Google Scholar

    [42]

    Ou Z Y 2008 Phys. Rev. A 78 023819Google Scholar

    [43]

    Yang X H, Zhou Y Y, Xiao M 2013 Sci. Rep. 3 3479Google Scholar

    [44]

    Liu Y H, Yan Z H, Jia X J, Xie C D 2016 Sci. Rep. 6 25715Google Scholar

    [45]

    Yadsanappleby H, Serafini A 2011 Phys. Lett. A 375 1864Google Scholar

    [46]

    Tikhonov K S, Golubeva T Y, Golubev Y M 2015 Opt. Spectrosc. 118 773Google Scholar

    [47]

    Honda K, Akamatsu D, Arikawa M, Yokoi Y, Akiba K, Nagatsuka S, Tanimura T, Furusawa A, Kozuma M 2008 Phys. Rev. Lett. 100 093601Google Scholar

    [48]

    Appel J, Figueroa E, Korystov D, Lobino M, Lvovsky A I 2008 Phys. Rev. Lett. 100 093602Google Scholar

    [49]

    Jensen K, Wasilewski W, Krauter H, Fernholz T, Nielsen B M, Owari M, Plenio M B, Serafini A, Wolf M M, Polzik E S 2011 Nat. Phys. 7 13Google Scholar

    [50]

    Yan Z H, Wu L, Jia X J, Liu Y H, Deng R J, Li S J, Wang H, Xie C D, Peng K C 2017 Nat. Commun. 8 718Google Scholar

    [51]

    Grangien P, Slusheg R E, Yurke B, LaPorta A 1987 Phys. Rev. Lett. 59 2153Google Scholar

    [52]

    Polzik E S, Carri J, Kimble H J 1992 Phys. Rev. Lett. 68 3020Google Scholar

    [53]

    孙恒信, 刘奎, 张俊香, 郜江瑞 2015 物理学报 64 234210Google Scholar

    Sun H X, Liu K, Zhang J X, Gao J R 2015 Acta Phys. Sin. 64 234210Google Scholar

    [54]

    左小杰, 孙颍榕, 闫智辉, 贾晓军 2018 物理学报 67 134202Google Scholar

    Zuo X J, Sun Y R, Yan Z H, Jia X J 2018 Acta Phys. Sin. 67 134202Google Scholar

    [55]

    Vahlbruch H, Chelkowski S, Hage B 2006 Phys. Rev. Lett. 97 011101Google Scholar

    [56]

    万振菊, 冯晋霞, 孙志妮, 要立婷, 张宽收 2014 量子光学学报 20 271Google Scholar

    Wan Z J, Feng J X, Sun Z N, Yao L T, Zhang K S 2014 Acta Sin. Quantum Opt. 20 271Google Scholar

    [57]

    Korolkova N, Leuchs G, Loudon R, Ralph T C, Silberhorn C 2002 Phys. Rev. A 65 052306Google Scholar

    [58]

    Peuntinger C, Heim B, Müller C R, Gabriel C, Marquardt C, Leuchs G 2014 Phys. Rev. Lett. 113 060502Google Scholar

    [59]

    Josse V, Dantan A, Vernac L, Bramati A, Pinard M, Giacobino E 2003 Phys. Rev. Lett. 91 103601Google Scholar

    [60]

    Bowen W P, Schnabel R, Bachor H A, Lam P K 2002 Phys. Rev. Lett. 88 093601Google Scholar

    [61]

    Wu L, Liu Y H, Deng R J, Yan Z H, Jia X J, Peng K C 2016 J. Opt. Soc. Am. B 33 2296Google Scholar

    [62]

    Josse V, Dantan A, Vernac L, Bramati A, Pinard M, Giacobino E 2004 Phys. Rev. Lett. 92 123601Google Scholar

    [63]

    闫智辉, 贾晓军, 谢常德, 彭堃墀 2012 物理学报 61 014206Google Scholar

    Yan Z H, Jia X J, Xie C D, Peng K C 2012 Acta Phys. Sin. 61 014206Google Scholar

    [64]

    Jia X J, Yan Z H, Duan Z Y, Su X L, Wang H, Xie C D, Peng K C 2012 Phys. Rev. Lett. 109 253604Google Scholar

    [65]

    Su X L, Zhao Y P, Hao S H, Jia X J, Xie C D, Peng K C 2012 Opt. Lett. 37 5178Google Scholar

    [66]

    Yan Z H, Jia X J 2015 J. Opt. Soc. Am. B 32 2139Google Scholar

    [67]

    Wu L, Yan Z H, Liu Y H, Deng R J, Jia X J, Xie C D, Peng K C 2016 Appl. Phys. Lett. 108 161102Google Scholar

    [68]

    Teh R Y, Reid M D 2014 Phys. Rev. A 90 062337Google Scholar

    [69]

    Duan L M, Giedke G, Cirac J I, Zoller P 2000 Phys. Rev. Lett. 84 2722Google Scholar

    [70]

