-
分子由于其不同于原子的特殊性质, 在原子、分子和光物理研究中有其独特的地位. 冷分子研究已经开展了二三十年, 取得了很多重大的进展. 但是以斯塔克减速器为代表的传统冷却方案遇到瓶颈, 很难进一步提高分子的相空间密度. 将原子中成熟的激光冷却技术拓展到极性分子中是本领域近年来的重大突破, 使得冷却和囚禁分子的范围得以大大扩展, 分子的相空间密度也得以提高. 本文对国内外激光冷却极性分子的最新成果进行综述, 并以BaF分子为例介绍激光冷却极性分子的相关理论和技术, 包括分子能级结构分析及精密光谱测量, 采用缓冲气体冷却进行态制备和预冷却, 以及通过冷分子束研究激光与BaF分子间的相互作用. 这些为后续开展激光冷却与囚禁实验研究奠定了基础, 也为开展其他新的分子冷却实验提供了参考.Different from atoms, molecules have unique properties, and play an important role in the research of atomic, molecular and optical physics. Cold molecules have important applications in science and have been studied for more than 20 years. But traditional methods, such as the Stark decelerator, have hit a bottleneck: it is hard to increase the phase space density of molecules. Extending the direct laser-cooling technique to new molecular species has recently been a hot topic and also a big challenge. In this review paper, on one hand, we make a brief review to recent progresses on the direct laser cooling of polar molecules. On the other hand, a demonstration on the feasibility of laser cooling BaF molecule has been experimentally illustrated, including the analysis on the molecular energy levels, measurements of the high-resolution spectroscopy, efficient pre-cooling and state preparation via buffer-gas cooling and detailed investigations on the molcule-light interactions. All these results not only pave the way for future laser-cooling and -trapping experiments, but also serve as a reference for the laser-cooling explorations on new molecular species.
-
Keywords:
- laser cooling /
- cold molecule /
- buffer-gas cooling /
- molecule-light interaction
[1] Liu L, Lu D S, Chen W B, Li T, Qu Q Z, Wang B, Li L, Ren W, Dong Z R, Zhao J B, Xia W B, Zhao X, Ji J W, Ye M F, Sun Y G, Yao Y Y, Song D, Liang Z G, Hu S J, Yu D H, Hou X, Shi W, Zang H G, Xiang J F, Peng X K, Wang Y Z 2018 Nat. Commun. 9 2760Google Scholar
[2] Ludlow A D, Boyd M M, Ye J, Peik E, Schmidt P O 2015 Rev. Mod. Phys. 87 637Google Scholar
[3] Parker R H, Yu C, Zhong W, Estey B, Muller H 2018 Science 360 191Google Scholar
[4] Moses S A, Covey J P, Miecnikowski M T, Yan B, Gadway B, Ye J, Jin D S 2015 Science 350 659Google Scholar
[5] Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198Google Scholar
[6] Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969Google Scholar
[7] Bradley C C, Sackett C A, Tollett J J, Hulet R G 1995 Phys. Rev. Lett. 75 1687Google Scholar
[8] Griesmaier A, Werner J, Hensler S, Stuhler J, Pfau T 2005 Phys. Rev. Lett. 94 160401Google Scholar
[9] Lahaye T, Koch T, Fröhlich B, Fattori M, Metz J, Griesmaier A, Giovanazzi S, Pfau T 2007 Nature 448 672Google Scholar
[10] Lu M, Burdick N Q, Youn S H, Lev B L 2011 Phys. Rev. Lett. 107 190401Google Scholar
[11] Lu M, Burdick N Q, Lev B L 2012 Phys. Rev. Lett. 108 215301Google Scholar
[12] Aikawa K, Frisch A, Mark M, Baier S, Rietzler A, Grimm R, Ferlaino F 2012 Phys. Rev. Lett. 108 210401Google Scholar
[13] Zelevinsky T, Kotochigova S, Ye J 2008 Phys. Rev. Lett. 100 043201Google Scholar
[14] DeMille D, Cahn S B, Murphree D, Rahmlow D A, Kozlov M G 2008 Phys. Rev. Lett. 100 023003Google Scholar
[15] Kotochigova S, Zelevinsky T, Ye J 2009 Phys. Rev. A 79 012504Google Scholar
[16] Chin C, Flambaum V V, Kozlov M G 2009 New J. Phys. 11 055048Google Scholar
[17] Baranov M A, Dalmonte M, Pupillo G, Zoller P 2012 Chem. Rev. 112 5012Google Scholar
[18] Moses S A, Covey J P, Miecnikowski M T, Jin D S, Ye J 2017 Nat. Phys. 13 13
[19] Bohn J L, Rey A M, Ye J 2017 Science 357 1002Google Scholar
