搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超强激光与泡沫微结构靶相互作用提高强流电子束产额模拟研究

魏留磊 蔡洪波 张文帅 田建民 张恩浩 熊俊 朱少平

引用本文:
Citation:

超强激光与泡沫微结构靶相互作用提高强流电子束产额模拟研究

魏留磊, 蔡洪波, 张文帅, 田建民, 张恩浩, 熊俊, 朱少平

Enhancement of high-energy electron yield by interaction of ultra-intense laser pulses with micro-structured foam target

Wei Liu-Lei, Cai Hong-Bo, Zhang Wen-Shuai, Tian Jian-Min, Zhang En-Hao, Xiong Jun, Zhu Shao-Ping
PDF
HTML
导出引用
  • 利用二维粒子模拟方法, 本文研究了超强激光与泡沫微结构镀层靶相互作用产生强流电子束问题. 研究发现泡沫区域产生了百兆高斯级准静态磁场, 形成具有选能作用的“磁势垒”, 强流电子束中的低能端电子在“磁势垒”的作用下返回激光作用区域, 在鞘场和激光场的共同作用下发生多次加速过程, 从而显著提升高能电子产额. 还应用单粒子模型, 分析了电子在激光场作用下的运动行为, 验证了多次加速的物理机理.
    Micro-structured targets have been widely used in the interaction between ultra-intense laser and target, aiming at improving the electron accelerating efficiency. In this paper, we perform two-dimensional particle-in-cell (PIC) simulations to study the interaction of the ultra-intense laser pulse with the micro-structured foam-attached target (the foam is composed of low density bubbles and high density interfaces between the bubbles). It is found that at the beginning of the laser-plasma interaction, the fast electrons accelerated at the front surface of the foam freely propagate into the target and drive a return current of cold background electrons. These cold background electrons are restricted to propagate along the interfaces between the bubbles in the foam due to the self-generated large sheath field. As a result, small current filaments are generated in the foam, which then leads to the generation of randomly distributed megagauss magnetic field in the foam layer. This quasistatic magnetic field then acts as an energy-selective " magnetic barrier”: the low-energy electrons are reflected back into the laser acceleration region while the high-energy electrons can penetrate through it. If the reflected electrons enter into the laser field with proper phases, they can be further accelerated to higher energy through cooperative actions of the ultra-intense laser pulse and the sheath field generated due to plasma expansion at the target surface. Our simulation results show that many of the laser accelerated low-energy electrons can be reflected back and accelerated several times until they gain enough energy to penetrate through the magnetic barrier. This is termed the " multiple acceleration mechanism”. Due to this mechanism, the electron acceleration efficiency in the foam-coated target with a thickness of several microns is significantly enhanced in comparison with that in the plane target. This enhancement in the electron acceleration efficiency will be beneficial to many important applications such as the fast ignition. Additionally, foam-coated targets with different bubble radii and layer thickness are also studied, and it is found that the yield of the high energy electrons increases with the radius of bubble size more efficiently than with the bubble thickness. In order to understand the physics more clearly, a single particle model is developed to analyze the simulation results.
      通信作者: 蔡洪波, cai_hongbo@iapcm.ac.cn ; 朱少平, zhu_shaoping@iapcm.ac.cn
    • 基金项目: 科学挑战专题(批准号: TZ2016005)、国家重点研发计划(批准号: 2016YFA0401100)、国家自然科学基金联合基金 (批准号: U1730449)和国家自然科学基金(批准号: 11575030)资助的课题.
      Corresponding author: Cai Hong-Bo, cai_hongbo@iapcm.ac.cn ; Zhu Shao-Ping, zhu_shaoping@iapcm.ac.cn
    • Funds: Project supported by the Science Challenge Project, China (Grant No. TZ2016005), the National Key R & D Program of China (Grant No. 2016YFA0401100), the Program of Joint Funds of the National Natural Science Foundation of China (Grant No. U1730449), and the National Natural Science Foundation of China (Grant No. 11575030).
    [1]

    Ma Y Y, Sheng Z M, Li Y T, Chang W W, Yuan X H, Chen M, Chen H C, Zheng J, Zhang J 2006 Phys. Plasmas 13 110702Google Scholar

    [2]

    Kruer W L, Estabrook K 1985 Phys. Fluids 28 430Google Scholar

    [3]

    孔青, 朱立俊, 王加祥, 霍裕昆 1999 物理学报 48 650Google Scholar

    Kong Q, Zhu L J, Wang J X, Huo Y K 1999 Acta Phys. Sin. 48 650Google Scholar

    [4]

    Zhou C T, He X T 2007 Opt. Lett. 32 2444Google Scholar

    [5]

    Norreys P A, Zepf M, Moustaizis S, Fews A P, Zhang J, Lee P, Bakarezos M, Danson C N, Dyson A, Gibbon P, Loukakos P, Neely D, Walsh F N, Wark J S, Dangor A E 1996 Phys. Rev. Lett. 76 1832Google Scholar

