搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

应力对锂离子电池中空碳包覆硅负极电化学性能的影响

孙凤楠 冯露 卜家贺 张静 李林安 王世斌

引用本文:
Citation:

应力对锂离子电池中空碳包覆硅负极电化学性能的影响

孙凤楠, 冯露, 卜家贺, 张静, 李林安, 王世斌

Effect of stress on electrochemical performance of hollow carbon-coated silicon snode in lithium ion batteries

Sun Feng-Nan, Feng Lu, Bu Jia-He, Zhang Jing, Li Lin-An, Wang Shi-Bin
PDF
HTML
导出引用
  • 针对锂离子电池硅及其复合电极材料, 采用Cahn-Hilliard型扩散方程与有限变形理论全耦合的电化学-力模型来描述其在循环锂化过程中的扩散和力学相关性问题, 构造高效的数值算法, 在商用有限元软件平台上实现对该理论的数值求解. 在此基础上, 研究了硅电极恒流锂化和脱锂过程, 基于界面反应动力学, 得到电压响应曲线, 计算结果整体趋势与实验结果吻合较好, 同时预测的应力响应也与实验结果一致, 验证了本方法的有效性. 其次, 研究了中空碳包覆硅负极锂化过程中的电化学与力学行为, 计算结果表明, 锂化期间中空碳包覆硅负极应力水平明显低于实心硅负极, 随锂化的进行, 应力差值越来越大, 锂化结束时应力值降低约27%, 这种应力的缓解提高了整个电极内化学势水平, 使得锂离子浓度水平显著提高, 更易达到完全锂化状态. 同时, 数值研究表明应力水平的缓解延缓了中空碳包覆硅负极的容量衰减(容量提升74%), 充分显示出该电极良好的电化学性能. 本研究揭示了应力对硅复合电极容量影响的作用机制, 为将连续介质电化学-力耦合理论应用于实验预测提供了途径并为电极材料设计提供了理论依据.
    Electrochemical-mechanical coupling mechanism plays an important role in stress relaxation and cycle stability during charging and discharging of lithium ion batteries. The hollow core-shell structure has become a research hotspot in recent years due to the dual effects of its carbon layer and internal voids on volume expansion. However, the theory of diffusion induced stress has not been used to determine how the elastoplastic deformation of amorphous silicon affects the electrochemical performance of silicon anodes with more complex geometries. Based on the Cahn-Hilliard type of material diffusion and finite deformation, a fully coupled diffusion-deformation theory is developed to describe the electrochemical-mechanical coupling mechanism of silicon-polar particles. According to the interface reaction kinetics, the voltage response curve is obtained. The overall trend of the calculated results accords well with the experimental results, and the predicted stress response is also consistent with the experimental result, and thus verifying the effectiveness of the method. Taking the hollow carbon-coated silicon structure that has received much attention in recent years as an example, we study the electrochemical and mechanical behavior during lithiation of hollow carbon-coated silicon anodes and the capacity decay and stress evolution after charge and discharge cycles. The numerical simulation results show that the stress level of the hollow carbon-coated silicon electrode is significantly lower than that of the solid silicon electrode during the whole lithiation. With the lithiation, the stress difference becomes larger and the stress value at the end of lithiation is reduced by about 27%. It fully shows the dual effects of carbon layer and internal pores on stress relaxation and release. In addition, the concentration gradient in the solid silicon negative electrode is too large, which will result in greater stress. In contrast, the lithium ion concentration inside the hollow carbon-coated silicon particles during lithiation is significantly higher than that of the solid silicon particles, and tends to be evenly distributed, which conduces to alleviating the mechanical degradation of the electrode. At the same time, the hollow carbon coated silicon electrode reaches the fully lithiated state earlier, which fully shows the excellent electrochemical performance of the hollow core-shell structure. Finally, the numerical calculation shows that the capacity attenuation is quite consistent with the experimental measurements. Mitigation of stress levels under structural control delays the attenuation of the capacity of hollow carbon-coated silicon anodes. The excellent cycle stability can be attributed to the dual effect of carbon coating and internal pores on volume expansion and stress relief.
      通信作者: 冯露, lufeng@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11272231, 11472186, 11572218)资助的课题.
      Corresponding author: Feng Lu, lufeng@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11272231, 11472186, 11572218).
    [1]

