搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表/界面水的扫描探针技术研究进展

尤思凡 孙鲁晔 郭静 裘晓辉 江颖

引用本文:
Citation:

表/界面水的扫描探针技术研究进展

尤思凡, 孙鲁晔, 郭静, 裘晓辉, 江颖

Recent advances in probing surface/interfacial water by scanning probe microscopy

You Si-Fan, Sun Lu-Ye, Guo Jing, Qiu Xiao-Hui, Jiang Ying
PDF
导出引用
  • 表面和界面水在自然界、人们的日常生活以及现代科技中无处不在.它在物理、化学、环境学、材料学、生物学、地质学等诸多基础学科和应用领域起到至关重要的作用.因此,表面和界面水的功能与特性的研究,是水基础科学的一项核心任务.然而,由于水分子之间氢键相互作用的复杂性,及其与水-固界面相互作用的竞争,使得表(界)面水对于局域环境的影响非常敏感,往往需要深入到分子层次研究其微观结构和动力学过程.近年来,新型扫描探针技术的发展使得人们可以在单分子甚至亚分子尺度上对表(界)面水展开细致的实空间研究.本文着重介绍几种代表性的扫描探针技术及其在表(界)面水体系中的应用,包括:超高真空扫描隧道显微术、单分子振动谱技术、电化学扫描隧道显微术和非接触式原子力显微术.此外,本文还将对表(界)面水扫描探针技术研究面临的挑战和未来发展方向进行了展望.
    Surface and interfacial water is ubiquitous in nature and modern technology.It plays vital roles in an extremely wide range of basic and applied fields including physics,chemistry,environmental science,material science,biology,geology, etc.Therefore,the studies of surface/interfacial water lies at the heart of water science.When water molecules are brought into contact with various materials,a variety of phenomena can show up,such as wetting,corrosion,lubrication, nanofluidics,ice nucleation,to name just a few.Due to the complexity of hydrogen-bonding interactions between water molecules and the competition between water-water interaction and water-solid interaction,surface/interfacial water is very sensitive to local environment,which makes it necessary to study the structure and dynamics of water at the molecular level.In recent years,the development of new scanning probe techniques allows detailed real-space research on surface/interfacial water at single-molecule or even submolecular scale.In Section 2,several representative scanning probe techniques and their applications in surface/interfacial water are reviewed.The first one is ultra-high vacuum scanning tunneling microscopy,which allows molecular imaging of single water molecules,water clusters,wetting layers,and even water multilayers on metal surfaces as well as ultrathin insulating films.Based on scanning tunneling microscopy,the single-molecule vibrational spectroscopy can be further developed to probe the vibration and movement of individual water molecules,which assist us in understanding water diffusion,dissociation and quantum nature of hydrogen bonds.As a versatile tool at liquid/solid interfaces,electrochemical scanning tunneling microscopy opens up the unique possibility of probing the double electric layer and identifying water dynamics during electrochemical reactions. Moreover,non-contact atomic force microscopy yields higher resolution than scanning tunneling microscopy,such that the topology of hydrogen-bonding skeleton of surface/interfacial water and even the degree of freedom of hydrogen atoms can be discerned.To conclude this review,the challenges and future directions of this field are discussed in Section 3, focusing on non-invasive imaging under ambient conditions,ultrafast molecular dynamics,and novel structures under high pressures.
    [1]

    Binning G, Rohrer H, Gerber C, Weibel E 1982 Phys. Rev. Lett. 49 57

    [2]

    Motobayashi K, Matsumoto C, Kim Y, Kawai M 2008 Surf Sci. 602 3136

    [3]

    Shimizu T K, Mugarza A, Cerda J I, Heyde M, Qi Y B, Schwarz U D, Ogletree D F, Salmeron M 2008 J. Phys. Chem. C 112 7445

    [4]

    Verdaguer A, Sacha G M, Bluhm H, Salmeron M 2006 Chem. Rev. 106 1478

    [5]

    Hodgson A, Haq S 2009 Surf. Sci. Rep. 64 381

    [6]

    Feibelman P J 2010 Phys. Today 63 34

    [7]

    Carrasco J, Hodgson A, Michaelides A 2012 Nat. Mater. 11 667

    [8]

    Maier S, Salmeron M 2015 Acc. Chem. Res. 48 2783

    [9]

    Guo J, Bian K, Lin Z R, Jiang Y 2016 J. Chem. Phys. 145 160901

    [10]

    Maier S, Lechner B A J, Somorjai G A, Salmeron M 2016 J. Am. Chem. Soc. 138 3145

    [11]

    Kumagai T, Okuyama H, Hatta S, Aruga T, Hamada I 2011 J. Chem. Phys. 134 024703

    [12]

    Carrasco J, Michaelides A, Forster M, Haq S, Raval R, Hodgson A 2009 Nat. Mater. 8 427

    [13]

    Forster M, Raval R, Hodgson A, Carrasco J, Michaelides A 2011 Phys. Rev. Lett. 106 046103

    [14]

    Michaelides A, Morgenstern K 2007 Nat. Mater. 6 597

    [15]

    Morgenstern K 2002 Surf Sci. 504 293

    [16]

