搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

GaAs纳米线晶体结构及光学特性

王鹏华 唐吉龙 亢玉彬 方铉 房丹 王登魁 林逢源 王晓华 魏志鹏

引用本文:
Citation:

GaAs纳米线晶体结构及光学特性

王鹏华, 唐吉龙, 亢玉彬, 方铉, 房丹, 王登魁, 林逢源, 王晓华, 魏志鹏

Crystal structure and optical properties of GaAs nanowires

Wang Peng-Hua, Tang Ji-Long, Kang Yu-Bin, Fang Xuan, Fang Dan, Wang Deng-Kui, Lin Feng-Yuan, Wang Xiao-Hua, Wei Zhi-Peng
PDF
HTML
导出引用
  • 采用分子束外延技术在N-型Si (111)衬底上利用自催化生长机制外延砷化镓(GaAs)纳米线, 对生长的纳米线进行扫描电子显微镜测试, 纳米线垂直度高, 长度直径均匀度好. 对纳米线进行光致发光(photoluminescence, PL)光谱测试, 发现低温10 K下两个发光峰P1和P2分别位于1.493 eV和1.516 eV, 推断可能是纤锌矿/闪锌矿(WZ/ZB)混相结构引起的发光以及激子复合引起的发光; 随着温度升高, 发现两峰出现红移, 并通过Varshni公式拟合得到变温变化曲线. 对纳米线进行变功率PL光谱测试, 发现P1位置的峰位随功率增加而蓝移, 而P2位置的峰位不变. 通过拟合发现P1峰位与功率1/3次方成线性相关, 判断可能是WZ/ZB混相结构引起的Ⅱ型发光; 同时, 对P2位置的峰位进行拟合, P2为激子复合发光. 对纳米线进行拉曼光谱测试, 从光谱图中发现GaAs WZ结构特有的E2声子峰, 因此证明生长出的纳米线为WZ/ZB混相结构, 并通过高分辨透射电子显微镜更直观地观察到纳米线的混相结构.
    Gallium arsenide (GaAs) nanowires are epitaxially grown on an N-type Si (111) substrate by molecular beam epitaxy according to self-catalysis growth mechanism. Testing the grown nanowires by scanning electron microscope, it is found that the nanowires have high verticality and good uniformity in length and diameter. Variable temperature photoluminescence (PL) spectroscopy is used on nanowires. The test results show that the two luminescence peaks P1 and P2 at 10 K are located at 1.493 eV and 1.516 eV, respectively, and it is inferred that it may be the luminescence caused by WZ/ZB miscible structure and the free exciton luminescence peak. These two peaks present red-shift with temperature increasing. The temperature change curve is obtained by fitting the Varshni formula. The variable power PL spectroscopy test finds that the peak position of P1 position is blue shifted with power increasing, but the peak position of the P2 remains unchanged. By fitting, it is found that the P1 peak position is linearly related to power to the power of 1/3, and it is judged that it may be type-II luminescence caused by WZ/ZB mixed phase structure. At the same time, the peak position of the P2 position is fitted and parameter α approximately equals 1.56, therefore P2 is a free exciton luminescence. A Raman spectrum test is performed on the nanowires, and an E2 phonon peak unique to the GaAs WZ structure is found from the spectrum. It is proved that the grown nanowires possess WZ/ZB mixed phase structures, and the hybrid phase structure of nanowires is more intuitively observed by high resolution transmission electron microscopy.
      通信作者: 唐吉龙, jl_tangcust@163.com
    • 基金项目: 国家自然科学基金(批准号: 11674038, 61704011, 61674021, 61574022)、吉林省科技发展计划(批准号: 20160204074GX, 20160519007JH, 20160101255JC)和长春理工大学科技创新基金(批准号: XJJLG-2016-11, XJJLG-2016-14)资助的课题.
      Corresponding author: Tang Ji-Long, jl_tangcust@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674038, 61704011, 61674021, 61574022), the Science and Technology Development Plan of Jilin Province, China (Grant Nos. 20160204074GX, 20160519007JH, 20160101255JC), and the Science and Technology Innovation Fund of Changchun University of Science and Technology, China (Grant Nos. XJJLG-2016-11, XJJLG-2016-14).
    [1]

    Dai X, Zhang S, Wang Z L, Adamo G, Liu H, Huang Y Z, Couteau C, Soci C 2014 Nano Lett. 14 2688Google Scholar

    [2]