[20] Murphy M T, Flambaum V V, Muller S, Henkel C 2008 Science 320 1611Google Scholar
[21] Hudson J J, Sauer B E, Tarbutt M R, Hinds E A 2002 Phys. Rev. Lett. 89 023003Google Scholar
[22] Bickman S R 2007 Ph.D. Dissertation (New Heiven: Yale University)
[23] Baron J, Campbell W C, DeMille D, Doyle J M, Gabrielse G, Gurevich Y V, Hess P W, Hutzler N R, Kirilov E, Kozyryev I, O’Leary B R, Panda C D, Parsons M F, Petrik E S, Spaun B, Vutha A C, West A D 2014 Science 343 269Google Scholar
[24] Cairncross W B, Gresh D N, Grau M, Cossel K C, Roussy T S, Ni Y, Zhou Y, Ye J, Cornell E A 2017 Phys. Rev. Lett. 119 153001Google Scholar
[25] Altuntas E, Ammon J, Cahn S B, DeMille D 2018 Phys. Rev. Lett. 120 142501Google Scholar
[26] Cooper N R 2004 Phys. Rev. Lett. 92 220405Google Scholar
[27] DeMille D 2002 Phys. Rev. Lett. 88 067901Google Scholar
[28] Croft J F E 2012 Ph.D. Dissertation (Durham: Durham University)
[29] Andre A, DeMille D, Doyle J M, Lukin M D, Maxwell S E, Rabl P, Schoelkopf R J, Zoller P 2006 Nat. Phys. 2 636Google Scholar
[30] Micheli A, Brennen G K, Zoller P 2006 Nat. Phys. 2 341Google Scholar
[31] Krems R V 2008 Phys. Chem. Chem. Phys. 10 4079Google Scholar
[32] Carr L D, DeMille D, Krems R V, Ye J 2009 New J. Phys. 11 055049Google Scholar
[33] Ospelkaus S, Ni K K, Wang D, de Miranda M H G, Neyenhuis B, Quéméner G, Julienne P S, Bohn J L, Jin D S, Ye J 2010 Science 327 853Google Scholar
[34] Rui J, Yang H, Liu L, Zhang D C, Liu Y X, Nan J, Chen Y A, Zhao B, Pan J W 2017 Nat. Phys. 13 699Google Scholar
[35] Ye X, Guo M, González-Martínez M L, Quéméner G, Wang D 2018 Sci. Adv. 4 eaaq0083Google Scholar
[36] Ni K K, Ospelkaus S, de Miranda M H G, Pe’er A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S, Ye J 2008 Science 322 231Google Scholar
[37] Zirbel J J, Ni K K, Ospelkaus S, D’Incao J P, Wieman C E, Ye J, Jin D S 2008 Phys. Rev. Lett. 100 143201Google Scholar
[38] Molony P K, Gregory P D, Ji Z, Lu B, Köppinger M P, Le Sueur C R, Blackley C L, Hutson J M, Cornish S L 2014 Phys. Rev. Lett. 113 255301Google Scholar
[39] Takekoshi T, Reichsöllner L, Schindewolf A, Hutson J M, Le Sueur C R, Dulieu O, Ferlaino F, Grimm R, Nägerl H C 2014 Phys. Rev. Lett. 113 205301Google Scholar
[40] Park J W, Will S A, Zwierlein M W 2015 Phys. Rev. Lett. 114 205302Google Scholar
[41] Wang F, He X, Li X, Zhu B, Chen J, Wang D 2015 New J. Phys. 17 035003Google Scholar
[42] Yan B, Moses S A, Gadway B, Covey J P, Hazzard K R A, Rey A M, Jin D S, Ye J 2013 Nature 501 521Google Scholar
[43] Marco L D, Valtolina G, Matsuda K, Tobias W G, Covey J P, Ye J 2018 Arxiv:1808.00028v1
[44] Żuchowski P S, Hutson J M 2010 Phys. Rev. A 81 060703
[45] Nemitz N 2008 Ph.D. Dissertation (Heinrich-Heine Universitat Dusseldorf)
[46] Tassy S, Nemitz N, Baumer F, Höhl C, Batär A, Görlitz A 2010 J. Phys. B: At., Mol. Opt. Phys. 43 205309Google Scholar
[47] Vaidya V D, Tiamsuphat J, Rolston S L, Porto J V 2015 Phys. Rev. A 92 043604Google Scholar
[48] Hansen A H, Khramov A, Dowd W H, Jamison A O, Ivanov V V, Gupta S 2011 Phys. Rev. A 84 011606Google Scholar
[49] Hansen A H, Khramov A Y, Dowd W H, Jamison A O, Plotkin-Swing B, Roy R J, Gupta S 2013 Phys. Rev. A 87 013615Google Scholar
[50] Ivanov V V, Khramov A, Hansen A H, Dowd W H, Münchow F, Jamison A O, Gupta S 2011 Phys. Rev. Lett. 106 153201Google Scholar
[51] Hara H, Takasu Y, Yamaoka Y, Doyle J M, Takahashi Y 2011 Phys. Rev. Lett. 106 205304Google Scholar