    Tatarkhanov M., Ogletree D F, Rose F, Mitsui T, Fomin E, Maier S, Rose M, Cerda J I, Salmeron M 2009 J. Am. Chem. Soc. 131 18425

    [17]

    Maier S, Stass I, Mitsui T, Feibelman P J, Thurmer K, Salmeron M 2012 Phys. Rev. B 85 155434

    [18]

    Nie S, Feibelman P J, Bartelt N C, Thurmer K 2010 Phys. Rev. Lett. 105 026102

    [19]

    Standop S, Redinger A, Morgenstern M, Michely T, Busse C 2010 Phys. Rev. B 82 161412

    [20]

    Maier S, Stass I, Cerda J I, Salmeron M 2014 Phys. Rev. Lett. 112 126101

    [21]

    Thurmer K, Nie S, Feibelman P J, Bartelt N C 2014 J. Chem. Phys. 141 18C520

    [22]

    Lechner B A J, Kim Y, Feibelman P J, Henkelman G, Kang H, Salmeron M 2015 J. Phys. Chem. C 119 23052

    [23]

    Nie S, Bartelt N C, Thurmer K 2009 Phys. Rev. Lett. 102 136101

    [24]

    Halwidl D, Stoger B, Mayr-Schmolzer W, Pavelec J, Fobes D, Peng J, Mao Z Q, Parkinson G S, Schmid M, Mittendorfer F, Redinger J, Diebold U 2016 Nat. Mater. 15 450

    [25]

    Thurmer K, Nie S 2013 Proc. Natl. Acad. Sci. U.S.A. 110 11757

    [26]

    Shin H J, Jung J, Motobayashi K, Yanagisawa S, Morikawa Y, Kim Y, Kawai M 2010 Nat. Mater. 9 442

    [27]

    Merte L R, Peng G W, Bechstein R, Rieboldt F, Farberow C A, Grabow L C, Kudernatsch W, Wendt S, Laegsgaard E, Mavrikakis M, Besenbacher F 2012 Science 336 889

    [28]

    Guo J, Meng X Z, Chen J, Peng J B, Sheng J M, Li X Z, Xu L M, Shi J R, Wang E G, Jiang Y 2014 Nat. Mater. 13 184

    [29]

    Peng J B, Guo J, Ma R Z, Meng X Z, Jiang Y 2017 J. Phys.: Condens. Matter 29 104001

    [30]

    Fester J, Garcia-Melchor M, AS Walton, M Bajdich, Z Li, L Lammich, A Vojvodic, J V Lauritsen 2017 Nat. Commun. 8 14169

    [31]

    Mu R T, Zhao Z J, Dohnalek Z, Gong J L 2017 Chem. Soc. Rev. 46 1785

    [32]

    He Y B, Tilocca A, Dulub O, Selloni A, Diebold U 2009 Nat. Mater. 8 585

    [33]

    Dohnalek Z, Lyubinetsky I, Rousseau R 2010 Prog. Surf. Sci. 85 161

    [34]

    Brookes I M, Muryn C A, Thornton G 2001 Phys. Rev. Lett. 87 266103

    [35]

    Wang Z T, Wang Y G, Mu R, Yoon Y H, Dahal A, Schenter G K, Glezakou V A, Rousseau R, Lyubinetsky I, Dohnalek Z 2017 Proc. Natl. Acad. Sci. U.S.A. 114 1801

    [36]

    Mu R T, Cantu D C, Lin X, Glezakou V A, Wang Z T, Lyubinetsk I y, Rousseau R, Dohnalek Z 2014 J. Phys. Chem. Lett. 5 3445

    [37]

    Mu R T, Cantu D C, Glezakou V A, Lyubinetsky I, Rousseau R, Dohnalek Z 2015 J. Phys. Chem. C 119 23552

    [38]

    Merte L R, Bechstein R, Peng G W, Rieboldt F, Farberow C A, Zeuthen H, Knudsen J, Laegsgaard E, Wendt S, Mavrikakis M, Besenbacher F 2014 Nat. Commun. 5 4193

    [39]

    Meng X Z, Guo J, Peng J B, Chen J, Wang Z C, Shi J R, Li X Z, Wang E G, Jiang Y 2015 Nat. Phys. 11 235

    [40]

    Chen J, Guo J, Meng X Z, Peng J B, Sheng J M, Xu L M, Jiang Y, Li X Z, Wang E G 2014 Nat. Commun. 5 4056

    [41]

    You S F, Lu J T, Guo J, Jiang Y 2017 Adv. Phys. X 2 907

    [42]

    Jaklevic R C, Lambe J 1966 Phys. Rev. Lett. 17 1139

    [43]

    Stipe B C, Rezaei M A, Ho W 1998 Science 280 1732

    [44]

    Ho W 2002 J. Chem. Phys. 117 11033

    [45]

    Motobayashi K, Arnadottir L, Matsumoto C, Stuve E M, Jonsson H, Kim Y, Kawai M 2014 ACS Nano 8 11583

    [46]

    MorgensternK, Nieminen J 2002 Phys. Rev. Lett. 88 066102

    [47]

    Kumagai T, Kaizu M, Okuyama H, Hatta S, Aruga T, Hamada I, Morikawa Y 2009 Phys. Rev. B 79 035423