    程昀, 李劼, 贾明, 汤依伟, 杜双龙, 艾立华, 殷宝华, 艾亮 2015 物理学报 64 210202Google Scholar

    Cheng Y, Li J, Jia M, Tang Y W, Du S L, Ai L H, Yin B H, Ai L 2015 Acta Phys. Sin. 64 210202Google Scholar

    [2]

    蒋跃辉, 艾亮, 贾明, 程昀, 杜双龙, 李书国 2017 物理学报 66 118202Google Scholar

    Jiang Y H, Ai L, Jia M, Cheng Y, Du S L, Li S G 2017 Acta Phys. Sin. 66 118202Google Scholar

    [3]

    张俊乾, 吕浡, 宋亦诚 2017 力学季刊 38 14

    Zhang J Q, Lü B, Song Y C 2017 Chin. Quart. Mech. 38 14

    [4]

    DeLuca C M, Maute K, Dunn M L 2011 J. Power Sources 196 9672Google Scholar

    [5]

    Liu N, Lu Z, Zhao J, Mcdowell M T, Lee H W, Zhao W, Cui Y 2014 Nat. Nanotechnol. 9 187Google Scholar

    [6]

    Sun Y, Liu N, Cui Y 2016 Nat. Energy 1 16071Google Scholar

    [7]

    Jia Z, Li T 2015 J. Power Sources 275 866Google Scholar

    [8]

    Yao Y, McDowell M T, Ryu I, Wu H, Liu N, Hu L, Nix W D, Cui Y 2011 Nano Lett. 11 2949Google Scholar

    [9]

    Hu B, Ma Z S, Lei W, Zou Y, Lu C 2017 Theor. Appl. Mech. Lett. 7 199Google Scholar

    [10]

    Ma Z S, Xie Z C, Wang Y, Zhang P P, Pan Y, Zhou Y C, Lu C 2015 J. Power Sources 290 114Google Scholar

    [11]

    Zhang X Y, Song W L, Liu Z L, Chen H S, Li T, Wei Y J, Fang D N 2017 J. Mater. Chem. A 51 2793

    [12]

    Cho J 2010 J. Mater. Chem. 20 4009Google Scholar

    [13]

    Luo F, Liu B, Zheng J, Chu G, Zhong K, Li H, Huang X, Chen L 2015 J. Electrochem. Soc. 162 A2509Google Scholar

    [14]

    Terranova M L, Orlanducci S, Tamburri E, Guglielmotti V, Rossi M 2014 J. Power Sources 246 167Google Scholar

    [15]

    Hao F, Fang D 2013 J. Electrochem. Soc. 160 A595Google Scholar

    [16]

    Su L W, Zhou Z, Ren M M 2010 Chem. Commun. 46 2590Google Scholar

    [17]

    Hwa Y, Kim W S, Hong S H, Sohn H J 2012 Electrochim. Acta 71 201Google Scholar

    [18]

    Yan D, Bai Y, Yu C, Li X, Zhang W 2014 J. Alloys Compd. 609 86Google Scholar

    [19]

    Xu Y, Zhu Y, Wang C 2014 J. Mater. Chem. A 2 9751Google Scholar

    [20]

    Shao D, Tang D, Mai Y, Zhang L 2013 J. Mater. Chem. A 1 15068Google Scholar

    [21]

    Ma X, Liu M, Gan L, Tripathi P K, Zhao Y, Zhu D, Xu Z, Chen L 2014 Phys. Chem. Chem. Phys. 16 4135Google Scholar