[52] Khramov A, Hansen A, Dowd W, Roy R J, Makrides C, Petrov A, Kotochigova S, Gupta S 2014 Phys. Rev. Lett. 112 033201Google Scholar
[53] Pasquiou B, Bayerle A, Tzanova S M, Stellmer S, Szczepkowski J, Parigger M, Grimm R, Schreck F 2013 Phys. Rev. A 88 023601Google Scholar
[54] Kemp S L, Butler K L, Freytag R, Hopkins S A, Hinds E A, Tarbutt M R, Cornish S L 2016 Rev. Sci. Instrum. 87 023105Google Scholar
[55] Barbe V, Ciamei A, Pasquiou B, Reichsollner L, Schreck F, zuchowski P S, Hutson J M 2018 Nat. Phys. s41567–018–0169–x
[56] Bochinski J R, Hudson E R, Lewandowski H J, Meijer G, Ye J 2003 Phys. Rev. Lett. 91 243001Google Scholar
[57] Shuman E S, Barry J F, DeMille D 2010 Nature 467 820Google Scholar
[58] Shuman E S, Barry J F, Glenn D R, DeMille D 2009 Phys. Rev. Lett. 103 223001Google Scholar
[59] Tarbutt M R, Bethlem H L, Hudson J J, Ryabov V L, Ryzhov V A, Sauer B E, Meijer G, Hinds E A 2004 Phys. Rev. Lett. 92 173002Google Scholar
[60] Hudson E R, Ticknor C, Sawyer B C, Taatjes C A, Lewandowski H J, Bochinski J R, Bohn J L, Ye J 2006 Phys. Rev. A 73 063404Google Scholar
[61] van de Meerakker S Y T, Bethlem H L, Meijer G 2008 Nat Phys 4 595Google Scholar
[62] Skomorowski W, Pawlowski F, Korona T, Moszynski R, Żuchowski P S, Hutson J M 2011 J. Chem. Phys. 134 114109Google Scholar
[63] Fulton R, Bishop A I, Shneider M N, Barker P F 2006 Nat. Phys. 2 465Google Scholar
[64] Zeppenfeld M, Motsch M, Pinkse P W H, Rempe G 2009 Phys. Rev. A 80 041401Google Scholar
[65] Prehn A, Ibrügger M, Glöckner R, Rempe G, Zeppenfeld M 2016 Phys. Rev. Lett. 116 063005Google Scholar
[66] Di Rosa M D 2004 Euro. Phys. J. D: At. Mol. Opt. Plas. Phys. 31 395
[67] Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001Google Scholar
[68] Barry J F, McCarron D J, Norrgard E B, Steinecker M H, DeMille D 2014 Nature 512 286Google Scholar
[69] Yeo M, Hummon M T, Collopy A L, Yan B, Hemmerling B, Chae E, Doyle J M, Ye J 2015 Phys. Rev. Lett. 114 223003Google Scholar
[70] Truppe S, Williams H J, Hambach M, Caldwell L, Fitch N J, Hinds E A, Sauer B E, Tarbutt M R 2017 Nat. Phys. 13 1173Google Scholar
[71] Williams H J, Caldwell L, Fitch N J, Truppe S, Rodewald J, Hinds E A, Sauer B E, Tarbutt M R 2018 Phys. Rev. Lett. 120 163201Google Scholar
[72] Anderegg L, Augenbraun B L, Bao Y, Burchesky S, Cheuk L W, Ketterle W, Doyle J M 2018 Nat. Phys. s41567–018–0191–z
[73] Lim J, Almond J R, Trigatzis M A, Devlin J A, Fitch N J, Sauer B E, Tarbutt M R, Hinds E A 2018 Phys. Rev. Lett. 120 123201Google Scholar
[74] McCarron D J, Steinecker M H, Zhu Y, DeMille D 2018 Phys. Rev. Lett. 121 013202Google Scholar
[75] Collopy A L, Ding S, Wu Y, Finneran I A, Anderegg L, Augenbraun B L, Doyle J M, Ye J 2018 Phys. Rev. Lett. 121 213201Google Scholar
[76] Anderegg L, Augenbraun B L, Chae E, Hemmerling B, Hutzler N R, Ravi A, Collopy A, Ye J, Ketterle W, Doyle J M 2017 Phys. Rev. Lett. 119 103201Google Scholar
[77] Kozyryev I, Baum L, Matsuda K, Augenbraun B L, Anderegg L, Sedlack A P, Doyle J M 2017 Phys. Rev. Lett. 118 173201Google Scholar
[78] Iwata G Z, McNally R L, Zelevinsky T 2017 Phys. Rev. A 96 022509Google Scholar
[79] Xu L, Yin Y, Wei B, Xia Y, Yin J 2016 Phys. Rev. A 93 013408Google Scholar
[80] Hutzler N R, Lu H I, Doyle J M 2012 Chem. Rev. 112 4803Google Scholar
[81] 印建平, 夏勇, 邓联忠, 李兴佳 2018 物理 46 376Google Scholar
Yin J P, Xia Y, Deng L Z, Li X J 2018 Physics 46 376Google Scholar
[82] 侯顺永, 尹亚玲, 印建平 2018 物理 46 446Google Scholar
Hou S Y, Yin Y L, Yin J P, 2018 Physics 46 446Google Scholar