    [48]

    Peng J, Cao D, He Z, Guo J, Hapala P, Ma R, Cheng B, Chen J, Xie W J, Li X Z, Jelinek P, Xu L M, Gao Y Q, Wang E G, Jiang Y 2018 Nature 557 701

    [49]

    Kawai M, Komeda T, Kim Y, Sainoo Y, Katano S 2004 Phil. Trans. R. Soc. Lond. A 362 1163

    [50]

    Sainoo Y, Kim Y, Okawa T, Komeda T, Shigekawa H, Kawai M 2005 Phys. Rev. Lett. 95 246102

    [51]

    Kim Y, Motobayashi K, Frederiksen T, Ueba H, Kawai M 2015 Prog. Surf. Sci. 90 85

    [52]

    Motobayashi K, Kim Y, Arafune R, Ohara M, Ueba H, Kawai M 2014 J. Chem. Phys. 140 194705

    [53]

    Ohara M, Kim Y, Yanagisawa S, Morikawa Y, Kawai M 2008 Phys. Rev. Lett. 100 136104

    [54]

    Paulsson M, Frederiksen T, Ueba H, Lorente N, Brandbyge M 2008 Phys. Rev. Lett. 100 226604

    [55]

    Lorente N, Persson M, Lauhon L J, Ho W 2001 Phys. Rev. Lett. 86 2593

    [56]

    Kumagai T, Shiotari A, Okuyama H, Hatta S, Aruga T, Hamada I, Frederiksen T, Ueba H 2012 Nat. Mater. 11 167

    [57]

    Kumagai T, Kaizu M, Hatta S, Okuyama H, Aruga T, Hamada I, Morikawa Y 2008 Phys. Rev. Lett. 100 166101

    [58]

    Kumagai T 2015 Prog. Surf. Sci. 90 239

    [59]

    Guo J, Lu J T, Feng Y X, Chen J, Peng J B, Lin Z R, Meng X Z, Wang Z C, Li X Z, Wang E G, Jiang Y 2016 Science 352 321

    [60]

    Rozenberg M, Loewenschuss A, Marcus Y 2000 Phys. Chem. Chem. Phys. 2 2699

    [61]

    Guo J, Li X Z, Peng J B, Wang E G, Jiang Y 2017 Prog. Surf. Sci. 92 203

    [62]

    Sonnenfeld R, Hansma P K 1986 Science 232 211

    [63]

    Lustenberger P, Rohrer H, Christoph R, Siegenthaler H 1988 J. Electroanal. Chem. 243 225

    [64]

    Li C, Pobelov I, Wandlowski T, Bagrets A, Arnold A, Evers F 2008 J. Am. Chem. Soc. 130 318

    [65]

    Gao X P, Weaver M J 1992 J. Am. Chem. Soc. 114 8544

    [66]

    Christoph R, Siegenthaler H, Rohrer H, Wiese H 1989 Electrochim. Acta 34 1011

    [67]

    Itaya K, Tomita E 1988 Surf Sci. 201 L507

    [68]

    Schmickler W 1996 Chem. Rev. 96 3177

    [69]

    Ye C Q, Hu R G, Li Y, Lin C J, Pan J S 2012 Corros. Sci. 61 242

    [70]

    Helmholtz H 1853 Ann. Phys. Chem. 89 211

    [71]

    Bockris J O, Muller K, Wroblowa H, Kovac Z 1965 J. Electroanal. Chem. 10 416

    [72]

    Kim Y G, Soriaga J B, Vigh G, Soriaga M P 2000 J. Colloid Interface Sci. 227 505

    [73]

    Garcia-Araez N, Rodriguez P, Navarro V, Bakker H J, Koper M T M 2011 J. Phys. Chem. C 115 21249

    [74]

    Schnur S, Gross A 2009 New J. Phys. 11 125003

    [75]

    Heras J M, Viscido L 1980 Appl. Surf. Sci. 4 238

    [76]

    Sugino O, Hamada I, Otani M, Morikawa Y, Ikeshoji T, Okamoto Y 2007 Surf Sci. 601 5237

    [77]

    Vaught A, Jing T W, Lindsay S M 1995 Chem. Phys. Lett. 236 306

    [78]

    Hong Y A, Hahn J R, Kang H 1998 J. Chem. Phys. 108 4367

    [79]

    Pfisterer J H K, Liang Y C, Schneider O, Bandarenka A S 2017 Nature 549 74

    [80]

    Binnig G, Quate C F, Gerber C 1986 Phys. Rev. Lett. 56 930

    [81]

    Garcia R, Perez R 2002 Surf. Sci. Rep. 47 197

    [82]

    Albrecht T R, Grutter P, Horne D, Rugar D 1991 J. Appl. Phys. 69 668

    [83]

    Giessibl F J 2003 Rev. Mod. Phys. 75 949

    [84]

    Gross L, Mohn F, Moll N, Liljeroth P, Meyer G 2009 Science 325 1110

    [85]

    Hapala P, Kichin G, Wagner C, Tautz F S, Temirov R, Jelinek P 2014 Phys. Rev. B 90 085421

    [86]