    [22]

    Liu N, Wu H, McDowell M T, Yao Y, Wang C, Cui Y 2012 Nano Lett. 12 3315Google Scholar

    [23]

    Ashuri M, He Q, Liu Y, Zhang K, Emani S, Sawicki M S, Shamie J S, Shaw L L 2016 Electrochim. Acta 215 126Google Scholar

    [24]

    Ashuri M, He Q, Zhang K, Emani S, Shaw L L 2016 J. Sol-Gel. Sci. Technol. 82 201Google Scholar

    [25]

    Guo Z, Ji L, Chen L 2017 J. Mater. Sci. 52 13606Google Scholar

    [26]

    Zhang J, Lu B, Song Y, Ji X 2012 J. Power Sources 209 220Google Scholar

    [27]

    Song Y, Shao X, Guo Z, Zhang J 2013 J. Phys. D: Appl. Phys. 46 105307Google Scholar

    [28]

    宋旭, 陆勇俊, 石明亮, 赵翔, 王峰会 2018 物理学报 67 140201Google Scholar

    Song X, Lu Y J, Shi M L, Zhao X, Wang F H 2018 Acta Phys. Sin. 67 140201Google Scholar

    [29]

    Zhao Y, Stein P, Xu B X 2015 Comput. Meth. Appl. Mech. Eng. 297 325Google Scholar

    [30]

    Anand L 2012 J. Mech. Phys. Solids 60 1983Google Scholar

    [31]

    Sethuraman V A, Chon M J, Shimshak M, van Winkle N, Guduru P R 2010 Electrochem. Commun. 12 1614Google Scholar

    [32]

    Lu Y, Zhang P, Wang F, Zhang K, Zhao X 2018 Electrochim. Acta 274 359Google Scholar

    [33]

    Ding N, Xu J, Yao Y X, Wegner G, Fang X, Chen C H, Lieberwirth I 2009 Solid State Ionics 180 222Google Scholar

    [34]

    Pharr M, Suo Z, Vlassak J J 2014 J. Power Sources 270 569Google Scholar

    [35]

    Bucci G, Nadimpalli S P V, Sethuraman V A, Bower A F, Guduru P R 2014 J. Mech. Phys. Solids 62 276Google Scholar

  • 图 1  锂化-脱锂过程中的(a)电压与(b)应力验证

    Fig. 1.  (a) Voltage and (b) stress verification during lithiation-delithiation.

    图 2  中空碳包覆硅结构的建模 (a) Ashuri等[24]实验制备的中空碳包覆硅颗粒TEM图像; (b)中空核-壳结构有限元模型示意图; (c)中空核-壳结构有限元网格划分示意图

    Fig. 2.  Modeling of hollow carbon coated silicon structure: (a) TEM image of hollow carbon coated silicon particles reproduced by Ashuri et al.[24]; (b) finite element model of hollow core-shell structure; (c) schematic diagram of finite element meshing of hollow core-shell structure.

    图 3  实心硅电极和中空碳包覆硅电极在整个锂化-脱锂阶段应力随时间的演化

    Fig. 3.  Evolution of stress over time in lithiation-delithiation stage with solid silicon electrode and hollow carbon-coated silicon electrode.

    图 4  t = 1200, 1500, 1800 s时实心硅电极和中空碳包覆硅电极内锂离子浓度分布云图

    Fig. 4.  Cloud distribution of lithium ion concentration in solid silicon electrode and hollow carbon coated silicon electrode at t = 1200, 1500, 1800 s.

    图 5  实心硅和中空碳包覆硅电极在锂化后期沿径向方向的(a)锂离子浓度、(b)应力和(c)化学势

    Fig. 5.  Distribution of (a) the lithium ion concentration, (b) stress, and (c) chemical potential of solid silicon and hollow carbon coated silicon electrode in the radial direction at the late stage of lithiation.