[83] 夏勇, 汪海玲, 许亮, 印建平 2018 物理 47 24Google Scholar
Xia Y, Wang H L, Xu L, Yin J P 2018 Physics 47 24Google Scholar
[84] 邓联忠, 夏勇, 侯顺永, 印建平 2018 物理 47 84Google Scholar
Deng L Z, Xia Y, Hou S Y, Yin J P 2018 Physics 47 84Google Scholar
[85] 武寄洲, 马杰, 贾锁堂 2018 物理 47 162Google Scholar
Wu J Z, Ma J, Jia S T 2018 Physics 47 162Google Scholar
[86] Kozyryev I, Baum L, Matsuda K, Olson P, Hemmerling B, Doyle J M 2015 New J. Phys. 17 045003Google Scholar
[87] Bulleid N E, Skoff S M, Hendricks R J, Sauer B E, Hinds E A, Tarbutt M R 2013 Phys. Chem. Chem. Phys. 15 12299Google Scholar
[88] Skoff S M, Hendricks R J, Sinclair C D J, Hudson J J, Segal D M, Sauer B E, Hinds E A, Tarbutt M R 2011 Phys. Rev. A 83 023418Google Scholar
[89] Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R, Sauer B E 2014 Phys. Rev. A 89 053416Google Scholar
[90] Truppe S, Hambach M, Skoff S M, Bulleid N E, Bumby J S, Hendricks R J, Hinds E A, Sauer B E, Tarbutt M R 2018 J. Mod. Opt. 65 648Google Scholar
[91] Bu W, Chen T, Lv G, Yan B 2017 Phys. Rev. A 95 032701Google Scholar
[92] Bu W, Liu M, Xie D, Yan B 2016 Rev. Sci. Instrum. 87 096102Google Scholar
[93] Wang D, Bu W, Xie D, Chen T, Yan B 2018 J. Opt. Soc. Am. B 35 1658Google Scholar
[94] Patterson D, Doyle J M 2007 J. Chem. Phys. 126 154307Google Scholar
[95] Campbell W C, Doyle J M 2009 Cooling, Trap Loading, and Beam Production Using a Cryogenic Helium Buffer Gas (CRC Press, Boca Raton)
[96] Chen T, Bu W, Yan B 2016 Phys. Rev. A 94 063415Google Scholar
[97] Mulliken R S, Christy A 1931 Phys. Rev. 38 87Google Scholar
[98] Chen T, Bu W, Yan B 2017 Phys. Rev. A 96 053401Google Scholar
[99] Truppe S, Williams H J, Fitch N J, Hambach M, Wall T E, Hinds E A, Sauer B E, Tarbutt M R 2017 New J. Phys. 19 022001Google Scholar
[100] Chae E, Anderegg L, Augenbraun B L, Ravi A, Hemmerling B, Hutzler N R, Collopy A L, Ye J, Ketterle W, Doyle J M 2017 New J. Phys. 19 033035Google Scholar
[101] Barry J F, Shuman E S, Norrgard E B, DeMille D 2012 Phys. Rev. Lett. 108 103002Google Scholar
[102] Hemmerling B, et al. 2016 J. Phys. B: At. Mol. Opt. Phys. 49 174001Google Scholar
[103] Tarbutt M R 2015 New J. Phys. 17 015007Google Scholar
[104] McCarron D J, Norrgard E B, Steinecker M H, DeMille D 2015 New J. Phys. 17 035014Google Scholar
[105] Williams H J, Truppe S, Hambach M, Caldwell L, Fitch N J, Hinds E A, Sauer B E, Tarbutt M R 2017 New J. Phys. 19 113035Google Scholar
[106] Tarbutt M R, Steimle T C 2015 Phys. Rev. A 92 053401Google Scholar
[107] Norrgard E B, McCarron D J, Steinecker M H, Tarbutt M R, DeMille D 2016 Phys. Rev. Lett. 116 063004Google Scholar
[108] Lim J, Frye M D, Hutson J M, Tarbutt M R 2015 Phys. Rev. A 92 053419Google Scholar
[109] Morita M, Kosicki M B, Zuchowski P S, Tscherbul T V 2018 Phys. Rev. A 98 042702Google Scholar
-
图 1 激光消融示意图及实验数据[91] (a)激光消融产生BaF分子示意图; (b)分子吸收信号, 消融激光在t = 0 ms时打开; (c)对吸收信号做归一化处理和拟合; (d)吸收信号与消融激光输出功率的关系; (e)当消融靶材上固定某一位置处, 消融激光轰击次数越多, 分子吸收信号越差. 消融脉冲频率为2 Hz, He气速流为5 sccm
Fig. 1. Experimental scheme and laser ablation data[91]. (a) Scheme for the production of BaF molecule via laser ablation; (b) absorption signal; (c) normalizaiton and fit of the absorption signal; (d) the generated molecular number versus the output power of the ablation laser; (e) the dependence of the molecular number on the ablating times when successively ablating a position of the target. The repetition rate of the laser pulse is 2 Hz and the flow rate of the He gas is 5 sccm.
