搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

忆阻器单阻态下的记忆电容行为及多态特性

刘汝新 董瑞新 闫循领 肖夏

引用本文:
Citation:

忆阻器单阻态下的记忆电容行为及多态特性

刘汝新, 董瑞新, 闫循领, 肖夏

Memory capacitance behavior at single resistance state in memristor and multi-state characteristic

Liu Ru-Xin, Dong Rui-Xin, Yan Xun-Ling, Xiao Xia
PDF
HTML
导出引用
  • 采用供体-受体类型的共聚物构建了Al/共聚物/ITO结构的有机记忆器件, 并对其电流-电压(I-V)和电容-电压(C-V)特性进行了研究. 结果表明: 器件不仅表现出明显的记忆电阻特征, 而且在单个电阻状态下还存在记忆电容行为, 使器件呈现出两种电阻状态和与之对应的四种电容状态, 具有电阻和电容的双参量记忆能力. 在此基础上对器件的电容开关行为进行了电压幅值的调制, 使器件出现了更多的电容状态, 为多级存储的实现提供了一条有效途径. 最后通过引入分子内部极化算符, 建立了记忆电阻和记忆电容的关联性, 给出了描述器件双参量多状态特征的矩阵模型.
    With the advent of the information age, big data put forward higher requirements for capacity of storage devices. Compared with the method of reducing the size of the device to enhance the integration level, the high density storage of increasing the memory state of the single device will be very beneficial to solving the problem. In this work, we propose an idea of two-parameter and multi-state memory device involved in both resistance and capacitance operation levels. At first, a new donor-acceptor (D-A)-type copolymer is designed and synthesized. Then, the memory device of Al/copolymer/ITO structure is fabricated, and the current-voltage (I-V) and capacitance-voltage (C-V) curves are measured by a KEITHLEY 4200 semiconductor characterization system. The device not only displays the obvious memory resistance characteristics, but also has the memory capacitance behavior in single resistance state, which results in two resistance states and four capacitance states, so that the device has the capability of two-parameter and multi-state memory. In addition, the device shows more capacitance states after the switching behavior has been modulated by the voltage amplitude, which provides an effective method to control the memory states. In order to study the conductive mechanism of the device, we test the relationship between resistance and temperature. It is found that the resistance decreases with the increase of temperature, indicating that the device has the obvious semiconductor properties. Furthermore, the fitting results of I-V data show that the mechanism of resistance switching is in good consistence with the classical trap-controlled space charge limited current theory. The capacitance switching in single resistance state is closely related to the polarization characteristic of D-A structure in the copolymer film. The polarization force microscopy phase image shows that the copolymer film has obvious polarization and depolarization characteristics under the external electric field. Based on the polarization characteristics of copolymer, the correlation between memory resistance and memory capacitance is established by introducing a polarization operator of molecules, and the matrix model describing the two-parameter and multi-state memory characteristics is given. The above results show that the multi-state memory characteristics will store more information than 2-bits mode in a single cell, which will provide a reference for improving the storage density of information.
      通信作者: 董瑞新, ruixindong@163.com
    • 基金项目: 国家自然科学基金(批准号: 61574071)和山东省泰山学者专项基金资助的课题.
      Corresponding author: Dong Rui-Xin, ruixindong@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61574071) and the Special Construction Project Fund for Taishan Scholars of Shandong Province, China.
    [1]

    Chua L O 1971 IEEE Trans. Circuit Theory 18 507Google Scholar

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar

    [3]

    王媛, 董瑞新, 闫循领 2015 物理学报 64 048402Google Scholar

    Wang Y, Dong R X, Yan X L 2015 Acta Phys. Sin. 64 048402Google Scholar

    [4]

    Wang M, Cai S H, Pan C, Wang C Y, Lian X J, Zhuo Y, Xu K, Cao T J, Pan X Q, Wang B G, Liang S J, Yang J J, Wang P, Miao F 2018 Nat. Electron. 1 130Google Scholar

    [5]

    余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华 2018 物理学报 67 157302Google Scholar