    图 6  20次充放电循环过程 (a)理论预测和实验测量容量值的对比; (b)应力随时间的演化

    Fig. 6.  Twenty times charge and discharge cycles: (a) Comparison of theoretical prediction and experimental measurement capacity values; (b) evolution of cauchy stress over time.

    表 1  材料参数

    Table 1.  Material parameters.

    参数单位
    ${E_{\rm{a} {\text -} {\rm{Si}}}}$GPa80[31]
    ${v_{\rm{a} {\text -} {\rm{Si}}}}$0.22[31]
    ${c_{\max }}$mol/m3$2.95 \times {10^5}$[32]
    $\varOmega $m3/mol$8.89 \times {10^{ - 6}}$[32]
    ${c_0}$0.005
    $\vartheta $K298
    ${D_0}$m2/s$1 \times {10^{ - 16}}$[33]
    ${k_0}$mol/s$3.25 \times {10^{ - 7}}$[34]
    下载: 导出CSV
  • [1]

    程昀, 李劼, 贾明, 汤依伟, 杜双龙, 艾立华, 殷宝华, 艾亮 2015 物理学报 64 210202Google Scholar

    Cheng Y, Li J, Jia M, Tang Y W, Du S L, Ai L H, Yin B H, Ai L 2015 Acta Phys. Sin. 64 210202Google Scholar

    [2]

    蒋跃辉, 艾亮, 贾明, 程昀, 杜双龙, 李书国 2017 物理学报 66 118202Google Scholar

    Jiang Y H, Ai L, Jia M, Cheng Y, Du S L, Li S G 2017 Acta Phys. Sin. 66 118202Google Scholar

    [3]

    张俊乾, 吕浡, 宋亦诚 2017 力学季刊 38 14

    Zhang J Q, Lü B, Song Y C 2017 Chin. Quart. Mech. 38 14

    [4]

    DeLuca C M, Maute K, Dunn M L 2011 J. Power Sources 196 9672Google Scholar

    [5]

    Liu N, Lu Z, Zhao J, Mcdowell M T, Lee H W, Zhao W, Cui Y 2014 Nat. Nanotechnol. 9 187Google Scholar

    [6]

    Sun Y, Liu N, Cui Y 2016 Nat. Energy 1 16071Google Scholar

    [7]

    Jia Z, Li T 2015 J. Power Sources 275 866Google Scholar

    [8]

    Yao Y, McDowell M T, Ryu I, Wu H, Liu N, Hu L, Nix W D, Cui Y 2011 Nano Lett. 11 2949Google Scholar

    [9]

    Hu B, Ma Z S, Lei W, Zou Y, Lu C 2017 Theor. Appl. Mech. Lett. 7 199Google Scholar

    [10]

    Ma Z S, Xie Z C, Wang Y, Zhang P P, Pan Y, Zhou Y C, Lu C 2015 J. Power Sources 290 114Google Scholar

    [11]

    Zhang X Y, Song W L, Liu Z L, Chen H S, Li T, Wei Y J, Fang D N 2017 J. Mater. Chem. A 51 2793

    [12]

    Cho J 2010 J. Mater. Chem. 20 4009Google Scholar

    [13]

    Luo F, Liu B, Zheng J, Chu G, Zhong K, Li H, Huang X, Chen L 2015 J. Electrochem. Soc. 162 A2509Google Scholar

    [14]

    Terranova M L, Orlanducci S, Tamburri E, Guglielmotti V, Rossi M 2014 J. Power Sources 246 167Google Scholar

    [15]

    Hao F, Fang D 2013 J. Electrochem. Soc. 160 A595Google Scholar

    [16]

    Su L W, Zhou Z, Ren M M 2010 Chem. Commun. 46 2590Google Scholar

    [17]

    Hwa Y, Kim W S, Hong S H, Sohn H J 2012 Electrochim. Acta 71 201Google Scholar

    [18]