    [6]

    Kodama R, Tanaka K, Sentoku Y, Matsushita T, Takahashi K, Kato Y, Fujita H, Kitagawa Y, Kanabe T, Yamanaka T, Mima K 2000 Phys. Rev. Lett. 84 674Google Scholar

    [7]

    Bastiani S, Rousse A, Geindre J P, Audebert P, Quoix C, Hamoniaux G, Antonetti A, Gauthier J C 1997 Phys. Rev. E 56 7179Google Scholar

    [8]

    Ruhl H, Sentoku Y, Mima K, Tanaka K A, Kodama R 1999 Phys. Rev. Lett. 82 743Google Scholar

    [9]

    Li C K, Séguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P J, Amendt P A, Hatchett S P, Landen O L, Mackinnon A J, Patel P K, Smalyuk V A, Sangster T C, Knauer J P 2006 Phys. Rev. Lett. 97 135003Google Scholar

    [10]

    Marshall F J, McKenty P W, Delettrez J A, Epstein R, Knauer J P, Smalyuk V A, Frenje J A, Li C K, Petrasso R D, Séguin F H, Mancini R C 2009 Phys. Rev. Lett. 102 185004Google Scholar

    [11]

    Tillman C, Persson A, Wahlstrom C G, Svanberg S, Herrlin K 1995 Appl. Phys. B 61 333Google Scholar

    [12]

    Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Wood-worth J, Campbell E M, Perry M D, Mason R J 1994 Phys. Plasmas 1 1626Google Scholar

    [13]

    Cai H B, Mima K, Zhou W M, Jozaki T, Nagatomo H, Sunahara A, Mason R J 2009 Phys. Rev. Lett. 102 245001Google Scholar

    [14]

    Chen L M, Kando M, Ma J, Kotaki H, Fukuda Y, Hayashi Y, Daito I, Homma T, Ogura K, Mori M, Pirozhkov A S, Koga J, Daido H, Bulanov S V, Kimura T, Tajima T, Kato Y 2007 Appl. Phys. Lett. 90 211501Google Scholar

    [15]

    孙彦乾, 陈黎明, 张璐, 毛婧一, 刘峰, 李大章, 刘成, 李伟昌, 王兆华, 李英骏, 魏志义, 张杰 2012 物理学报 61 075206Google Scholar

    Sun Y Q, Chen L M, Zhang L, Mao Q Y, Liu F, Li D Z, Liu C, Li W C, Wang Z H, Li Y J, Wei Z Y, Zhang J 2012 Acta Phys. Sin. 61 075206Google Scholar

    [16]

    Kulcsár G, AlMawlawi D, Budnik F W, Herman P R, Moskovits M, Zhao L, Marjoribanks R S 2000 Phys. Rev. Lett. 84 5049Google Scholar

    [17]

    Lei A L, Tanaka K A, Kodama R, Kumar G R, Nagai K, Norimatsu T, Yabuuchi T, Mima K 2006 Phys. Rev. Lett. 96 255006Google Scholar

    [18]

    Cao L H, Chen M, Zhao Z Q, Cai H B, Wu S Z, Gu Y Q 2011 Phys. Plasmas 18 054501Google Scholar

    [19]

    余金清, 金晓林, 周维民, 李斌, 谷渝秋 2012 物理学报 61 225202Google Scholar

    Yu J Q, Jin X L, Zhou W M, Li B, Gu Y Q 2012 Acta Phys. Sin. 61 225202Google Scholar

    [20]

    Wang W M, Sheng Z M, Zhang J 2008 Phys. Plasmas 15 030702Google Scholar

    [21]

    Hu G Y, Lei A L, Wang J W, Huang L G, Wang W T, Wang X, Xu Y, Shen B F, Liu J S, Yu W, Li R X, Xu Z Z 2010 Phys. Plasmas 17 083102Google Scholar

    [22]

    Tian Y, Liu J S, Wang W T, Wang C, Lu X M, Leng Y X, Liang X Y, Li R X, Xu Z Z 2014 Plasma Phys. Control. Fusion 56 075021Google Scholar

    [23]

    Wilks S C, Kruer W L 1997 IEEE J. Quantum Electron 33 1954Google Scholar

    [24]

    Wilks S C, Kruer W L, Tabak M, Langdon A B 1992 Phys. Rev. Lett. 69 1383Google Scholar

    [25]

    Sheng Z M, Mima K, Sentoku Y, Jovanović M S, Taguchi T, Zhang J, Meyer-ter-Vehn J 2002 Phys. Rev. Lett. 88 055004Google Scholar

    [26]

    Gibbon P 2005 Short Pulse Laser Interactions with Matter: An Introduction (London: Imperial College Press) pp31−33

    [27]

    Landau B L, Lifshits E, Holbrow C H 1963 The Classical Theory of Fields (Oxford: Pergamon Press) p121

