搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双层耦合介质中四边形图灵斑图的数值研究

李新政 白占国 李燕

引用本文:
Citation:

双层耦合介质中四边形图灵斑图的数值研究

李新政, 白占国, 李燕

Numerical investigation on square Turing patterns in medium with two coupled layers

Li Xin-Zheng, Bai Zhan-Guo, Li Yan
PDF
HTML
导出引用
  • 采用双层线性耦合Lengyel-Epstein模型, 在二维空间对简单正四边和超点阵四边形进行了数值分析. 结果表明: 当两子系统波数比N>1时, 随耦合强度的增大, 基模的波矢空间共振形式发生改变, 系统由简单六边形自发演化为结构复杂的新型斑图, 除已报道的超六边形外, 还获得了简单正四边和多种超点阵四边形, 包括大小点、点线、白眼和环状超四边等斑图. 当耦合系数$\alpha $$\beta $在一定范围内同步增大时, 两子系统形成相同波长的I型简单正四边; 当$\alpha $$\beta $不同步增大时, 由于两图灵模在短波子系统形成共振, 系统斑图经相变发生I型正四边→II型正四边→超点阵四边形的转变; 当系统失去耦合作用时, 短波子系统波长为$\lambda $的I型正四边斑图迅速失稳并形成波长为$\lambda $/N的I型正四边, 随模拟时间的延长, 两子系统中不同波长的正四边均会经相变发生I型正四边→II型正四边→六边形的转变.
    In this paper, the simple and superlattice square patterns in two-dimensional space are investigated numerically by the two-layer coupled Lengyel-Epstein model. When the wave number ratio of Turing modes is greater than one, our results show that the spatial resonance form of the fundamental mode is changed with the increase of coupling strength, and simple hexagon pattern evolves spontaneously into a new pattern with a complicated structure. In addition to the reported superlattice hexagonal pattern, simple square pattern and superlattice square pattern are obtained, such as the complicated big-small spot, spot-line, ring and white-eye square pattern. The characteristics of simple and complicated superlattice square pattern are investigated by the intermediate process of evolution. When the coupling parameters $\alpha $ and $\beta $ increase synchronously within a certain range, the type I square patterns of the same wavelength are obtained in the two subsystems. When the coupling parameters $\alpha $ and $\beta $ increase asynchronously, the type I square pattern can evolve into the type II square pattern on the same spatial scale through phase transition. Then, the new subharmonic modes are generated, and the complicated superlattice square patterns are obtained due to the resonance between the two Turing modes in a short wavelength mode subsystem. The influence of coupling between two subsystems on the square pattern is investigated. When the type I square pattern of wavelength $\lambda $ emerges, the square pattern will quickly lose its stability in the short wavelength mode subsystem, since the coupling coefficient is equal to zero. Finally a new square pattern of wavelength $\lambda $/N is formed. The type I square patterns of two subsystems successively evolve into the type II square patterns through the phase transition. The spots move relatively with the extension of simulation time, and a new mode is generated and forms three-wave resonance in two subsystems, and then the hexagonal pattern dominates the system. Our results also show that the type II square pattern spontaneously transforms into a hexagonal pattern.
      通信作者: 白占国, baizg2006163@163.com
    • 基金项目: 河北省自然科学基金(批准号: A2017208081)和河北省教育厅重点项目(批准号: ZD2016025)资助的课题.
      Corresponding author: Bai Zhan-Guo, baizg2006163@163.com
    • Funds: Project supported by the Natural Science Foundation of Hebei Province, China (Grant No. A2017208081) and the Educational Commission of Hebei Province, China (Grant No. ZD2016025).
    [1]

    Landry W, Werner B T 1994 Physica D 77 238Google Scholar

    [2]

    Zhou C X, Guo H Y, Ouyang Q 2002 Phys. Rev. E 65 036118Google Scholar

    [3]

    Pampaloni E, Residori S, Soria S, Arecchi F T 1997 Phys. Rev. Lett. 78 1042Google Scholar

    [4]

    Cysyk J, Tung L 2008 Biophys. J. 94 1533Google Scholar

    [5]

    刘海英, 杨翠云, 唐国宁 2013 物理学报 62 010505Google Scholar

    Liu H Y, Yang C Y, Tang G N 2013 Acta Phys. Sin. 62 010505Google Scholar

    [6]

    Le Gal P, Pocheau A, Croquette V 1985 Phys. Rev. Lett. 54 2501Google Scholar

    [7]

    Wagner C, Müller H W, Knorr K 2000 Phys. Rev. E 62 33Google Scholar

    [8]