    Yu Z Q, Liu M L, Lang J X, Qian K, Zhang C H 2018 Acta Phys. Sin. 67 157302Google Scholar

    [6]

    Banerjee W, Liu Q, Lv H, Long S, Liu M 2017 Nanoscale 9 14442Google Scholar

    [7]

    Yan X, Wang J, Zhao M, Li X, Wang H, Zhang L, Lu C, Ren D 2018 Appl. Phys. Lett. 113 013503Google Scholar

    [8]

    Wang L Y, Wang Z Y, Zhao W, Hu B, Xie L H, Yi M D, Ling H F, Zhang C X, Chen Y, Lin J Y, Zhu J L, Huang W 2017 Adv. Electron. Mater. 3 1600244Google Scholar

    [9]

    Ventra M D, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1717Google Scholar

    [10]

    Pershin Y V, Di Ventra M 2011 Adv. Phys. 60 145Google Scholar

    [11]

    Bessonov A A, Kirikova M N, Petukhov D I, Allen M, Ryhänen T, Bailey M J A 2015 Nat. Mater. 14 199Google Scholar

    [12]

    Haik M Y, Ayesh A I, Abdulrehman T, Haik Y 2014 Mater. Lett. 124 67Google Scholar

    [13]

    Albamartin M, Firmager T, Atherton J, Rosamond M C, Ashall D, Ghaferi A A, Ayesh A, Gallant A J, Mabrook M F, Petty M C, Zeze D A 2012 J. Phys. D: Appl. Phys. 45 295401Google Scholar

    [14]

    Yan Z B, Liu J M 2013 Sci. Rep. 3 2482Google Scholar

    [15]

    Salaoru I, Khiat A, Li Q, Berdan R, Prodromakis T 2013 Appl. Phys. Lett. 103 233513Google Scholar

    [16]

    Park M, Park S, Yoo K H 2016 ACS Appl. Mater. Interfaces 8 14046Google Scholar

    [17]

    Pan R B, Li J, Zhuge F, Zhu L Q, Liang L Y, Zhang H L, Gao J H, Cao H T, Fu B, Li K 2016 Appl. Phys. Lett. 108 013504Google Scholar

    [18]

    Hu L X, Fu S, Chen Y H, Cao H T, Liang L Y, Zhang H L, Gao J H, Wang J R, Zhuge F 2017 Adv. Mater. 29 1606927Google Scholar

    [19]

    Menzel S, Bottger U, Waser R 2012 J. Appl. Phys. 111 014501Google Scholar

    [20]

    Fujii T, Kawasaki M, Sawa A, Akoh H, Kawazoe Y, Tokura Y 2005 Appl. Phys. Lett. 86 012107Google Scholar

    [21]

    Ko Y, Kim Y, Baek H, Cho J 2011 ACS Nano 5 9918Google Scholar

    [22]

    Sun Y, Ai C, Lu J, Li L, Wen D, Bai X 2016 Thin Solid Films 598 293Google Scholar

    [23]

    Wang H, Meng F B, Cai Y R, Zheng L Y, Li Y G , Liu Y J , Jiang Y Y, Wang X T, Chen X D 2013 Adv. Mater. 25 5498Google Scholar

    [24]

    Mohanta K, Majee S K, Batabyal S K, Pal A J 2006 J. Phys. Chem. B 110 18231Google Scholar

    [25]

    Zhang Y, Kong L, Ju X, Zhao J 2017 Polymers 10 23Google Scholar

    [26]

    Irgashev R A, Teslenko A Y, Zhilina E F, Schepochkin A V, El'Tsov O S, Rusinov G L, Charushin V N 2014 Tetrahedron 70 4685Google Scholar

  • 图 1  (a)器件Al/共聚物/ITO的结构示意图; (b)薄膜表面的AFM图像, 扫描面积为5 ${\text{μ}} {\rm{m}}$ × 5 ${\text{μ}} {\rm{m}}$

    Fig. 1.  (a) Schematic of device with the Al/copolymer/ITO configuration; (b) AFM image of the copolymer film, with a scanning area of 5 ${\text{μ}} {\rm{m}}$ × 5 ${\text{μ}} {\rm{m}}$