    Farrell A C, Senanayake P, Meng X, Hsieh N Y, Huffaker D L 2017 Nano Lett. 17 2420Google Scholar

    [3]

    Cammi D, Rodiek B, Zimmermann K, Kück S, Voss T 2017 J. Mater. Res. 32 2464Google Scholar

    [4]

    Tchernycheva M, Lavenus P, Zhang H, Babichev A V, Jacopin G, Shahmohammadi M, Julien F H, Ciechonski R, Vescovi G, Kryliouk O 2014 Nano Lett. 14 2456Google Scholar

    [5]

    Hussain L, Karimi M, Berg A, Jain V, Borgström M T, Gustafsson A, Samuelson L, Pettersson H 2017 Nanotechnology 28 485205Google Scholar

    [6]

    Ullah A R, Meyer F, Gluschke J G, Naureen S, Caroff P, Krogstrup P, Nygård J, Micolich A P 2018 Nano Lett. 18 5673Google Scholar

    [7]

    Price A, Martinez A 2015 J. Appl. Phys. 117 164501Google Scholar

    [8]

    Yang W, Pan D, Shen R, Wang X, Zhao J, Chen Q 2018 Nanotechnology 29 415230

    [9]

    毛宏伟, 刘一先, 李富铭 1990 中国激光 17 538Google Scholar

    Mao H W, Liu Y X, Li F M 1990 Chin. J. Las. 17 538Google Scholar

    [10]

    Han N, Wang F, Hou J J, Yip S, Lin H, Fang M, Xiu F, Shi X L, Hung T F, Ho J C 2012 Cryst. Growth Des. 12 6243Google Scholar

    [11]

    夏宁, 方铉, 容天宇, 王登魁, 房丹, 唐吉龙, 王新伟, 王晓华, 李永峰, 姚斌, 魏志鹏 2018 中国激光 45 0603002

    Xia N, Fang X, Rong T Y, Wang D K, Fang D, Tang J L, Wang X W, Wang X H, Li Y F, Yao B, Wei Z P 2018 Chin. J. Las. 45 0603002

    [12]

    Glas F, Harmand J C, Patriarche G 2007 Phys. Rev. Lett. 99 146101Google Scholar

    [13]

    Hoang T B, Zhou H, Moses A F, Dheeraj D L, Helvoor A, Fimland B O, Weman H 2009 Mater. Res. Soc. Symp. Proc. 1144

    [14]

    Vainorius N, Jacobsson D, Lehmann S, Gustafsson A, Dick K A, Samuelson L, Pistol M E 2014 Phys. Rev. B 89 165423Google Scholar

    [15]

    Kinzel J B, Schülein F J, Weiß M, Janker L, Bühler D D, Heigl M, Rudolph D, Morkötter S, Döblinger M, Bichler M, Abstreiter G, Finley J J, Wixforth A, Koblmüller G, Abstreiter G 2016 ACS Nano 10 4942Google Scholar

    [16]

    Senichev A, Corfdir P, Brandt O, Ramsteiner M, Breuer S, Schilling J, Geelhaar L, Werner P 2018 Nano Res. 1 14

    [17]

    Mukherjee A, Ghosh S, Breuer S, Jahn U, Geelhaar L, Grahn H T 2017 J. Appl. Phys. 117 054308

    [18]

    Kim H, Ren D, Farrell A C, Huffaker D L 2018 Nanotechnology 29 085601Google Scholar

    [19]

    崔建功, 张霞, 颜鑫, 李军帅, 黄永清, 任晓敏 2014 物理学报 63 136103Google Scholar

    Cui J G, Zhang X, Yan X, Li J S, Huang Y Q, Ren X M 2014 Acta Phys. Sin. 63 136103Google Scholar

    [20]

    Liu Y, Peng Y, Guo J, La D, Xu Z 2018 AIP Adv. 8 055108Google Scholar

    [21]

    Zhou C, Zheng K, Liao Z M, Chen P P, Lu W, Zou J 2017 J. Mater. Chem. C 5 5257Google Scholar

    [22]

    Timofeeva M, Bouravleuv A, Cirlin G, Shtrom I, Soshnikov I, Reig Escalé M, Sergeyev A Grange R 2016 Nano Lett. 16 6290Google Scholar

    [23]

    Bussone G, Schäfer-Eberwein H, Dimakis E, Biermanns A, Carbone D, Tahraoui A, Geelhaar L, Bolívar P H, Schülli T U, Pietsch U 2015 Nano Lett. 15 981Google Scholar