    Extance A 2018 Nature 555 545

    [87]

    Hu J, Xiao X D, Salmeron M 1995 Appl. Phys. Lett. 67 476

    [88]

    Hu J, Xiao X D, Ogletree D F, Salmeron M 1995 Surf Sci. 344 221

    [89]

    Hu J, Xiao X D, Ogletree D F, Salmeron M 1995 Science 268 267

    [90]

    Santos S, Verdaguer A 2016 Materials 9 182

    [91]

    Xu K, Cao P G, Heath J R 2010 Science 329 1188

    [92]

    Kimura K, Ido S, Oyabu N, Kobayashi K, Hirata Y, Imai T, Yamada H 2010 J. Chem. Phys. 132 194705

    [93]

    Fukuma T, Ueda Y, Yoshioka S, Asakawa H 2010 Phys. Rev. Lett. 104 016101

    [94]

    Herruzo E T, Asakawa H, Fukuma T, Garcia R 2013 Nanoscale 5 2678

    [95]

    Peng J B, Guo J, Hapala P, Cao D Y, Ma R Z, Cheng B W, Xu L M, Ondracek M, Jelinek P, Wang E G, Jiang Y 2018 Nat. Commun. 9 122

    [96]

    Shiotari A, Sugimoto Y 2017 Nat. Commun. 8 14313

    [97]

    Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M, Cappellaro P, Jiang L, Dutt M V G, Togan E, Zibrov A S, Yacoby A, Walsworth R L, Lukin M D 2008 Nature 455 644

    [98]

    Mamin H J, Kim M, Sherwood M H, Rettner C T, Ohno K, Awschalom D D, Rugar D 2013 Science 339 557

    [99]

    Staudacher T, Shi F, Pezzagna S, Meijer J, Du J, Meriles C A, Reinhard F, Wrachtrup J 2013 Science 339 561

    [100]

    Schafer-Nolte E, Schlipf L, Ternes M, Reinhard F, Kern K, Wrachtrup J 2014 Phys. Rev. Lett. 113 217204

    [101]

    Thiel L, Rohner D, Ganzhorn M, Appel P, Neu E, Muller B, Kleiner R, Koelle D, Maletinsky P 2016 Nat. Nanotechnol. 11 677

    [102]

    Schmid-Lorch D, Haberle T, Reinhard F, Zappe A, Slota M, Bogani L, Finkler A, Wrachtrup J 2015 Nano Lett. 15 4942

    [103]

    Tetienne J P, Lombard A, Simpson D A, Ritchie C, Lu J N, Mulvaney P, Hollenberg L C L 2016 Nano Lett. 16 326

    [104]

    Yoshida S, Aizawa Y, Wang Z H, Oshima R, Mera Y, Matsuyama E, Oigawa H, Takeuchi O, Shigekawa H 2014 Nat. Nanotechnol. 9 588

    [105]

    Terada Y, Yoshida S, Takeuchi O, Shigekawa H 2010 Nat. Photonics. 4 869

    [106]

    Shigekawa H, Takeuchi O, Aoyama M 2005 Sci. Technol. Adv. Mater. 6 582

    [107]

    Cocker T L, Jelic V, Gupta M, Molesky S J, Burgess J A J, De Los Reyes G, Titova L V, Tsui Y Y, Freeman M R, Hegmann F A 2013 Nat. Photonics. 7 620

    [108]

    Lyapin A G, Stal'gorova O V, Gromnitskaya E L, Brazhkin V V 2002 J. Exp. Theor. Phys. 94 283

    [109]

    Bampoulis P, Teernstra V J, Lohse D, Zandvliet H J W, Poelsema B 2016 J. Phys. Chem. C 120 27079

    [110]

    Agrawal K V, Shimizu S, Drahushuk L W, Kilcoyne D, Strano M S 2017 Nat. Nanotechnol. 12 267

    [111]

    Secchi E, Marbach S, Nigues A, Stein D, Siria A, Bocquet L 2016 Nature 537 210

    [112]

    Kolesnikov A I, Reiter G F, Choudhury N, Prisk T R, Mamontov E, Podlesnyak A, Ehlers G, Seel A G, Wesolowski D J, Anovitz L M 2016 Phys. Rev. Lett. 116 167802

    [113]

    Su X C, Lianos L, Shen Y R, Somorjai G A 1998 Phys. Rev. Lett. 80 1533

    [114]

    Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73

  • [1]

    Binning G, Rohrer H, Gerber C, Weibel E 1982 Phys. Rev. Lett. 49 57

    [2]

    Motobayashi K, Matsumoto C, Kim Y, Kawai M 2008 Surf Sci. 602 3136

    [3]

    Shimizu T K, Mugarza A, Cerda J I, Heyde M, Qi Y B, Schwarz U D, Ogletree D F, Salmeron M 2008 J. Phys. Chem. C 112 7445

    [4]

    Verdaguer A, Sacha G M, Bluhm H, Salmeron M 2006 Chem. Rev. 106 1478

    [5]

    Hodgson A, Haq S 2009 Surf. Sci. Rep. 64 381

    [6]

    Feibelman P J 2010 Phys. Today 63 34

    [7]

    Carrasco J, Hodgson A, Michaelides A 2012 Nat. Mater. 11 667

    [8]