    图 2  (a)器件Al/共聚物/ITO与Al/ITO(内插图)的I-V特性曲线, 红色和蓝色分别代表器件处在HRS和LRS; (b)器件Al/共聚物/ITO的C-V曲线, 红色和蓝色分别对应HRS和LRS下的C-V曲线; 扫描方向如图中箭头所示; 器件电阻(c)和电容(d)的时间保持特性

    Fig. 2.  (a) The I-V curves of Al/copolymer/ITO device. Inset is the Al/ ITO device. Red and blue curves represent HRS and LRS, respectively. (b) C-V curves of Al/copolymer/ITO device. Red and blue curves correspond to the C-V characteristics in HRS and LRS, respectively. The arrows show direction of voltage sweep. The retention time characteristics of resistance (c) and capacitance (d)

    图 3  高阻态中不同扫描电压幅值下的C-V曲线(交流读取电压为30 mV, 100 kHz)

    Fig. 3.  The C-V curves of HRS under the different sweep voltage (AC read voltage 30 mV, 100 kHz)

    图 4  在高(a)、低(b)阻态下器件的电阻随温度的变化; (c)正电压区域和(d)负电压区域器件的双对数I-V曲线, 图中已标出了每段的斜率

    Fig. 4.  Resistance versus temperature plots for the device in HRS (a) and LRS (b). Double-logarithmic I-V curves of the device: exerted (c) positive voltage or (d) negative voltage, and the value of the slope is marked in the figure

    图 5  共聚物薄膜的PFM相位图, 其中首先对5 ${\text{μ}} {\rm{m}}$ × 5 ${\text{μ}} {\rm{m}}$区域的薄膜施加–10 V的偏压, 然后对内部的3.5 ${\text{μ}} {\rm{m}}$ × 3.5 ${\text{μ}} {\rm{m}}$区域施加+10 V的偏压, 再对中心的1.5 ${\text{μ}} {\rm{m}}$ × 1.5 ${\text{μ}} {\rm{m}}$区域施加–10 V的偏压, 最后通过15 mV的交变信号对5 ${\text{μ}} {\rm{m}}$ × 5 ${\text{μ}} {\rm{m}}$薄膜的极化程度进行测量

    Fig. 5.  The PFM phase image of the copolymer film. First, an external voltage of –10 V was applied to a square of 5 ${\text{μ}} {\rm{m}}$ × 5 ${\text{μ}} {\rm{m}}$. Secondly, +10 V was applied to a square of 3.5 ${\text{μ}} {\rm{m}}$ × 3.5 ${\text{μ}} {\rm{m}}$, and then –10 V was applied to a square of 1.5 ${\text{μ}} {\rm{m}}$ × 1.5 ${\text{μ}} {\rm{m}}$. Finally, the polarization degree of 5 ${\text{μ}} {\rm{m}}$ × 5 ${\text{μ}} {\rm{m}}$ film was measured by 15 mV alternating signal.

    图 6  器件中电阻开关及单电阻态下的电容开关模型示意图

    Fig. 6.  Model schematic of resistance switching and capacitance switching at single resistance state in the device

  • [1]

    Chua L O 1971 IEEE Trans. Circuit Theory 18 507Google Scholar

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80Google Scholar

    [3]

    王媛, 董瑞新, 闫循领 2015 物理学报 64 048402Google Scholar

    Wang Y, Dong R X, Yan X L 2015 Acta Phys. Sin. 64 048402Google Scholar

    [4]

    Wang M, Cai S H, Pan C, Wang C Y, Lian X J, Zhuo Y, Xu K, Cao T J, Pan X Q, Wang B G, Liang S J, Yang J J, Wang P, Miao F 2018 Nat. Electron. 1 130Google Scholar

    [5]

    余志强, 刘敏丽, 郎建勋, 钱楷, 张昌华 2018 物理学报 67 157302Google Scholar

    Yu Z Q, Liu M L, Lang J X, Qian K, Zhang C H 2018 Acta Phys. Sin. 67 157302Google Scholar

    [6]