图 2 分子在不同能级的布居分布[91] (a)理论上根据玻尔兹曼分布计算不同温度下各个转动态上分子布居数的比例; (b)转动态温度的测量与拟合. 这里各个转动态的布居数均以测量的
$ N = 0 $ 态的布居数进行归一化; (c) 4 K和300 K温度下振动态布居数的分布; (d)实验测量的对$ |X,v = 0\rangle\to|A,v^\prime = 0\rangle $ (蓝色)和$ |X,v = 1\rangle\to|A,v^\prime = 0\rangle $ (红色)跃迁的吸收信号Fig. 2. Molecular distribution at different states[91]. (a) Theoretic calculation of the rotational distribution for different temperatures; (b) experimental data for different rotational populations. All data are normalized with N = 0 population; (c) theoretic calculation of the vibrational distribution; (d) experimental absorption signal for v = 0 and v = 1 molecules from laser ablation.
图 3 BaF能级示意图和暗态消除方案[98] (a)振动态能级的闭合方案, 增加896 nm和898 nm两个再泵浦激光; (b)转动态能级的闭合及超精细能级分裂示意图; (c)利用EOM调制产生的4个频率边带, 图中是调制后的激光用法珀腔测量的信号; (d)引入边带调制后荧光信号的增强; (e)进行偏振调制后荧光信号的增强; (f)增加 v = 1再泵浦光后荧光信号的增强
Fig. 3. The energy levels of BaF and dark state mixing[98].(a) Scheme for closing the vibrational levels; (b) scheme for closing the rotational and hyperfine dark states; (c) sideband modulation via an EOM to generate the four frequency bands to cover the four hyperfine sublevels; (d) LIF enhancement via introducing the sideband modulation; (e) LIF enhancement by introducing the polarization modulation; (f) LIF enhancement when adding the v = 1 repump laser.
图 4 分子束偏转[98]. CCD在x-z平面成像 (a)和(b)分别对应在相互作用区域有偏转光和没有偏转光时分子束的形状, (c)中给出沿
$ \hat{x} $ 方向分别对(a)和(b)做积分后得到信号. 黑色和红色实线分别为两个信号的高斯拟合. (d)对(c)中的信号分别做归一化, 以清晰地展示偏转效果. (e)偏转距离与偏转光束数量之间的关系, 相应地, 可以推出散射光子数与相互作用时间间的关系. 红色实线为对测量结果的线性拟合. 黑色虚线为根据4+25能级速率方程模型计算得到的散射光子数与相互作用时间的关系Fig. 4. Deflection of the BaF molecular beam with the quasi cycling transitions[98]. Images are given on the x-z plane of the (a) Deflected and (b) unperturbed molecular beams, respectively. The x direction reflects the width of the probe laser beam, while the z direction gives the transverse profile of the molecular beam. (c) integrated signal of the images in (a) and (b) along the x axis. The black and red lines are Gaussian fits to the unperturbed (light gray) and deflected (light orange) signal, which gives the revival rate of 80%. (d) normalized plot of the signals in (c) to clearly show the deflection effect. (e)deflection distance as a function of the number of the deflection beam, yielding the dependence of the scattering photon number on the interaction time. The red solid line is a linear fit to the measured data, illustrating that the photon scattered linearly increases with the interaction time. The black dashed line is the numerical prediction of the scattering from the 4+25 MLRE model with the switching scheme.
-
[1] Liu L, Lu D S, Chen W B, Li T, Qu Q Z, Wang B, Li L, Ren W, Dong Z R, Zhao J B, Xia W B, Zhao X, Ji J W, Ye M F, Sun Y G, Yao Y Y, Song D, Liang Z G, Hu S J, Yu D H, Hou X, Shi W, Zang H G, Xiang J F, Peng X K, Wang Y Z 2018 Nat. Commun. 9 2760Google Scholar
[2] Ludlow A D, Boyd M M, Ye J, Peik E, Schmidt P O 2015 Rev. Mod. Phys. 87 637Google Scholar
[3] Parker R H, Yu C, Zhong W, Estey B, Muller H 2018 Science 360 191Google Scholar
[4] Moses S A, Covey J P, Miecnikowski M T, Yan B, Gadway B, Ye J, Jin D S 2015 Science 350 659Google Scholar
[5] Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198Google Scholar
[6] Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969Google Scholar
[7] Bradley C C, Sackett C A, Tollett J J, Hulet R G 1995 Phys. Rev. Lett. 75 1687Google Scholar
[8] Griesmaier A, Werner J, Hensler S, Stuhler J, Pfau T 2005 Phys. Rev. Lett. 94 160401Google Scholar
[9] Lahaye T, Koch T, Fröhlich B, Fattori M, Metz J, Griesmaier A, Giovanazzi S, Pfau T 2007 Nature 448 672Google Scholar