    Maier S, Salmeron M 2015 Acc. Chem. Res. 48 2783

    [9]

    Guo J, Bian K, Lin Z R, Jiang Y 2016 J. Chem. Phys. 145 160901

    [10]

    Maier S, Lechner B A J, Somorjai G A, Salmeron M 2016 J. Am. Chem. Soc. 138 3145

    [11]

    Kumagai T, Okuyama H, Hatta S, Aruga T, Hamada I 2011 J. Chem. Phys. 134 024703

    [12]

    Carrasco J, Michaelides A, Forster M, Haq S, Raval R, Hodgson A 2009 Nat. Mater. 8 427

    [13]

    Forster M, Raval R, Hodgson A, Carrasco J, Michaelides A 2011 Phys. Rev. Lett. 106 046103

    [14]

    Michaelides A, Morgenstern K 2007 Nat. Mater. 6 597

    [15]

    Morgenstern K 2002 Surf Sci. 504 293

    [16]

    Tatarkhanov M., Ogletree D F, Rose F, Mitsui T, Fomin E, Maier S, Rose M, Cerda J I, Salmeron M 2009 J. Am. Chem. Soc. 131 18425

    [17]

    Maier S, Stass I, Mitsui T, Feibelman P J, Thurmer K, Salmeron M 2012 Phys. Rev. B 85 155434

    [18]

    Nie S, Feibelman P J, Bartelt N C, Thurmer K 2010 Phys. Rev. Lett. 105 026102

    [19]

    Standop S, Redinger A, Morgenstern M, Michely T, Busse C 2010 Phys. Rev. B 82 161412

    [20]

    Maier S, Stass I, Cerda J I, Salmeron M 2014 Phys. Rev. Lett. 112 126101

    [21]

    Thurmer K, Nie S, Feibelman P J, Bartelt N C 2014 J. Chem. Phys. 141 18C520

    [22]

    Lechner B A J, Kim Y, Feibelman P J, Henkelman G, Kang H, Salmeron M 2015 J. Phys. Chem. C 119 23052

    [23]

    Nie S, Bartelt N C, Thurmer K 2009 Phys. Rev. Lett. 102 136101

    [24]

    Halwidl D, Stoger B, Mayr-Schmolzer W, Pavelec J, Fobes D, Peng J, Mao Z Q, Parkinson G S, Schmid M, Mittendorfer F, Redinger J, Diebold U 2016 Nat. Mater. 15 450

    [25]

    Thurmer K, Nie S 2013 Proc. Natl. Acad. Sci. U.S.A. 110 11757

    [26]

    Shin H J, Jung J, Motobayashi K, Yanagisawa S, Morikawa Y, Kim Y, Kawai M 2010 Nat. Mater. 9 442

    [27]

    Merte L R, Peng G W, Bechstein R, Rieboldt F, Farberow C A, Grabow L C, Kudernatsch W, Wendt S, Laegsgaard E, Mavrikakis M, Besenbacher F 2012 Science 336 889

    [28]

    Guo J, Meng X Z, Chen J, Peng J B, Sheng J M, Li X Z, Xu L M, Shi J R, Wang E G, Jiang Y 2014 Nat. Mater. 13 184

    [29]

    Peng J B, Guo J, Ma R Z, Meng X Z, Jiang Y 2017 J. Phys.: Condens. Matter 29 104001

    [30]

    Fester J, Garcia-Melchor M, AS Walton, M Bajdich, Z Li, L Lammich, A Vojvodic, J V Lauritsen 2017 Nat. Commun. 8 14169

    [31]

    Mu R T, Zhao Z J, Dohnalek Z, Gong J L 2017 Chem. Soc. Rev. 46 1785

    [32]

    He Y B, Tilocca A, Dulub O, Selloni A, Diebold U 2009 Nat. Mater. 8 585

    [33]

    Dohnalek Z, Lyubinetsky I, Rousseau R 2010 Prog. Surf. Sci. 85 161

    [34]

    Brookes I M, Muryn C A, Thornton G 2001 Phys. Rev. Lett. 87 266103

    [35]

    Wang Z T, Wang Y G, Mu R, Yoon Y H, Dahal A, Schenter G K, Glezakou V A, Rousseau R, Lyubinetsky I, Dohnalek Z 2017 Proc. Natl. Acad. Sci. U.S.A. 114 1801

    [36]

    Mu R T, Cantu D C, Lin X, Glezakou V A, Wang Z T, Lyubinetsk I y, Rousseau R, Dohnalek Z 2014 J. Phys. Chem. Lett. 5 3445

    [37]

    Mu R T, Cantu D C, Glezakou V A, Lyubinetsky I, Rousseau R, Dohnalek Z 2015 J. Phys. Chem. C 119 23552

    [38]

    Merte L R, Bechstein R, Peng G W, Rieboldt F, Farberow C A, Zeuthen H, Knudsen J, Laegsgaard E, Wendt S, Mavrikakis M, Besenbacher F 2014 Nat. Commun. 5 4193

    [39]

    Meng X Z, Guo J, Peng J B, Chen J, Wang Z C, Shi J R, Li X Z, Wang E G, Jiang Y 2015 Nat. Phys. 11 235