    Yan D, Bai Y, Yu C, Li X, Zhang W 2014 J. Alloys Compd. 609 86Google Scholar

    [19]

    Xu Y, Zhu Y, Wang C 2014 J. Mater. Chem. A 2 9751Google Scholar

    [20]

    Shao D, Tang D, Mai Y, Zhang L 2013 J. Mater. Chem. A 1 15068Google Scholar

    [21]

    Ma X, Liu M, Gan L, Tripathi P K, Zhao Y, Zhu D, Xu Z, Chen L 2014 Phys. Chem. Chem. Phys. 16 4135Google Scholar

    [22]

    Liu N, Wu H, McDowell M T, Yao Y, Wang C, Cui Y 2012 Nano Lett. 12 3315Google Scholar

    [23]

    Ashuri M, He Q, Liu Y, Zhang K, Emani S, Sawicki M S, Shamie J S, Shaw L L 2016 Electrochim. Acta 215 126Google Scholar

    [24]

    Ashuri M, He Q, Zhang K, Emani S, Shaw L L 2016 J. Sol-Gel. Sci. Technol. 82 201Google Scholar

    [25]

    Guo Z, Ji L, Chen L 2017 J. Mater. Sci. 52 13606Google Scholar

    [26]

    Zhang J, Lu B, Song Y, Ji X 2012 J. Power Sources 209 220Google Scholar

    [27]

    Song Y, Shao X, Guo Z, Zhang J 2013 J. Phys. D: Appl. Phys. 46 105307Google Scholar

    [28]

    宋旭, 陆勇俊, 石明亮, 赵翔, 王峰会 2018 物理学报 67 140201Google Scholar

    Song X, Lu Y J, Shi M L, Zhao X, Wang F H 2018 Acta Phys. Sin. 67 140201Google Scholar

    [29]

    Zhao Y, Stein P, Xu B X 2015 Comput. Meth. Appl. Mech. Eng. 297 325Google Scholar

    [30]

    Anand L 2012 J. Mech. Phys. Solids 60 1983Google Scholar

    [31]

    Sethuraman V A, Chon M J, Shimshak M, van Winkle N, Guduru P R 2010 Electrochem. Commun. 12 1614Google Scholar

    [32]

    Lu Y, Zhang P, Wang F, Zhang K, Zhao X 2018 Electrochim. Acta 274 359Google Scholar

    [33]

    Ding N, Xu J, Yao Y X, Wegner G, Fang X, Chen C H, Lieberwirth I 2009 Solid State Ionics 180 222Google Scholar

    [34]

    Pharr M, Suo Z, Vlassak J J 2014 J. Power Sources 270 569Google Scholar

    [35]

    Bucci G, Nadimpalli S P V, Sethuraman V A, Bower A F, Guduru P R 2014 J. Mech. Phys. Solids 62 276Google Scholar