    Yang L F, Dolnik M, Zhabotinsky A M, Epstein I R 2006 Chaos 16 037114Google Scholar

    [9]

    Dong L F, Fan W L, He Y F, Liu F C, Li S F, Gao R L, Wang L 2006 Phys. Rev. E 73 066206Google Scholar

    [10]

    Wei L Y, Dong L F, Feng J Y, Liu W B, Fan W L, Pan Y Y 2016 J. Phys. D: Appl. Phys. 49 185203Google Scholar

    [11]

    Pagea K M, Maini P K, Monk N A M 2005 Physica D 202 95Google Scholar

    [12]

    Yang L F, Zhabotinsky A M, Epstein I R 2004 Phys. Rev. Lett. 92 198303Google Scholar

    [13]

    Li J, Wang H L, Ouyang Q 2014 Chaos 24 023115Google Scholar

    [14]

    Judd S L, Silber M 2000 Physica D 136 45Google Scholar

    [15]

    Turing A M 1952 Philos. Trans. R. Soc. London, Ser. B 237 37Google Scholar

    [16]

    Qian Y, Gao H Y, Yao C G, Cui X H, Ma J 2018 Chin. Phys. B 27 108902Google Scholar

    [17]

    Mikhailova A S, Showalter K 2006 Phys. Rep. 425 79Google Scholar

    [18]

    张荣培, 王震, 王语, 韩子健 2018 物理学报 67 050503Google Scholar

    Zhang R P, Wang Z, Wang Y, Han Z J 2018 Acta Phys. Sin. 67 050503Google Scholar

    [19]

    Zhang L S, Liao X H, Mi Y Y, Qian Y, Hu G 2014 Chin. Phys. B 23 078906Google Scholar

    [20]

    Míguez D G, Dolnik M, Epstein I R, Muñuzuri A P 2011 Phys. Rev. E 84 046210Google Scholar

    [21]

    Gambino G, Lombardo M C, Sammartino M 2014 Acta Appl. Math. 132 283Google Scholar

    [22]

    Dong L F, He Y F, Liu W L, Gao R L, Wang H F, Zhao H T 2007 Appl. Phys. Lett. 90 031504Google Scholar

    [23]

    Barrio R A, Varea C, Aragon J L, Maini P K 1999 Bull. Math. Biol. 61 483Google Scholar

    [24]

    Dong L F, Fan W L, Pan Y Y 2010 Plasma Sci. Technol. 12 172Google Scholar

  • 图 1  两子系统图灵模型的色散曲线

    Fig. 1.  Dispersion curves of Turing mode in two subsystems.

    图 2  无耦合时两子系统生成的六边形(a), (b)及耦合时生成的正四边形(c)

    Fig. 2.  Hexagonal patterns (a), (b) without coupling and square pattern (c) with coupling in the two subsystems.

    图 3  失去耦合后两子系统中正四边斑图的自发演化

    Fig. 3.  Spontaneous evolution of square patterns in two subsystems after loss of coupling.

    图 4  (a)—(f)大小点超四边的形成过程, 模拟时间顺序为463.8, 827.9, 893.2, 927.8, 957.4, 975.0; (g) 空间傅里叶频谱; (h) 波形空间分布($\alpha = 0.085$, $\beta = 0.11$, 其余参数见图2)

    Fig. 4.  (a)−(f) Formation process of big-small spot square pattern, and the simulation time sequence is as follows: 463.8, 827.9, 893.2, 927.8, 957.4, and 975.0; (g) Fourier spectrum; (h) waveform diagram ($\alpha = 0.085$, $\beta = 0.11$, the other parameters is the same value of Fig. 2).

    图 5  不同波数比时系统形成的超四边形 (a)复杂大小点四边, Du1 = 11.885, Dv1 = 163.425, Du2 = 46.30, Dv2 = 671.25, $\alpha = 0.075$, $\beta = 0.11$; (b) 点线四边, Du1 = 2.95, Dv1 = 41.15, Du2 = 25.75, Dv2 = 382.05, $\alpha = 0.085$, $\beta = 0.11$; (c)环状四边, Du1 = 2.95, Dv1 = 41.15, Du2 = 45.90, Dv2 = 677.05, $\alpha = 0.085$, $\beta = 0.11$; (d)白眼四边, Du1 = 2.95, Dv1 = 41.15, Du2 = 71.0, Dv2 = 1065.25, $\alpha = 0.075$, $\beta = 0.11$