    [40]

    Chen J, Guo J, Meng X Z, Peng J B, Sheng J M, Xu L M, Jiang Y, Li X Z, Wang E G 2014 Nat. Commun. 5 4056

    [41]

    You S F, Lu J T, Guo J, Jiang Y 2017 Adv. Phys. X 2 907

    [42]

    Jaklevic R C, Lambe J 1966 Phys. Rev. Lett. 17 1139

    [43]

    Stipe B C, Rezaei M A, Ho W 1998 Science 280 1732

    [44]

    Ho W 2002 J. Chem. Phys. 117 11033

    [45]

    Motobayashi K, Arnadottir L, Matsumoto C, Stuve E M, Jonsson H, Kim Y, Kawai M 2014 ACS Nano 8 11583

    [46]

    MorgensternK, Nieminen J 2002 Phys. Rev. Lett. 88 066102

    [47]

    Kumagai T, Kaizu M, Okuyama H, Hatta S, Aruga T, Hamada I, Morikawa Y 2009 Phys. Rev. B 79 035423

    [48]

    Peng J, Cao D, He Z, Guo J, Hapala P, Ma R, Cheng B, Chen J, Xie W J, Li X Z, Jelinek P, Xu L M, Gao Y Q, Wang E G, Jiang Y 2018 Nature 557 701

    [49]

    Kawai M, Komeda T, Kim Y, Sainoo Y, Katano S 2004 Phil. Trans. R. Soc. Lond. A 362 1163

    [50]

    Sainoo Y, Kim Y, Okawa T, Komeda T, Shigekawa H, Kawai M 2005 Phys. Rev. Lett. 95 246102

    [51]

    Kim Y, Motobayashi K, Frederiksen T, Ueba H, Kawai M 2015 Prog. Surf. Sci. 90 85

    [52]

    Motobayashi K, Kim Y, Arafune R, Ohara M, Ueba H, Kawai M 2014 J. Chem. Phys. 140 194705

    [53]

    Ohara M, Kim Y, Yanagisawa S, Morikawa Y, Kawai M 2008 Phys. Rev. Lett. 100 136104

    [54]

    Paulsson M, Frederiksen T, Ueba H, Lorente N, Brandbyge M 2008 Phys. Rev. Lett. 100 226604

    [55]

    Lorente N, Persson M, Lauhon L J, Ho W 2001 Phys. Rev. Lett. 86 2593

    [56]

    Kumagai T, Shiotari A, Okuyama H, Hatta S, Aruga T, Hamada I, Frederiksen T, Ueba H 2012 Nat. Mater. 11 167

    [57]

    Kumagai T, Kaizu M, Hatta S, Okuyama H, Aruga T, Hamada I, Morikawa Y 2008 Phys. Rev. Lett. 100 166101

    [58]

    Kumagai T 2015 Prog. Surf. Sci. 90 239

    [59]

    Guo J, Lu J T, Feng Y X, Chen J, Peng J B, Lin Z R, Meng X Z, Wang Z C, Li X Z, Wang E G, Jiang Y 2016 Science 352 321

    [60]

    Rozenberg M, Loewenschuss A, Marcus Y 2000 Phys. Chem. Chem. Phys. 2 2699

    [61]

    Guo J, Li X Z, Peng J B, Wang E G, Jiang Y 2017 Prog. Surf. Sci. 92 203

    [62]

    Sonnenfeld R, Hansma P K 1986 Science 232 211

    [63]

    Lustenberger P, Rohrer H, Christoph R, Siegenthaler H 1988 J. Electroanal. Chem. 243 225

    [64]

    Li C, Pobelov I, Wandlowski T, Bagrets A, Arnold A, Evers F 2008 J. Am. Chem. Soc. 130 318

    [65]

    Gao X P, Weaver M J 1992 J. Am. Chem. Soc. 114 8544

    [66]

    Christoph R, Siegenthaler H, Rohrer H, Wiese H 1989 Electrochim. Acta 34 1011

    [67]

    Itaya K, Tomita E 1988 Surf Sci. 201 L507

    [68]

    Schmickler W 1996 Chem. Rev. 96 3177

    [69]

    Ye C Q, Hu R G, Li Y, Lin C J, Pan J S 2012 Corros. Sci. 61 242

    [70]

    Helmholtz H 1853 Ann. Phys. Chem. 89 211

    [71]

    Bockris J O, Muller K, Wroblowa H, Kovac Z 1965 J. Electroanal. Chem. 10 416

    [72]

    Kim Y G, Soriaga J B, Vigh G, Soriaga M P 2000 J. Colloid Interface Sci. 227 505

    [73]

    Garcia-Araez N, Rodriguez P, Navarro V, Bakker H J, Koper M T M 2011 J. Phys. Chem. C 115 21249

    [74]

    Schnur S, Gross A 2009 New J. Phys. 11 125003

    [75]

    Heras J M, Viscido L 1980 Appl. Surf. Sci. 4 238

    [76]

    Sugino O, Hamada I, Otani M, Morikawa Y, Ikeshoji T, Okamoto Y 2007 Surf Sci. 601 5237

    [77]