  • [1] 李艳, 马向超, 黄曦. 含有不同硫族元素原子比例的单层MoSSe电化学Pourbaix相图. 物理学报, 2023, 72(4): 046401. doi: 10.7498/aps.72.20221567
    [2] 李诗嘉, 王振兴, 牛焱, 王彬, 桑胜波, 张文栋, 高杨, 冀健龙. pH敏感有机电化学晶体管I-V特性及其电压依赖性. 物理学报, 2022, 71(13): 138501. doi: 10.7498/aps.71.20220241
    [3] 柳小伟, 宋辉, 郭美卿, 王根伟, 迟青卓. 基于电化学-应力耦合模型的锂离子电池硅/碳核壳结构的模拟与优化. 物理学报, 2021, 70(17): 178201. doi: 10.7498/aps.70.20210455
    [4] 王存海, 郑树, 张欣欣. 非规则形状介质内辐射-导热耦合传热的间断有限元求解. 物理学报, 2020, 69(3): 034401. doi: 10.7498/aps.69.20191185
    [5] 王桂强, 刘洁琼, 董伟楠, 阎超, 张伟. 氮/硫共掺杂多孔碳纳米片的制备及其电化学性能. 物理学报, 2018, 67(23): 238103. doi: 10.7498/aps.67.20181524
    [6] 马艳, 林书玉, 徐洁. 声场中空化气泡的耦合振动及形状不稳定性的研究. 物理学报, 2018, 67(3): 034301. doi: 10.7498/aps.67.20171573
    [7] 杨秀涛, 梁忠冠, 袁雨佳, 阳军亮, 夏辉. 多孔碳纳米球的制备及其电化学性能. 物理学报, 2017, 66(4): 048101. doi: 10.7498/aps.66.048101
    [8] 赵宏宇, 王頔, 魏智, 金光勇. 毫秒脉冲激光致硅光电二极管电学损伤的有限元分析及实验研究. 物理学报, 2017, 66(10): 104203. doi: 10.7498/aps.66.104203
    [9] 张诚, 邓明森, 蔡绍洪. 基于镍泡沫支撑的Co3O4纳米多孔结构的高性能超级电容器电极. 物理学报, 2017, 66(12): 128201. doi: 10.7498/aps.66.128201
    [10] 张娇娇, 辛子华, 张计划, 颜笑, 邓密海. α-碳锗炔稳定性及性质模拟. 物理学报, 2014, 63(20): 207303. doi: 10.7498/aps.63.207303
    [11] 张保磊, 王家序, 肖科, 李俊阳. 石墨烯-纳米探针相互作用有限元准静态计算. 物理学报, 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [12] 李娟, 汝强, 胡社军, 郭凌云. 锂离子电池SnSb/C复合负极材料的热碳还原法制备及电化学性能研究. 物理学报, 2014, 63(16): 168201. doi: 10.7498/aps.63.168201
    [13] 金硕, 孙璐. 带有碳杂质的钨中氢稳定性的第一性原理研究. 物理学报, 2012, 61(4): 046104. doi: 10.7498/aps.61.046104
    [14] 孙宏祥, 许伯强, 王纪俊, 徐桂东, 徐晨光, 王峰. 激光激发黏弹表面波有限元数值模拟. 物理学报, 2009, 58(9): 6344-6350. doi: 10.7498/aps.58.6344
    [15] 冯永平, 崔俊芝, 邓明香. 周期孔洞区域中热力耦合问题的双尺度有限元计算. 物理学报, 2009, 58(13): 327-S337. doi: 10.7498/aps.58.327
    [16] 刘光友, 谭兴文, 姚金才, 王 振, 熊祖洪. 电化学制备薄黑硅抗反射膜. 物理学报, 2008, 57(1): 514-518. doi: 10.7498/aps.57.514
    [17] 梁 双, 吕燕伍. 有限元法计算GaN/AlN量子点结构中的电子结构. 物理学报, 2007, 56(3): 1617-1620. doi: 10.7498/aps.56.1617
    [18] 叶 凡, 谢二庆, 李瑞山, 林洪峰, 张 军, 贺德衍. 类金刚石和碳氮薄膜的电化学沉积及其场发射性能研究. 物理学报, 2005, 54(8): 3935-3939. doi: 10.7498/aps.54.3935
    [19] 张家明, 陆卫, 沈学础. 六卤化金属化合物晶体晶格非稳定性量子化学计算. 物理学报, 1995, 44(11): 1798-1804. doi: 10.7498/aps.44.1798
    [20] 张甫龙, 侯晓远, 杨敏, 黄大鸣, 王迅. 多孔硅发光稳定性的改进. 物理学报, 1994, 43(3): 499-504. doi: 10.7498/aps.43.499
计量
  • 文章访问数:  9821
  • PDF下载量:  212
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-26
  • 修回日期:  2019-03-28
  • 刊出日期:  2019-06-20

/

返回文章
返回