[10] Lu M, Burdick N Q, Youn S H, Lev B L 2011 Phys. Rev. Lett. 107 190401Google Scholar
[11] Lu M, Burdick N Q, Lev B L 2012 Phys. Rev. Lett. 108 215301Google Scholar
[12] Aikawa K, Frisch A, Mark M, Baier S, Rietzler A, Grimm R, Ferlaino F 2012 Phys. Rev. Lett. 108 210401Google Scholar
[13] Zelevinsky T, Kotochigova S, Ye J 2008 Phys. Rev. Lett. 100 043201Google Scholar
[14] DeMille D, Cahn S B, Murphree D, Rahmlow D A, Kozlov M G 2008 Phys. Rev. Lett. 100 023003Google Scholar
[15] Kotochigova S, Zelevinsky T, Ye J 2009 Phys. Rev. A 79 012504Google Scholar
[16] Chin C, Flambaum V V, Kozlov M G 2009 New J. Phys. 11 055048Google Scholar
[17] Baranov M A, Dalmonte M, Pupillo G, Zoller P 2012 Chem. Rev. 112 5012Google Scholar
[18] Moses S A, Covey J P, Miecnikowski M T, Jin D S, Ye J 2017 Nat. Phys. 13 13
[19] Bohn J L, Rey A M, Ye J 2017 Science 357 1002Google Scholar
[20] Murphy M T, Flambaum V V, Muller S, Henkel C 2008 Science 320 1611Google Scholar
[21] Hudson J J, Sauer B E, Tarbutt M R, Hinds E A 2002 Phys. Rev. Lett. 89 023003Google Scholar
[22] Bickman S R 2007 Ph.D. Dissertation (New Heiven: Yale University)
[23] Baron J, Campbell W C, DeMille D, Doyle J M, Gabrielse G, Gurevich Y V, Hess P W, Hutzler N R, Kirilov E, Kozyryev I, O’Leary B R, Panda C D, Parsons M F, Petrik E S, Spaun B, Vutha A C, West A D 2014 Science 343 269Google Scholar
[24] Cairncross W B, Gresh D N, Grau M, Cossel K C, Roussy T S, Ni Y, Zhou Y, Ye J, Cornell E A 2017 Phys. Rev. Lett. 119 153001Google Scholar
[25] Altuntas E, Ammon J, Cahn S B, DeMille D 2018 Phys. Rev. Lett. 120 142501Google Scholar
[26] Cooper N R 2004 Phys. Rev. Lett. 92 220405Google Scholar
[27] DeMille D 2002 Phys. Rev. Lett. 88 067901Google Scholar
[28] Croft J F E 2012 Ph.D. Dissertation (Durham: Durham University)
[29] Andre A, DeMille D, Doyle J M, Lukin M D, Maxwell S E, Rabl P, Schoelkopf R J, Zoller P 2006 Nat. Phys. 2 636Google Scholar
[30] Micheli A, Brennen G K, Zoller P 2006 Nat. Phys. 2 341Google Scholar
[31] Krems R V 2008 Phys. Chem. Chem. Phys. 10 4079Google Scholar
[32] Carr L D, DeMille D, Krems R V, Ye J 2009 New J. Phys. 11 055049Google Scholar
[33] Ospelkaus S, Ni K K, Wang D, de Miranda M H G, Neyenhuis B, Quéméner G, Julienne P S, Bohn J L, Jin D S, Ye J 2010 Science 327 853Google Scholar
[34] Rui J, Yang H, Liu L, Zhang D C, Liu Y X, Nan J, Chen Y A, Zhao B, Pan J W 2017 Nat. Phys. 13 699Google Scholar
[35] Ye X, Guo M, González-Martínez M L, Quéméner G, Wang D 2018 Sci. Adv. 4 eaaq0083Google Scholar
[36] Ni K K, Ospelkaus S, de Miranda M H G, Pe’er A, Neyenhuis B, Zirbel J J, Kotochigova S, Julienne P S, Jin D S, Ye J 2008 Science 322 231Google Scholar
[37] Zirbel J J, Ni K K, Ospelkaus S, D’Incao J P, Wieman C E, Ye J, Jin D S 2008 Phys. Rev. Lett. 100 143201Google Scholar
[38] Molony P K, Gregory P D, Ji Z, Lu B, Köppinger M P, Le Sueur C R, Blackley C L, Hutson J M, Cornish S L 2014 Phys. Rev. Lett. 113 255301Google Scholar
[39] Takekoshi T, Reichsöllner L, Schindewolf A, Hutson J M, Le Sueur C R, Dulieu O, Ferlaino F, Grimm R, Nägerl H C 2014 Phys. Rev. Lett. 113 205301Google Scholar
[40] Park J W, Will S A, Zwierlein M W 2015 Phys. Rev. Lett. 114 205302Google Scholar
[41] Wang F, He X, Li X, Zhu B, Chen J, Wang D 2015 New J. Phys. 17 035003Google Scholar
[42] Yan B, Moses S A, Gadway B, Covey J P, Hazzard K R A, Rey A M, Jin D S, Ye J 2013 Nature 501 521Google Scholar
[43] Marco L D, Valtolina G, Matsuda K, Tobias W G, Covey J P, Ye J 2018 Arxiv:1808.00028v1
[44] Żuchowski P S, Hutson J M 2010 Phys. Rev. A 81 060703