    Vaught A, Jing T W, Lindsay S M 1995 Chem. Phys. Lett. 236 306

    [78]

    Hong Y A, Hahn J R, Kang H 1998 J. Chem. Phys. 108 4367

    [79]

    Pfisterer J H K, Liang Y C, Schneider O, Bandarenka A S 2017 Nature 549 74

    [80]

    Binnig G, Quate C F, Gerber C 1986 Phys. Rev. Lett. 56 930

    [81]

    Garcia R, Perez R 2002 Surf. Sci. Rep. 47 197

    [82]

    Albrecht T R, Grutter P, Horne D, Rugar D 1991 J. Appl. Phys. 69 668

    [83]

    Giessibl F J 2003 Rev. Mod. Phys. 75 949

    [84]

    Gross L, Mohn F, Moll N, Liljeroth P, Meyer G 2009 Science 325 1110

    [85]

    Hapala P, Kichin G, Wagner C, Tautz F S, Temirov R, Jelinek P 2014 Phys. Rev. B 90 085421

    [86]

    Extance A 2018 Nature 555 545

    [87]

    Hu J, Xiao X D, Salmeron M 1995 Appl. Phys. Lett. 67 476

    [88]

    Hu J, Xiao X D, Ogletree D F, Salmeron M 1995 Surf Sci. 344 221

    [89]

    Hu J, Xiao X D, Ogletree D F, Salmeron M 1995 Science 268 267

    [90]

    Santos S, Verdaguer A 2016 Materials 9 182

    [91]

    Xu K, Cao P G, Heath J R 2010 Science 329 1188

    [92]

    Kimura K, Ido S, Oyabu N, Kobayashi K, Hirata Y, Imai T, Yamada H 2010 J. Chem. Phys. 132 194705

    [93]

    Fukuma T, Ueda Y, Yoshioka S, Asakawa H 2010 Phys. Rev. Lett. 104 016101

    [94]

    Herruzo E T, Asakawa H, Fukuma T, Garcia R 2013 Nanoscale 5 2678

    [95]

    Peng J B, Guo J, Hapala P, Cao D Y, Ma R Z, Cheng B W, Xu L M, Ondracek M, Jelinek P, Wang E G, Jiang Y 2018 Nat. Commun. 9 122

    [96]

    Shiotari A, Sugimoto Y 2017 Nat. Commun. 8 14313

    [97]

    Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M, Cappellaro P, Jiang L, Dutt M V G, Togan E, Zibrov A S, Yacoby A, Walsworth R L, Lukin M D 2008 Nature 455 644

    [98]

    Mamin H J, Kim M, Sherwood M H, Rettner C T, Ohno K, Awschalom D D, Rugar D 2013 Science 339 557

    [99]

    Staudacher T, Shi F, Pezzagna S, Meijer J, Du J, Meriles C A, Reinhard F, Wrachtrup J 2013 Science 339 561

    [100]

    Schafer-Nolte E, Schlipf L, Ternes M, Reinhard F, Kern K, Wrachtrup J 2014 Phys. Rev. Lett. 113 217204

    [101]

    Thiel L, Rohner D, Ganzhorn M, Appel P, Neu E, Muller B, Kleiner R, Koelle D, Maletinsky P 2016 Nat. Nanotechnol. 11 677

    [102]

    Schmid-Lorch D, Haberle T, Reinhard F, Zappe A, Slota M, Bogani L, Finkler A, Wrachtrup J 2015 Nano Lett. 15 4942

    [103]

    Tetienne J P, Lombard A, Simpson D A, Ritchie C, Lu J N, Mulvaney P, Hollenberg L C L 2016 Nano Lett. 16 326

    [104]

    Yoshida S, Aizawa Y, Wang Z H, Oshima R, Mera Y, Matsuyama E, Oigawa H, Takeuchi O, Shigekawa H 2014 Nat. Nanotechnol. 9 588

    [105]

    Terada Y, Yoshida S, Takeuchi O, Shigekawa H 2010 Nat. Photonics. 4 869

    [106]

    Shigekawa H, Takeuchi O, Aoyama M 2005 Sci. Technol. Adv. Mater. 6 582

    [107]

    Cocker T L, Jelic V, Gupta M, Molesky S J, Burgess J A J, De Los Reyes G, Titova L V, Tsui Y Y, Freeman M R, Hegmann F A 2013 Nat. Photonics. 7 620

    [108]

    Lyapin A G, Stal'gorova O V, Gromnitskaya E L, Brazhkin V V 2002 J. Exp. Theor. Phys. 94 283

    [109]

    Bampoulis P, Teernstra V J, Lohse D, Zandvliet H J W, Poelsema B 2016 J. Phys. Chem. C 120 27079

    [110]

    Agrawal K V, Shimizu S, Drahushuk L W, Kilcoyne D, Strano M S 2017 Nat. Nanotechnol. 12 267

    [111]

    Secchi E, Marbach S, Nigues A, Stein D, Siria A, Bocquet L 2016 Nature 537 210

    [112]

    Kolesnikov A I, Reiter G F, Choudhury N, Prisk T R, Mamontov E, Podlesnyak A, Ehlers G, Seel A G, Wesolowski D J, Anovitz L M 2016 Phys. Rev. Lett. 116 167802