    Fig. 5.  Square superlattice pattern at different wavenumber ratios: (a) Complex big-small spot square pattern, Du1 = 11.885, Dv1 = 163.425, Du2 = 46.30, Dv2 = 671.25, $\alpha = 0.075$, $\beta = 0.11$; (b) spot-line square pattern, Du1 = 2.95, Dv1 = 41.15, Du2 = 25.75, Dv2 = 382.05, $\alpha = 0.085$, $\beta = 0.11$; (c) ring square pattern, Du1 = 2.95, Dv1 = 41.15, Du2 = 45.90, Dv2 = 677.05, $\alpha = 0.085$, $\beta = 0.11$; (d) white-eye square pattern, Du1 = 2.95, Dv1 = 41.15, Du2 = 71.0, Dv2 = 1065.25, $\alpha = 0.075$, $\beta = 0.11$.

  • [1]

    Landry W, Werner B T 1994 Physica D 77 238Google Scholar

    [2]

    Zhou C X, Guo H Y, Ouyang Q 2002 Phys. Rev. E 65 036118Google Scholar

    [3]

    Pampaloni E, Residori S, Soria S, Arecchi F T 1997 Phys. Rev. Lett. 78 1042Google Scholar

    [4]

    Cysyk J, Tung L 2008 Biophys. J. 94 1533Google Scholar

    [5]

    刘海英, 杨翠云, 唐国宁 2013 物理学报 62 010505Google Scholar

    Liu H Y, Yang C Y, Tang G N 2013 Acta Phys. Sin. 62 010505Google Scholar

    [6]

    Le Gal P, Pocheau A, Croquette V 1985 Phys. Rev. Lett. 54 2501Google Scholar

    [7]

    Wagner C, Müller H W, Knorr K 2000 Phys. Rev. E 62 33Google Scholar

    [8]

    Yang L F, Dolnik M, Zhabotinsky A M, Epstein I R 2006 Chaos 16 037114Google Scholar

    [9]

    Dong L F, Fan W L, He Y F, Liu F C, Li S F, Gao R L, Wang L 2006 Phys. Rev. E 73 066206Google Scholar

    [10]

    Wei L Y, Dong L F, Feng J Y, Liu W B, Fan W L, Pan Y Y 2016 J. Phys. D: Appl. Phys. 49 185203Google Scholar

    [11]

    Pagea K M, Maini P K, Monk N A M 2005 Physica D 202 95Google Scholar

    [12]

    Yang L F, Zhabotinsky A M, Epstein I R 2004 Phys. Rev. Lett. 92 198303Google Scholar

    [13]

    Li J, Wang H L, Ouyang Q 2014 Chaos 24 023115Google Scholar

    [14]

    Judd S L, Silber M 2000 Physica D 136 45Google Scholar

    [15]

    Turing A M 1952 Philos. Trans. R. Soc. London, Ser. B 237 37Google Scholar

    [16]

    Qian Y, Gao H Y, Yao C G, Cui X H, Ma J 2018 Chin. Phys. B 27 108902Google Scholar

    [17]

    Mikhailova A S, Showalter K 2006 Phys. Rep. 425 79Google Scholar

    [18]

    张荣培, 王震, 王语, 韩子健 2018 物理学报 67 050503Google Scholar

    Zhang R P, Wang Z, Wang Y, Han Z J 2018 Acta Phys. Sin. 67 050503Google Scholar

    [19]

    Zhang L S, Liao X H, Mi Y Y, Qian Y, Hu G 2014 Chin. Phys. B 23 078906Google Scholar

    [20]

    Míguez D G, Dolnik M, Epstein I R, Muñuzuri A P 2011 Phys. Rev. E 84 046210Google Scholar

    [21]

    Gambino G, Lombardo M C, Sammartino M 2014 Acta Appl. Math. 132 283Google Scholar

    [22]

    Dong L F, He Y F, Liu W L, Gao R L, Wang H F, Zhao H T 2007 Appl. Phys. Lett. 90 031504Google Scholar

    [23]

    Barrio R A, Varea C, Aragon J L, Maini P K 1999 Bull. Math. Biol. 61 483Google Scholar

    [24]