    [24]

    Fontcuberta i Morral A, Colombo C, Abstreiter G, Arbiol J, Morante J R 2008 Appl. Phys. Lett. 92 063112Google Scholar

    [25]

    Bauer B, Rudolph A, Soda M, Fontcuberta i Morral A, Zweck J, Schuh D, Reiger E 2010 Nanotechnology 21 435601Google Scholar

    [26]

    Ramsteiner M, Brandt O, Kusch P, Breuer S, Reich S, Geelhaar L 2013 Appl. Phys. Lett. 103 043121Google Scholar

    [27]

    Jahn U, Lähnemann J, Pfüller C, Brandt O, Breuer S, Jenichen B, Ramsteiner M, Geelhaar L, Riechert H 2012 Phys. Rev. B 85 045323Google Scholar

    [28]

    Falcão B P, Leitão J P, Correia M R, Soares M R, Morales F M, Mánuel J M, Garcia R, Gustafsson A, Moreira M V B, de Oliveira A G, González J C 2013 J. Appl. Phys. 114 183508Google Scholar

    [29]

    Rudolph D, Schweickert L, Morkötter S, Loitsch B, Hertenberger S, Becker J, Bichler M, Abstreiter G, Finley J J, Koblmüller G 2013 Appl. Phys. Lett. 105 033111

    [30]

    Varshni Y P 1967 Physica 34 149Google Scholar

    [31]

    Chiu Y S, Ya M H, Su W S, Chen Y F 2002 J. Appl. Phys. 92 5810Google Scholar

    [32]

    Jin S, Zheng Y, Li A 1997 J. Appl. Phys. 82 3870Google Scholar

    [33]

    Fang X, Wei Z P, Chen R, Tang J L, Zhao H F, Zhang L G, Zhao D X, Fang D, Li J H, Fang F, Chu X Y, Wang X H 2015 ACS Appl. Mater. Inter. 7 10331Google Scholar

    [34]

    Begum N, Piccin M, Jabeen F, Bais G, Rubini S, Martelli F, Bhatti A S 2008 J. Appl. Phys. 104 104311Google Scholar

    [35]

    Spirkoska D, Arbiol J, Gustafsson A, Conesa-Boj S, Glas F, Zardo I, Heigoldt M, Gass M H, Bleloch A L, Estrade S, Kaniber M, Rossler J, Peiro F, Morante J R, Abstreiter G, Samuelson L, Fontcuberta i Morral A 2009 Phys. Rev. B 80 245325Google Scholar

  • 图 1  GaAs纳米线形貌及纳米线长度直径分布 (a) GaAs纳米线侧面SEM图像; (b) GaAs纳米线长度分布统计图; (c) GaAs纳米线平面SEM图像, 插图为纳米线形状; (d) GaAs纳米线直径分布统计图

    Fig. 1.  The morphology, length, and diameter distribution of GaAs nanowires: (a) Side SEM image of GaAs nanowires; (b) GaAs nanowires length distribution; (c) plane SEM image of GaAs nanowires, inset is the shape of the nanowire; (d) GaAs nanowires diameter distribution

    图 2  GaAs纳米线变温PL光谱测试图 (a)发光峰位随温度10−140 K的变化; (b) P1, P2发光峰峰位随温度变化的拟合曲线

    Fig. 2.  Variable power PL spectrum: (a) The change of luminescence peak position with temperature 10−140 K; (b) fitting curve of the peak position of P1 and P2 luminescence with the change of temperature

    图 3  变功率PL光谱测试图 (a)不同功率下PL光谱曲线, 插图为P2, P1峰强比随功率变化曲线; (b) P1峰位与P1/3的关系; (c) P2峰强与功率的关系

    Fig. 3.  Variable power PL spectrum: (a) The PL spectral curve with different power is illustrated as the peak ratio of P2, P1 changing with power; (b) the relationship between P1 peak and P1/3; (c) the relationship between P2 peak intensity and power

    图 4  GaAs纳米线及GaAs衬底的Raman光谱图

    Fig. 4.  Raman spectra of GaAs nanowires and GaAs substrate

    图 5  GaAs纳米线透射电子显微镜(TEM)图像 (a)低分辨TEM图像; (b)HRTEM图像; (c)为选区电子衍射图像

    Fig. 5.  Transmission electron microscopy (TEM) image of GaAs nanowires: (a) The low resolution TEM; (b) the high resolution TEM; (c) the selected area electron diffraction image