[45] Nemitz N 2008 Ph.D. Dissertation (Heinrich-Heine Universitat Dusseldorf)
[46] Tassy S, Nemitz N, Baumer F, Höhl C, Batär A, Görlitz A 2010 J. Phys. B: At., Mol. Opt. Phys. 43 205309Google Scholar
[47] Vaidya V D, Tiamsuphat J, Rolston S L, Porto J V 2015 Phys. Rev. A 92 043604Google Scholar
[48] Hansen A H, Khramov A, Dowd W H, Jamison A O, Ivanov V V, Gupta S 2011 Phys. Rev. A 84 011606Google Scholar
[49] Hansen A H, Khramov A Y, Dowd W H, Jamison A O, Plotkin-Swing B, Roy R J, Gupta S 2013 Phys. Rev. A 87 013615Google Scholar
[50] Ivanov V V, Khramov A, Hansen A H, Dowd W H, Münchow F, Jamison A O, Gupta S 2011 Phys. Rev. Lett. 106 153201Google Scholar
[51] Hara H, Takasu Y, Yamaoka Y, Doyle J M, Takahashi Y 2011 Phys. Rev. Lett. 106 205304Google Scholar
[52] Khramov A, Hansen A, Dowd W, Roy R J, Makrides C, Petrov A, Kotochigova S, Gupta S 2014 Phys. Rev. Lett. 112 033201Google Scholar
[53] Pasquiou B, Bayerle A, Tzanova S M, Stellmer S, Szczepkowski J, Parigger M, Grimm R, Schreck F 2013 Phys. Rev. A 88 023601Google Scholar
[54] Kemp S L, Butler K L, Freytag R, Hopkins S A, Hinds E A, Tarbutt M R, Cornish S L 2016 Rev. Sci. Instrum. 87 023105Google Scholar
[55] Barbe V, Ciamei A, Pasquiou B, Reichsollner L, Schreck F, zuchowski P S, Hutson J M 2018 Nat. Phys. s41567–018–0169–x
[56] Bochinski J R, Hudson E R, Lewandowski H J, Meijer G, Ye J 2003 Phys. Rev. Lett. 91 243001Google Scholar
[57] Shuman E S, Barry J F, DeMille D 2010 Nature 467 820Google Scholar
[58] Shuman E S, Barry J F, Glenn D R, DeMille D 2009 Phys. Rev. Lett. 103 223001Google Scholar
[59] Tarbutt M R, Bethlem H L, Hudson J J, Ryabov V L, Ryzhov V A, Sauer B E, Meijer G, Hinds E A 2004 Phys. Rev. Lett. 92 173002Google Scholar
[60] Hudson E R, Ticknor C, Sawyer B C, Taatjes C A, Lewandowski H J, Bochinski J R, Bohn J L, Ye J 2006 Phys. Rev. A 73 063404Google Scholar
[61] van de Meerakker S Y T, Bethlem H L, Meijer G 2008 Nat Phys 4 595Google Scholar
[62] Skomorowski W, Pawlowski F, Korona T, Moszynski R, Żuchowski P S, Hutson J M 2011 J. Chem. Phys. 134 114109Google Scholar
[63] Fulton R, Bishop A I, Shneider M N, Barker P F 2006 Nat. Phys. 2 465Google Scholar
[64] Zeppenfeld M, Motsch M, Pinkse P W H, Rempe G 2009 Phys. Rev. A 80 041401Google Scholar
[65] Prehn A, Ibrügger M, Glöckner R, Rempe G, Zeppenfeld M 2016 Phys. Rev. Lett. 116 063005Google Scholar
[66] Di Rosa M D 2004 Euro. Phys. J. D: At. Mol. Opt. Plas. Phys. 31 395
[67] Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001Google Scholar
[68] Barry J F, McCarron D J, Norrgard E B, Steinecker M H, DeMille D 2014 Nature 512 286Google Scholar
[69] Yeo M, Hummon M T, Collopy A L, Yan B, Hemmerling B, Chae E, Doyle J M, Ye J 2015 Phys. Rev. Lett. 114 223003Google Scholar
[70] Truppe S, Williams H J, Hambach M, Caldwell L, Fitch N J, Hinds E A, Sauer B E, Tarbutt M R 2017 Nat. Phys. 13 1173Google Scholar
[71] Williams H J, Caldwell L, Fitch N J, Truppe S, Rodewald J, Hinds E A, Sauer B E, Tarbutt M R 2018 Phys. Rev. Lett. 120 163201Google Scholar
[72] Anderegg L, Augenbraun B L, Bao Y, Burchesky S, Cheuk L W, Ketterle W, Doyle J M 2018 Nat. Phys. s41567–018–0191–z
[73] Lim J, Almond J R, Trigatzis M A, Devlin J A, Fitch N J, Sauer B E, Tarbutt M R, Hinds E A 2018 Phys. Rev. Lett. 120 123201Google Scholar
[74] McCarron D J, Steinecker M H, Zhu Y, DeMille D 2018 Phys. Rev. Lett. 121 013202Google Scholar
[75] Collopy A L, Ding S, Wu Y, Finneran I A, Anderegg L, Augenbraun B L, Doyle J M, Ye J 2018 Phys. Rev. Lett. 121 213201Google Scholar