    Banerjee W, Liu Q, Lv H, Long S, Liu M 2017 Nanoscale 9 14442Google Scholar

    [7]

    Yan X, Wang J, Zhao M, Li X, Wang H, Zhang L, Lu C, Ren D 2018 Appl. Phys. Lett. 113 013503Google Scholar

    [8]

    Wang L Y, Wang Z Y, Zhao W, Hu B, Xie L H, Yi M D, Ling H F, Zhang C X, Chen Y, Lin J Y, Zhu J L, Huang W 2017 Adv. Electron. Mater. 3 1600244Google Scholar

    [9]

    Ventra M D, Pershin Y V, Chua L O 2009 Proc. IEEE 97 1717Google Scholar

    [10]

    Pershin Y V, Di Ventra M 2011 Adv. Phys. 60 145Google Scholar

    [11]

    Bessonov A A, Kirikova M N, Petukhov D I, Allen M, Ryhänen T, Bailey M J A 2015 Nat. Mater. 14 199Google Scholar

    [12]

    Haik M Y, Ayesh A I, Abdulrehman T, Haik Y 2014 Mater. Lett. 124 67Google Scholar

    [13]

    Albamartin M, Firmager T, Atherton J, Rosamond M C, Ashall D, Ghaferi A A, Ayesh A, Gallant A J, Mabrook M F, Petty M C, Zeze D A 2012 J. Phys. D: Appl. Phys. 45 295401Google Scholar

    [14]

    Yan Z B, Liu J M 2013 Sci. Rep. 3 2482Google Scholar

    [15]

    Salaoru I, Khiat A, Li Q, Berdan R, Prodromakis T 2013 Appl. Phys. Lett. 103 233513Google Scholar

    [16]

    Park M, Park S, Yoo K H 2016 ACS Appl. Mater. Interfaces 8 14046Google Scholar

    [17]

    Pan R B, Li J, Zhuge F, Zhu L Q, Liang L Y, Zhang H L, Gao J H, Cao H T, Fu B, Li K 2016 Appl. Phys. Lett. 108 013504Google Scholar

    [18]

    Hu L X, Fu S, Chen Y H, Cao H T, Liang L Y, Zhang H L, Gao J H, Wang J R, Zhuge F 2017 Adv. Mater. 29 1606927Google Scholar

    [19]

    Menzel S, Bottger U, Waser R 2012 J. Appl. Phys. 111 014501Google Scholar

    [20]

    Fujii T, Kawasaki M, Sawa A, Akoh H, Kawazoe Y, Tokura Y 2005 Appl. Phys. Lett. 86 012107Google Scholar

    [21]

    Ko Y, Kim Y, Baek H, Cho J 2011 ACS Nano 5 9918Google Scholar

    [22]

    Sun Y, Ai C, Lu J, Li L, Wen D, Bai X 2016 Thin Solid Films 598 293Google Scholar

    [23]

    Wang H, Meng F B, Cai Y R, Zheng L Y, Li Y G , Liu Y J , Jiang Y Y, Wang X T, Chen X D 2013 Adv. Mater. 25 5498Google Scholar

    [24]

    Mohanta K, Majee S K, Batabyal S K, Pal A J 2006 J. Phys. Chem. B 110 18231Google Scholar

    [25]

    Zhang Y, Kong L, Ju X, Zhao J 2017 Polymers 10 23Google Scholar

    [26]

    Irgashev R A, Teslenko A Y, Zhilina E F, Schepochkin A V, El'Tsov O S, Rusinov G L, Charushin V N 2014 Tetrahedron 70 4685Google Scholar