  • [1]

    Dai X, Zhang S, Wang Z L, Adamo G, Liu H, Huang Y Z, Couteau C, Soci C 2014 Nano Lett. 14 2688Google Scholar

    [2]

    Farrell A C, Senanayake P, Meng X, Hsieh N Y, Huffaker D L 2017 Nano Lett. 17 2420Google Scholar

    [3]

    Cammi D, Rodiek B, Zimmermann K, Kück S, Voss T 2017 J. Mater. Res. 32 2464Google Scholar

    [4]

    Tchernycheva M, Lavenus P, Zhang H, Babichev A V, Jacopin G, Shahmohammadi M, Julien F H, Ciechonski R, Vescovi G, Kryliouk O 2014 Nano Lett. 14 2456Google Scholar

    [5]

    Hussain L, Karimi M, Berg A, Jain V, Borgström M T, Gustafsson A, Samuelson L, Pettersson H 2017 Nanotechnology 28 485205Google Scholar

    [6]

    Ullah A R, Meyer F, Gluschke J G, Naureen S, Caroff P, Krogstrup P, Nygård J, Micolich A P 2018 Nano Lett. 18 5673Google Scholar

    [7]

    Price A, Martinez A 2015 J. Appl. Phys. 117 164501Google Scholar

    [8]

    Yang W, Pan D, Shen R, Wang X, Zhao J, Chen Q 2018 Nanotechnology 29 415230

    [9]

    毛宏伟, 刘一先, 李富铭 1990 中国激光 17 538Google Scholar

    Mao H W, Liu Y X, Li F M 1990 Chin. J. Las. 17 538Google Scholar

    [10]

    Han N, Wang F, Hou J J, Yip S, Lin H, Fang M, Xiu F, Shi X L, Hung T F, Ho J C 2012 Cryst. Growth Des. 12 6243Google Scholar

    [11]

    夏宁, 方铉, 容天宇, 王登魁, 房丹, 唐吉龙, 王新伟, 王晓华, 李永峰, 姚斌, 魏志鹏 2018 中国激光 45 0603002

    Xia N, Fang X, Rong T Y, Wang D K, Fang D, Tang J L, Wang X W, Wang X H, Li Y F, Yao B, Wei Z P 2018 Chin. J. Las. 45 0603002

    [12]

    Glas F, Harmand J C, Patriarche G 2007 Phys. Rev. Lett. 99 146101Google Scholar

    [13]

    Hoang T B, Zhou H, Moses A F, Dheeraj D L, Helvoor A, Fimland B O, Weman H 2009 Mater. Res. Soc. Symp. Proc. 1144

    [14]

    Vainorius N, Jacobsson D, Lehmann S, Gustafsson A, Dick K A, Samuelson L, Pistol M E 2014 Phys. Rev. B 89 165423Google Scholar

    [15]

    Kinzel J B, Schülein F J, Weiß M, Janker L, Bühler D D, Heigl M, Rudolph D, Morkötter S, Döblinger M, Bichler M, Abstreiter G, Finley J J, Wixforth A, Koblmüller G, Abstreiter G 2016 ACS Nano 10 4942Google Scholar

    [16]

    Senichev A, Corfdir P, Brandt O, Ramsteiner M, Breuer S, Schilling J, Geelhaar L, Werner P 2018 Nano Res. 1 14

    [17]

    Mukherjee A, Ghosh S, Breuer S, Jahn U, Geelhaar L, Grahn H T 2017 J. Appl. Phys. 117 054308

    [18]

    Kim H, Ren D, Farrell A C, Huffaker D L 2018 Nanotechnology 29 085601Google Scholar

    [19]

    崔建功, 张霞, 颜鑫, 李军帅, 黄永清, 任晓敏 2014 物理学报 63 136103Google Scholar

    Cui J G, Zhang X, Yan X, Li J S, Huang Y Q, Ren X M 2014 Acta Phys. Sin. 63 136103Google Scholar

    [20]

    Liu Y, Peng Y, Guo J, La D, Xu Z 2018 AIP Adv. 8 055108Google Scholar

    [21]

    Zhou C, Zheng K, Liao Z M, Chen P P, Lu W, Zou J 2017 J. Mater. Chem. C 5 5257Google Scholar

    [22]