    Dong L F, Fan W L, Pan Y Y 2010 Plasma Sci. Technol. 12 172Google Scholar

  • [1] 刘贺, 杨亚晶, 唐玉凝, 魏衍举. 声致液滴失稳动力学研究. 物理学报, 2024, 73(20): 204204. doi: 10.7498/aps.73.20240965
    [2] 刘若琪, 贾萌萌, 范伟丽, 贺亚峰, 刘富成. 异质环境下各向异性扩散对图灵斑图的影响. 物理学报, 2022, 71(24): 248201. doi: 10.7498/aps.71.20221294
    [3] 尚帅朋, 陆勇俊, 王峰会. 表面效应对纳米线电极屈曲失稳的影响. 物理学报, 2022, 71(3): 033101. doi: 10.7498/aps.71.20211864
    [4] 刘雅慧, 董梦菲, 刘富成, 田淼, 王硕, 范伟丽. 双层耦合非对称反应扩散系统中的振荡图灵斑图. 物理学报, 2021, 70(15): 158201. doi: 10.7498/aps.70.20201710
    [5] 刘富成, 刘雅慧, 周志向, 郭雪, 董梦菲. 双层耦合非对称反应扩散系统中的超点阵斑图. 物理学报, 2020, 69(2): 028201. doi: 10.7498/aps.69.20191353
    [6] 张荣培, 王震, 王语, 韩子健. 反应扩散模型在图灵斑图中的应用及数值模拟. 物理学报, 2018, 67(5): 050503. doi: 10.7498/aps.67.20171791
    [7] 谢伟华, 尹思凡, 李博, 曹艳平, 冯西桥. 管腔结构软组织的三维形貌失稳. 物理学报, 2016, 65(18): 188704. doi: 10.7498/aps.65.188704
    [8] 李俊涛, 孙宇涛, 潘建华, 任玉新. 冲击加载下V形界面的失稳与湍流混合. 物理学报, 2016, 65(24): 245202. doi: 10.7498/aps.65.245202
    [9] 王理林, 王贤斌, 王红艳, 林鑫, 黄卫东. 晶体取向对定向凝固平界面失稳行为的影响. 物理学报, 2012, 61(14): 148104. doi: 10.7498/aps.61.148104
    [10] 陈俊英, 董丽芳, 李媛媛, 宋倩, 嵇亚飞. 大气压介质阻挡放电超四边形斑图的等离子体参量. 物理学报, 2012, 61(7): 075211. doi: 10.7498/aps.61.075211
    [11] 白占国, 董丽芳, 李永辉, 范伟丽. 双层耦合Lengel-Epstein模型中的超点阵斑图. 物理学报, 2011, 60(11): 118201. doi: 10.7498/aps.60.118201
    [12] 邓敏艺, 唐国宁, 孔令江, 刘慕仁. 激发介质中螺旋波失稳的微观机理研究. 物理学报, 2010, 59(4): 2339-2344. doi: 10.7498/aps.59.2339
    [13] 甘正宁, 马 军, 张国勇, 陈 勇. 小世界网络上螺旋波失稳的研究. 物理学报, 2008, 57(9): 5400-5406. doi: 10.7498/aps.57.5400
    [14] 董丽芳, 赵海涛, 谢伟霞, 王红芳, 刘微粒, 范伟丽, 肖 红. 介质阻挡放电系统中超四边形斑图形成的实验研究. 物理学报, 2008, 57(9): 5768-5773. doi: 10.7498/aps.57.5768
    [15] 董丽芳, 李树锋, 刘 峰, 刘富成, 刘书华, 范伟丽. 大气压氩气介质阻挡放电中的四边形斑图和六边形斑图. 物理学报, 2006, 55(1): 362-366. doi: 10.7498/aps.55.362
    [16] 董丽芳, 范伟丽, 李雪辰, 高瑞玲, 刘富成, 李树锋, 贺亚峰. 氩气放电中四边形发光斑图形成过程研究. 物理学报, 2006, 55(10): 5375-5379. doi: 10.7498/aps.55.5375
    [17] 丁国陆, 林鑫, 黄卫东, 周尧和. 平界面失稳初始扰动波长的选择. 物理学报, 1997, 46(6): 1243-1248. doi: 10.7498/aps.46.1243
    [18] 刘俊明, 刘治国, 吴状春. CuCo合金失稳分解动力学. 物理学报, 1995, 44(2): 319-327. doi: 10.7498/aps.44.319
    [19] 黄五群, 陈天崙, 辛运愇. 二维随机三角点阵上三态和四态Potts模型的蒙特—卡罗重整化群研究. 物理学报, 1989, 38(4): 659-664. doi: 10.7498/aps.38.659
    [20] 徐锡申. 体心立方晶二元合金超点阵理论. 物理学报, 1956, 12(6): 528-549. doi: 10.7498/aps.12.528
计量
  • 文章访问数:  7168
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-10
  • 修回日期:  2019-01-05
  • 上网日期:  2019-03-01
  • 刊出日期:  2019-03-20

/

返回文章
返回