  • [1] 余雪玲, 陈凤翔, 相韬, 邓文, 刘嘉宁, 汪礼胜. ReSe2/WSe2记忆晶体管的光电调控和阻变特性. 物理学报, 2022, 71(21): 217302. doi: 10.7498/aps.71.20221154
    [2] 王思远, 梁添寿, 时朋朋. 金属磁记忆应变诱导磁性变化的原子尺度作用机理. 物理学报, 2022, 71(19): 197502. doi: 10.7498/aps.71.20220745
    [3] 党俊坡, 江秀娟, 唐振华. 光纤基底TiNi形状记忆合金薄膜制备工艺. 物理学报, 2022, 71(3): 030701. doi: 10.7498/aps.71.20211437
    [4] 许鹏飞, 公徐路, 李毅伟, 靳艳飞. 含记忆阻尼函数的周期势系统随机共振. 物理学报, 2022, 71(8): 080501. doi: 10.7498/aps.71.20211732
    [5] 时朋朋, 郝帅. 磁记忆检测的力磁耦合型磁偶极子理论及解析解. 物理学报, 2021, 70(3): 034101. doi: 10.7498/aps.70.20200937
    [6] 党俊坡, 江秀娟, 唐振华. 光纤基底TiNi形状记忆合金薄膜制备工艺研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211437
    [7] 岳晓乐, 向以琳, 张莹. 形状记忆合金薄板系统全局激变现象分析. 物理学报, 2019, 68(18): 180501. doi: 10.7498/aps.68.20190155
    [8] 邵楠, 张盛兵, 邵舒渊. 具有感觉记忆的忆阻器模型. 物理学报, 2019, 68(1): 018501. doi: 10.7498/aps.68.20181577
    [9] 李志军, 曾以成, 谭志平. 一个通用的记忆器件模拟器. 物理学报, 2014, 63(9): 098501. doi: 10.7498/aps.63.098501
    [10] 刘洪涛, 孙光爱, 王沿东, 陈波, 汪小琳. 冲击诱发NiTi形状记忆合金相变行为研究. 物理学报, 2013, 62(1): 018103. doi: 10.7498/aps.62.018103
    [11] 邝玉兰, 唐国宁. 利用短期心脏记忆消除螺旋波和时空混沌. 物理学报, 2012, 61(19): 190501. doi: 10.7498/aps.61.190501
    [12] 刘娟, 高洁. 甲型流感病毒DNA序列的长记忆ARFIMA模型. 物理学报, 2011, 60(4): 048702. doi: 10.7498/aps.60.048702
    [13] 罗礼进, 仲崇贵, 全宏瑞, 谭志中, 蒋青, 江学范. Heusler合金Mn2NiGe磁性形状记忆效应的第一性原理预测. 物理学报, 2010, 59(11): 8037-8041. doi: 10.7498/aps.59.8037
    [14] 孙 蔚, 王清周, 韩福生. 石墨颗粒/CuAlMn形状记忆合金复合材料中的位错内耗峰. 物理学报, 2007, 56(2): 1020-1026. doi: 10.7498/aps.56.1020
    [15] 彭建华, 于洪洁. 神经系统中随机和混沌感知信号的联想记忆与分割. 物理学报, 2007, 56(8): 4353-4360. doi: 10.7498/aps.56.4353
    [16] 于淑云, 刘何燕, 曲静萍, 李养贤, 柳祝红, 陈京兰, 代学芳, 吴光恒. 掺Mn对NiFeGa磁性形状记忆材料单晶特性的影响. 物理学报, 2006, 55(6): 3022-3025. doi: 10.7498/aps.55.3022
    [17] 宫长伟, 王轶农, 杨大智. NiTi形状记忆合金马氏体相变的第一性原理研究. 物理学报, 2006, 55(6): 2877-2881. doi: 10.7498/aps.55.2877
    [18] 董林荣. 相互作用herding模型:记忆与遗忘. 物理学报, 2006, 55(8): 4046-4050. doi: 10.7498/aps.55.4046
    [19] 魏向军, 徐 清, 王天民, 贾全杰, 王焕华, 冯松林. 周期性多层膜合金化制取的TiNi形状记忆薄膜的室温微结构特征. 物理学报, 2006, 55(3): 1508-1511. doi: 10.7498/aps.55.1508
    [20] 郑红星, 刘 剑, 夏明许, 李建国. Ni-Fe-Ga磁致形状记忆合金中间马氏体相变. 物理学报, 2005, 54(4): 1719-1721. doi: 10.7498/aps.54.1719
计量
  • 文章访问数:  8892
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-11
  • 修回日期:  2019-01-15
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-20

/

返回文章
返回