    Timofeeva M, Bouravleuv A, Cirlin G, Shtrom I, Soshnikov I, Reig Escalé M, Sergeyev A Grange R 2016 Nano Lett. 16 6290Google Scholar

    [23]

    Bussone G, Schäfer-Eberwein H, Dimakis E, Biermanns A, Carbone D, Tahraoui A, Geelhaar L, Bolívar P H, Schülli T U, Pietsch U 2015 Nano Lett. 15 981Google Scholar

    [24]

    Fontcuberta i Morral A, Colombo C, Abstreiter G, Arbiol J, Morante J R 2008 Appl. Phys. Lett. 92 063112Google Scholar

    [25]

    Bauer B, Rudolph A, Soda M, Fontcuberta i Morral A, Zweck J, Schuh D, Reiger E 2010 Nanotechnology 21 435601Google Scholar

    [26]

    Ramsteiner M, Brandt O, Kusch P, Breuer S, Reich S, Geelhaar L 2013 Appl. Phys. Lett. 103 043121Google Scholar

    [27]

    Jahn U, Lähnemann J, Pfüller C, Brandt O, Breuer S, Jenichen B, Ramsteiner M, Geelhaar L, Riechert H 2012 Phys. Rev. B 85 045323Google Scholar

    [28]

    Falcão B P, Leitão J P, Correia M R, Soares M R, Morales F M, Mánuel J M, Garcia R, Gustafsson A, Moreira M V B, de Oliveira A G, González J C 2013 J. Appl. Phys. 114 183508Google Scholar

    [29]

    Rudolph D, Schweickert L, Morkötter S, Loitsch B, Hertenberger S, Becker J, Bichler M, Abstreiter G, Finley J J, Koblmüller G 2013 Appl. Phys. Lett. 105 033111

    [30]

    Varshni Y P 1967 Physica 34 149Google Scholar

    [31]

    Chiu Y S, Ya M H, Su W S, Chen Y F 2002 J. Appl. Phys. 92 5810Google Scholar

    [32]

    Jin S, Zheng Y, Li A 1997 J. Appl. Phys. 82 3870Google Scholar

    [33]

    Fang X, Wei Z P, Chen R, Tang J L, Zhao H F, Zhang L G, Zhao D X, Fang D, Li J H, Fang F, Chu X Y, Wang X H 2015 ACS Appl. Mater. Inter. 7 10331Google Scholar

    [34]

    Begum N, Piccin M, Jabeen F, Bais G, Rubini S, Martelli F, Bhatti A S 2008 J. Appl. Phys. 104 104311Google Scholar

    [35]

    Spirkoska D, Arbiol J, Gustafsson A, Conesa-Boj S, Glas F, Zardo I, Heigoldt M, Gass M H, Bleloch A L, Estrade S, Kaniber M, Rossler J, Peiro F, Morante J R, Abstreiter G, Samuelson L, Fontcuberta i Morral A 2009 Phys. Rev. B 80 245325Google Scholar