    Bowen W P, Treps N, Schnabel R, Lam P K 2002 Phys. Rev. Lett. 89 253601Google Scholar

    [71]

    van Loock P, Furusawa A 2003 Phys. Rev. A 67 052315Google Scholar

    [72]

    Hofmann H F, Takeuchi S 2003 Phys. Rev. A 68 032103Google Scholar

    [73]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633Google Scholar

    [74]

    Lvovsky A I, Sander B C, Tittel W 2009 Nat. Photon. 3 706Google Scholar

    [75]

    Duan L M, Monroe C 2010 Rev. Mod. Phys. 82 1209Google Scholar

    [76]

    Hammerer K, Sørensen A S, Polzik E S 2010 Rev. Mod. Phys. 82 1041Google Scholar

    [77]

    Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar

    [78]

    Wootton J R 2012 J. Mod. Opt. 59 1717Google Scholar

    [79]

    Bussières F, Sangouard N, Afzelius M, de Riedmatten H, Simon C, Tittel W 2013 J. Mod. Opt. 60 1519Google Scholar

    [80]

    Northup T E, Blatt R 2014 Nat. Photon. 8 356Google Scholar

    [81]

    Phillips D F, Fleischhauer A, Mair A, Walsworth R L 2001 Phys. Rev. Lett. 86 783Google Scholar

    [82]

    Fleischhayer M, Lukin M 2002 Phys. Rev. A 65 022314Google Scholar

    [83]

    邓瑞婕, 闫智辉, 贾晓军 2017 物理学报 66 074201Google Scholar

    Deng R J, Yan Z H, Jia X J 2017 Acta Phys. Sin. 66 074201Google Scholar

    [84]

    Julsgaard B, Sherson J, Cirac J I, Fiurasek J, Polzik E S 2004 Nature 432 482Google Scholar

    [85]

    Hétet G, Longdell J J, Sellars M J, Lam P K, Buchler B C 2008 Phys. Rev. Lett. 101 203601Google Scholar

    [86]

    Moiseev S, Kröll S 2001 Phys. Rev. Lett. 87 173601Google Scholar

    [87]

    Fleischhauer M, Lukin M D 2000 Phys. Rev. Lett. 84 5094Google Scholar

    [88]

    杨胜军 2014 博士学位论文 (合肥: 中国科学技术大学)

    Yang S J 2014 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [89]

    Alexander A L, Longdell J J, Sellars M J, Manson N B 2006 Phys. Rev. Lett. 96 043602Google Scholar

    [90]

    Ding D S, Zhang W, Zhou Z Y, Shi S, Xiang G Y, Wang X S, Jiang Y K, Shi B S, Guo G C 2015 Phys. Rev. Lett. 114 050502Google Scholar

    [91]

    Simon R 2000 Phys. Rev. Lett. 84 2726Google Scholar

    [92]

    温馨, 韩亚帅, 刘金玉, 白乐乐, 何军, 王军民 2018 物理学报 67 024207Google Scholar

    Wen X, Han Y S, Liu J Y, Bai L L, He J, Wang J M 2018 Acta Phys. Sin. 67 024207Google Scholar

    [93]

    吴量, 刘艳红, 邓瑞婕, 闫智辉, 贾晓军 2017 光学学报 37 0527001Google Scholar

    Wu L, Liu Y H, Deng R J, Yan Z H, Jia X J 2017 Acta Opt. Sin. 37 0527001Google Scholar

    [94]

    Yokoyama S, Ukai R, Armstrong S C, Sornphiphatphong C, Kaji T, Suzuki S, Yoshikawa J, Yonezawa H, Menicucci N C, Furusawa A 2013 Nat. Photon. 7 982Google Scholar

    [95]

    Roslund J, Medeiros R, Jiang S, Fabre C, Treps N 2014 Nat. Photon. 8 109Google Scholar

    [96]

    Phillips N B, Gorshkov A V, Novikova I 2011 Phys. Rev. A 83 063823Google Scholar

    [97]

    Lobino M, Kupchak C, Figueroa E, Lvovsky A I 2009 Phys. Rev. Lett. 102 203601Google Scholar

    [98]

    Lauk N, O’Brien C, Fleischhauer M 2013 Phys. Rev. A 88 013823Google Scholar

    [99]

    Barrett S D 2010 New J. Phys. 12 093032Google Scholar

    [100]

    Datta A, Zhang L J, Nunn J, Langford N K, Feito A, Plenio M B, Walmsley I A 2012 Phys. Rev. Lett. 108 060502Google Scholar

    [101]

    Bao X H, Reingruber A, Dietrich P, Rui J, Dück A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517Google Scholar

    [102]

    Yang S J, Wang X J, Bao X H, Pan J W 2016 Nat. Photon. 10 381Google Scholar

    [103]

    Saunders D J, Munns J H D, Champion T F M, Qiu C, Kaczmarek K T, Poem E, Ledingham P M, Walmsley A I, Nunn J 2016 Phys. Rev. Lett. 116 090501Google Scholar