    [113]

    Su X C, Lianos L, Shen Y R, Somorjai G A 1998 Phys. Rev. Lett. 80 1533

    [114]

    Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V, Shylin S I 2015 Nature 525 73

  • [1] 张玉峰, 卢尧臣, 白萌萌, 李佐, 石明霞, 杨达晓, 杨孝天, 陶敏龙, 孙凯, 王俊忠. 生长在Cd(0001)和Bi(111)上的二氰基蒽分子薄膜的对比. 物理学报, 2023, 72(6): 066801. doi: 10.7498/aps.72.20222197
    [2] 姚杰, 赵爱迪. 表面单分子量子态的探测和调控研究进展. 物理学报, 2022, 71(6): 060701. doi: 10.7498/aps.71.20212324
    [3] 戴昊光, 查访星, 陈平平. InGaAs(110)解理面的扫描隧道谱的理论诠释. 物理学报, 2021, 70(19): 196801. doi: 10.7498/aps.70.20210419
    [4] 王兴悦, 张辉, 阮子林, 郝振亮, 杨孝天, 蔡金明, 卢建臣. 超高真空条件下分子束外延生长的单层二维原子晶体材料的研究进展. 物理学报, 2020, 69(11): 118101. doi: 10.7498/aps.69.20200174
    [5] 张志模, 张文号, 付英双. 二维拓扑绝缘体的扫描隧道显微镜研究. 物理学报, 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [6] 丁翠, 刘充, 张庆华, 龚冠铭, 汪恒, 刘效治, 孟繁琦, 杨好好, 武睿, 宋灿立, 李渭, 何珂, 马旭村, 谷林, 王立莉, 薛其坤. 单层FeSe薄膜/氧化物界面高温超导. 物理学报, 2018, 67(20): 207415. doi: 10.7498/aps.67.20181681
    [7] 顾强强, 万思源, 杨欢, 闻海虎. 铁基超导体的扫描隧道显微镜研究进展. 物理学报, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [8] 徐丹, 殷俊, 孙昊桦, 王观勇, 钱冬, 管丹丹, 李耀义, 郭万林, 刘灿华, 贾金锋. 铜箔上生长的六角氮化硼薄膜的扫描隧道显微镜研究. 物理学报, 2016, 65(11): 116801. doi: 10.7498/aps.65.116801
    [9] 庞宗强, 张悦, 戎舟, 江兵, 刘瑞兰, 唐超. 利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解. 物理学报, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [10] 肖文德, 刘立巍, 杨锴, 张礼智, 宋博群, 杜世萱, 高鸿钧. 氢原子吸附对金表面金属酞菁分子的吸附位置、自旋和手征性的调控. 物理学报, 2015, 64(7): 076802. doi: 10.7498/aps.64.076802
    [11] 刘梦溪, 张艳锋, 刘忠范. 石墨烯-六方氮化硼面内异质结构的扫描隧道显微学研究. 物理学报, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [12] 冯卫, 赵爱迪. 钴原子及其团簇在Rh(111)和Pd(111)表面的扫描隧道显微学研究. 物理学报, 2012, 61(17): 173601. doi: 10.7498/aps.61.173601
    [13] 杨景景, 杜文汉. Sr/Si(100)表面TiSi2纳米岛的扫描隧道显微镜研究. 物理学报, 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [14] 黄仁忠, 刘柳, 杨文静. 扫描隧道显微镜针尖调制的薄膜表面的原子扩散. 物理学报, 2011, 60(11): 116803. doi: 10.7498/aps.60.116803
    [15] 王 祺, 赵华波, 张朝晖. 高定向热解石墨表面局域导电增强现象的扫描探针显微学研究. 物理学报, 2008, 57(5): 3059-3063. doi: 10.7498/aps.57.3059
    [16] 葛四平, 朱 星, 杨威生. 用扫描隧道显微镜操纵Cu亚表面自间隙原子. 物理学报, 2005, 54(2): 824-831. doi: 10.7498/aps.54.824
    [17] 陈永军, 赵汝光, 杨威生. 长链烷烃和醇在石墨表面吸附的扫描隧道显微镜研究. 物理学报, 2005, 54(1): 284-290. doi: 10.7498/aps.54.284
    [18] 窦瑞芬, 贾金锋, 徐茂杰, 潘明虎, 何 珂, 张丽娟, 薛其坤. 单畴的单原子In纳米线阵列的制备与研究. 物理学报, 2004, 53(3): 871-876. doi: 10.7498/aps.53.871
    [19] 汪雷, 唐景昌, 王学森. Si3N4/Si表面Si生长过程的扫描隧道显微镜研究. 物理学报, 2001, 50(3): 517-522. doi: 10.7498/aps.50.517
    [20] 王 浩, 赵学应, 杨威生. 天冬氨酸在Cu(001)表面吸附的扫描隧道显微镜研究. 物理学报, 2000, 49(7): 1316-1320. doi: 10.7498/aps.49.1316
计量
  • 文章访问数:  6293
  • PDF下载量:  277
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-14
  • 修回日期:  2018-12-20
  • 刊出日期:  2019-01-05

/

返回文章
返回