  • [1] 张茂笛, 焦陈寅, 文婷, 李靓, 裴胜海, 王曾晖, 夏娟. 二硫化铼的原位高压偏振拉曼光谱. 物理学报, 2022, 71(14): 140702. doi: 10.7498/aps.71.20220053
    [2] 李加红, 孙贵花, 张庆礼, 王小飞, 张德明, 刘文鹏, 高进云, 郑丽丽, 韩松, 陈照, 殷绍唐. 退火气氛对GdScO3和Yb:GdScO3晶体的结构和光谱性质的影响. 物理学报, 2022, 71(16): 164206. doi: 10.7498/aps.71.20220196
    [3] 亢玉彬, 唐吉龙, 李科学, 李想, 侯效兵, 楚学影, 林逢源, 王晓华, 魏志鹏. Be, Si掺杂调控GaAs纳米线结构相变及光学特性. 物理学报, 2021, 70(20): 207804. doi: 10.7498/aps.70.20210782
    [4] 苑汇帛, 李林, 曾丽娜, 张晶, 李再金, 曲轶, 杨小天, 迟耀丹, 马晓辉, 刘国军. 金辅助催化方法制备GaAs和GaAs/InGaAs纳米线结构的形貌表征及生长机理研究. 物理学报, 2018, 67(18): 188101. doi: 10.7498/aps.67.20180220
    [5] 张勇, 施毅敏, 包优赈, 喻霞, 谢忠祥, 宁锋. 表面钝化效应对GaAs纳米线电子结构性质影响的第一性原理研究. 物理学报, 2017, 66(19): 197302. doi: 10.7498/aps.66.197302
    [6] 张莉, 郑海洋, 王颖萍, 丁蕾, 方黎. 远距离探测拉曼光谱特性. 物理学报, 2016, 65(5): 054206. doi: 10.7498/aps.65.054206
    [7] 乔晓粉, 李晓莉, 刘赫男, 石薇, 刘雪璐, 吴江滨, 谭平恒. 悬浮二维晶体材料反射光谱和光致发光光谱的周期性振荡现象. 物理学报, 2016, 65(13): 136801. doi: 10.7498/aps.65.136801
    [8] 周海亮, 顾庆天, 张清华, 刘宝安, 朱丽丽, 张立松, 张芳, 许心光, 王正平, 孙洵, 赵显. NH4H2PO4和ND4D2PO4晶体微结构的拉曼光谱研究. 物理学报, 2015, 64(19): 197801. doi: 10.7498/aps.64.197801
    [9] 崔建功, 张霞, 颜鑫, 李军帅, 黄永清, 任晓敏. GaAs纳米线及GaAs/InxGa1-xAs/GaAs纳米线径向异质结构的无催化选区生长的实验研究. 物理学报, 2014, 63(13): 136103. doi: 10.7498/aps.63.136103
    [10] 陈元正, 李硕, 李亮, 门志伟, 李占龙, 孙成林, 里佐威, 周密. HoVO4相变的高压拉曼光谱和理论计算研究. 物理学报, 2013, 62(24): 246101. doi: 10.7498/aps.62.246101
    [11] 周密, 李占龙, 陆国会, 李东飞, 孙成林, 高淑琴, 里佐威. 高压拉曼光谱方法研究联苯分子费米共振. 物理学报, 2011, 60(5): 050702. doi: 10.7498/aps.60.050702
    [12] 王丽红, 尤静林, 王媛媛, 郑少波, 西蒙·派特里克, 侯敏, 季自方. 六方晶型MgTiO3温致微结构变化及其原位拉曼光谱研究. 物理学报, 2011, 60(10): 104209. doi: 10.7498/aps.60.104209
    [13] 牛华蕾, 李晓娜, 胡冰, 董闯, 姜辛. 纳米β-FeSi2/a-Si多层膜室温光致发光分析. 物理学报, 2009, 58(6): 4117-4122. doi: 10.7498/aps.58.4117
    [14] 丁才蓉, 王 冰, 杨国伟, 汪河洲. 催化剂对热蒸发法生长SnO2纳米晶体质量的影响及其发光光谱研究. 物理学报, 2007, 56(3): 1775-1778. doi: 10.7498/aps.56.1775
    [15] 秦秀娟, 邵光杰, 刘日平, 王文魁, 姚玉书, 孟惠民. 高性能ZnO纳米块体材料的制备及其拉曼光谱学特征. 物理学报, 2006, 55(7): 3760-3765. doi: 10.7498/aps.55.3760
    [16] 徐存英, 张鹏翔, 严 磊. 表面修饰的钛酸钡的拉曼光谱. 物理学报, 2005, 54(11): 5089-5092. doi: 10.7498/aps.54.5089
    [17] 白 莹, 兰燕娜, 莫育俊. 拉曼光谱法计算多孔硅样品的温度. 物理学报, 2005, 54(10): 4654-4658. doi: 10.7498/aps.54.4654
    [18] 丁 硕, 刘玉龙, 萧季驹. 不同晶粒尺寸SnO2纳米粒子的拉曼光谱研究. 物理学报, 2005, 54(9): 4416-4421. doi: 10.7498/aps.54.4416
    [19] 丁 佩, 梁二军, 张红瑞, 刘一真, 刘 慧, 郭新勇, 杜祖亮. “锥形嵌套"结构CNx纳米管的生长机理及拉曼光谱研究. 物理学报, 2003, 52(1): 237-241. doi: 10.7498/aps.52.237
    [20] 董艳锋, 李清山. 多孔铝镶嵌8-羟基喹啉铝荧光光谱研究. 物理学报, 2002, 51(7): 1645-1648. doi: 10.7498/aps.51.1645
计量
  • 文章访问数:  14258
  • PDF下载量:  179
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-30
  • 修回日期:  2019-02-25
  • 上网日期:  2019-04-01
  • 刊出日期:  2019-04-20

/

返回文章
返回