    [104]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

  • [1] 夏刚, 张亚鹏, 汤婧雯, 李春燕, 吴春旺, 张杰, 周艳丽. 电磁感应透明条件下里德伯原子系统的亚稳动力学. 物理学报, 2024, 73(10): 104203. doi: 10.7498/aps.73.20240233
    [2] 周飞, 贾凤东, 刘修彬, 张剑, 谢锋, 钟志萍. 基于冷里德堡原子电磁感应透明的微波电场测量. 物理学报, 2023, 72(4): 045204. doi: 10.7498/aps.72.20222059
    [3] 裴丽娅, 郑世阳, 牛金艳. 基于调控原子相干的Λ-型电磁感应透明与吸收. 物理学报, 2022, 71(22): 224201. doi: 10.7498/aps.71.20220950
    [4] 严冬, 王彬彬, 白文杰, 刘兵, 杜秀国, 任春年. 里德伯电磁感应透明中的相位. 物理学报, 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [5] 李雪琴, 赵云芳, 唐艳妮, 杨卫军. 基于金刚石氮-空位色心自旋系综与超导量子电路混合系统的量子节点纠缠. 物理学报, 2018, 67(7): 070302. doi: 10.7498/aps.67.20172634
    [6] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 弱射频场中Rydberg原子的电磁感应透明. 物理学报, 2017, 66(9): 093202. doi: 10.7498/aps.66.093202
    [7] 杨智伟, 焦月春, 韩小萱, 赵建明, 贾锁堂. 调制激光场中Rydberg原子的电磁感应透明. 物理学报, 2016, 65(10): 103201. doi: 10.7498/aps.65.103201
    [8] 陈秋成. 半导体三量子点电磁感应透明介质中的非线性法拉第偏转. 物理学报, 2016, 65(24): 247801. doi: 10.7498/aps.65.247801
    [9] 白金海, 芦小刚, 缪兴绪, 裴丽娅, 王梦, 高艳磊, 王如泉, 吴令安, 傅盘铭, 左战春. Rb87冷原子电磁感应透明吸收曲线不对称性的分析. 物理学报, 2015, 64(3): 034206. doi: 10.7498/aps.64.034206
    [10] 王梦, 白金海, 裴丽娅, 芦小刚, 高艳磊, 王如泉, 吴令安, 杨世平, 庞兆广, 傅盘铭, 左战春. 铷原子耦合光频率近共振时的电磁感应透明. 物理学报, 2015, 64(15): 154208. doi: 10.7498/aps.64.154208
    [11] 赵虎, 李铁夫, 刘建设, 陈炜. 基于超导量子比特的电磁感应透明研究进展. 物理学报, 2012, 61(15): 154214. doi: 10.7498/aps.61.154214
    [12] 佘彦超, 张蔚曦, 王登龙. 电磁感应透明介质中非线性法拉第偏转. 物理学报, 2011, 60(6): 064205. doi: 10.7498/aps.60.064205
    [13] 佘彦超, 王登龙, 丁建文. 电磁感应透明介质中的弱光空间暗孤子环. 物理学报, 2009, 58(5): 3198-3202. doi: 10.7498/aps.58.3198
    [14] 刘春旭, 张继森, 刘俊业, 金光. Er3+:YAlO3晶体中Λ型四能级系统的量子相干左手性. 物理学报, 2009, 58(8): 5778-5783. doi: 10.7498/aps.58.5778
    [15] 庄 飞, 沈建其, 叶 军. 调控电磁感应透明气体折射率实现可控光子带隙结构. 物理学报, 2007, 56(1): 541-545. doi: 10.7498/aps.56.541
    [16] 陈 峻, 刘正东, 郑 军, 方慧娟. 基于量子干涉效应的四能级原子系统中的vacuum-induced coherence效应. 物理学报, 2007, 56(11): 6441-6445. doi: 10.7498/aps.56.6441
    [17] 姚 鸣, 朱卡的, 袁晓忠, 蒋逸文, 吴卓杰. 声子辅助的电磁感应透明和超慢光效应的研究. 物理学报, 2006, 55(4): 1769-1773. doi: 10.7498/aps.55.1769
    [18] 房元锋, 杜春光, 李师群. 光子晶体中四能级系统的量子相干效应. 物理学报, 2006, 55(9): 4652-4658. doi: 10.7498/aps.55.4652
    [19] 刘正东, 武 强. 被三个耦合场驱动的四能级原子的电磁感应透明. 物理学报, 2004, 53(9): 2970-2973. doi: 10.7498/aps.53.2970
    [20] 赵建明, 赵延霆, 黄涛, 肖连团, 贾锁堂. 双抽运光作用电磁感应透明的实验研究. 物理学报, 2004, 53(4): 1023-1026. doi: 10.7498/aps.53.1023
计量
  • 文章访问数:  10530
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-29
  • 修回日期:  2018-10-09
  • 上网日期:  2019-02-01
  • 刊出日期:  2019-02-05

/

返回文章
返回