[76] Anderegg L, Augenbraun B L, Chae E, Hemmerling B, Hutzler N R, Ravi A, Collopy A, Ye J, Ketterle W, Doyle J M 2017 Phys. Rev. Lett. 119 103201Google Scholar
[77] Kozyryev I, Baum L, Matsuda K, Augenbraun B L, Anderegg L, Sedlack A P, Doyle J M 2017 Phys. Rev. Lett. 118 173201Google Scholar
[78] Iwata G Z, McNally R L, Zelevinsky T 2017 Phys. Rev. A 96 022509Google Scholar
[79] Xu L, Yin Y, Wei B, Xia Y, Yin J 2016 Phys. Rev. A 93 013408Google Scholar
[80] Hutzler N R, Lu H I, Doyle J M 2012 Chem. Rev. 112 4803Google Scholar
[81] 印建平, 夏勇, 邓联忠, 李兴佳 2018 物理 46 376Google Scholar
Yin J P, Xia Y, Deng L Z, Li X J 2018 Physics 46 376Google Scholar
[82] 侯顺永, 尹亚玲, 印建平 2018 物理 46 446Google Scholar
Hou S Y, Yin Y L, Yin J P, 2018 Physics 46 446Google Scholar
[83] 夏勇, 汪海玲, 许亮, 印建平 2018 物理 47 24Google Scholar
Xia Y, Wang H L, Xu L, Yin J P 2018 Physics 47 24Google Scholar
[84] 邓联忠, 夏勇, 侯顺永, 印建平 2018 物理 47 84Google Scholar
Deng L Z, Xia Y, Hou S Y, Yin J P 2018 Physics 47 84Google Scholar
[85] 武寄洲, 马杰, 贾锁堂 2018 物理 47 162Google Scholar
Wu J Z, Ma J, Jia S T 2018 Physics 47 162Google Scholar
[86] Kozyryev I, Baum L, Matsuda K, Olson P, Hemmerling B, Doyle J M 2015 New J. Phys. 17 045003Google Scholar
[87] Bulleid N E, Skoff S M, Hendricks R J, Sauer B E, Hinds E A, Tarbutt M R 2013 Phys. Chem. Chem. Phys. 15 12299Google Scholar
[88] Skoff S M, Hendricks R J, Sinclair C D J, Hudson J J, Segal D M, Sauer B E, Hinds E A, Tarbutt M R 2011 Phys. Rev. A 83 023418Google Scholar
[89] Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R, Sauer B E 2014 Phys. Rev. A 89 053416Google Scholar
[90] Truppe S, Hambach M, Skoff S M, Bulleid N E, Bumby J S, Hendricks R J, Hinds E A, Sauer B E, Tarbutt M R 2018 J. Mod. Opt. 65 648Google Scholar
[91] Bu W, Chen T, Lv G, Yan B 2017 Phys. Rev. A 95 032701Google Scholar
[92] Bu W, Liu M, Xie D, Yan B 2016 Rev. Sci. Instrum. 87 096102Google Scholar
[93] Wang D, Bu W, Xie D, Chen T, Yan B 2018 J. Opt. Soc. Am. B 35 1658Google Scholar
[94] Patterson D, Doyle J M 2007 J. Chem. Phys. 126 154307Google Scholar
[95] Campbell W C, Doyle J M 2009 Cooling, Trap Loading, and Beam Production Using a Cryogenic Helium Buffer Gas (CRC Press, Boca Raton)
[96] Chen T, Bu W, Yan B 2016 Phys. Rev. A 94 063415Google Scholar
[97] Mulliken R S, Christy A 1931 Phys. Rev. 38 87Google Scholar
[98] Chen T, Bu W, Yan B 2017 Phys. Rev. A 96 053401Google Scholar
[99] Truppe S, Williams H J, Fitch N J, Hambach M, Wall T E, Hinds E A, Sauer B E, Tarbutt M R 2017 New J. Phys. 19 022001Google Scholar
[100] Chae E, Anderegg L, Augenbraun B L, Ravi A, Hemmerling B, Hutzler N R, Collopy A L, Ye J, Ketterle W, Doyle J M 2017 New J. Phys. 19 033035Google Scholar
[101] Barry J F, Shuman E S, Norrgard E B, DeMille D 2012 Phys. Rev. Lett. 108 103002Google Scholar
[102] Hemmerling B, et al. 2016 J. Phys. B: At. Mol. Opt. Phys. 49 174001Google Scholar
[103] Tarbutt M R 2015 New J. Phys. 17 015007Google Scholar
[104] McCarron D J, Norrgard E B, Steinecker M H, DeMille D 2015 New J. Phys. 17 035014Google Scholar
[105] Williams H J, Truppe S, Hambach M, Caldwell L, Fitch N J, Hinds E A, Sauer B E, Tarbutt M R 2017 New J. Phys. 19 113035Google Scholar
[106] Tarbutt M R, Steimle T C 2015 Phys. Rev. A 92 053401Google Scholar
[107] Norrgard E B, McCarron D J, Steinecker M H, Tarbutt M R, DeMille D 2016 Phys. Rev. Lett. 116 063004Google Scholar
[108] Lim J, Frye M D, Hutson J M, Tarbutt M R 2015 Phys. Rev. A 92 053419Google Scholar
[109] Morita M, Kosicki M B, Zuchowski P S, Tscherbul T V 2018 Phys. Rev. A 98 042702Google Scholar
计量
- 文章访问数: 10605
- PDF下载量: 237
- 被引次数: 0