  • 图 1  (a) 泡沫靶密度分布示意图(局部); (b) 75$T_0$泡沫间隙的准静态电流(模拟窗口大小为$100\ \lambda_0 \times 16 \ \lambda_0$; 图中密度无量纲单位为$n_{\rm c}$, 电流无量纲单位为$en_{\rm c}c$)

    Fig. 1.  (a) Schematic diagram of initial plasma density (local); (b) current in the foam target at 75T0. The simulation window size is $100\ \lambda_0 \times 16 \ \lambda_0$. The units of plasma density and current are $n_{\rm c}$, and $en_{\rm c}c$, respectively

    图 2  150$T_0$的泡沫区磁场分布 (a) 泡沫孔径0.075$\lambda_0$; (b) 泡沫孔径0.15$\lambda_0$; (c) 泡沫孔径0.6$\lambda_0$ (磁场无量纲单位为$m_{\rm e}\omega c/e$)

    Fig. 2.  Magnetic field distribution in foam region at 150$T_0$: (a) Bubble radius is 0.075$\lambda_0$; (b) bubble radius is 0.15$\lambda_0$; (c) bubble radius is 0.6$\lambda_0$. The unit of magnetic field is $m_{\rm e}\omega c/e$

    图 3  50个初始位置随机分布在靶前表面的电子的轨迹(a)平面靶; (b)泡沫靶; 图中标注数字为运动到靶后区域单个电子的动能, 红色线表示其中一个电子加速后的轨迹

    Fig. 3.  Trajectory of 50 electrons whose initial positions randomly distributed on the front surface of the target: (a) Planar target; (b) foam target. The labeled number is the kinetic energy of the electrons moving to the area behind the target. The red line is the trajectory of one of the accelerated electrons

    图 4  电子多次加速过程中的能量和位置随时间演化, 图中x = (40, 42)$\lambda_0$黄色标记区域为泡沫靶区

    Fig. 4.  Evolution of electron energy and position with time in multiple acceleration of electron. Here, the x = (40, 42)$\lambda_0$ region marked with yellow is the foam region

    图 5  平面靶和不同孔径泡沫靶的电子能量密度空间分布 (a)平面靶; (b)泡沫孔径0.075$\lambda_0$; (c)泡沫孔径0.15$\lambda_0$; (d)泡沫孔径0.6$\lambda_0$; 电子能量密度无量纲单位为$n_{\rm c}m_{\rm e}c^2$

    Fig. 5.  Spatial distribution of electron energy density for (a) planar target, and bubble target with bubble size of (b) 0.075$\lambda_0$, (c) 0.15$\lambda_0$, (d) 0.6$\lambda_0$. The unit of electron energy density is $n_{\rm c}m_{\rm e}c^2$

    图 6  (a)不同孔径泡沫靶的超热电子能谱; (b)不同厚度泡沫靶的超热电子能谱

    Fig. 6.  (a) Electron energy spectra of foam targets with different bubble radii; (b) electron energy spectra of foam targets with different foam thicknesses

  • [1]

    Ma Y Y, Sheng Z M, Li Y T, Chang W W, Yuan X H, Chen M, Chen H C, Zheng J, Zhang J 2006 Phys. Plasmas 13 110702Google Scholar

    [2]

    Kruer W L, Estabrook K 1985 Phys. Fluids 28 430Google Scholar

    [3]

    孔青, 朱立俊, 王加祥, 霍裕昆 1999 物理学报 48 650Google Scholar

    Kong Q, Zhu L J, Wang J X, Huo Y K 1999 Acta Phys. Sin. 48 650Google Scholar

    [4]

    Zhou C T, He X T 2007 Opt. Lett. 32 2444Google Scholar

    [5]

    Norreys P A, Zepf M, Moustaizis S, Fews A P, Zhang J, Lee P, Bakarezos M, Danson C N, Dyson A, Gibbon P, Loukakos P, Neely D, Walsh F N, Wark J S, Dangor A E 1996 Phys. Rev. Lett. 76 1832Google Scholar

    [6]

    Kodama R, Tanaka K, Sentoku Y, Matsushita T, Takahashi K, Kato Y, Fujita H, Kitagawa Y, Kanabe T, Yamanaka T, Mima K 2000 Phys. Rev. Lett. 84 674Google Scholar

    [7]

    Bastiani S, Rousse A, Geindre J P, Audebert P, Quoix C, Hamoniaux G, Antonetti A, Gauthier J C 1997 Phys. Rev. E 56 7179Google Scholar

    [8]

    Ruhl H, Sentoku Y, Mima K, Tanaka K A, Kodama R 1999 Phys. Rev. Lett. 82 743Google Scholar

    [9]

    Li C K, Séguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P J, Amendt P A, Hatchett S P, Landen O L, Mackinnon A J, Patel P K, Smalyuk V A, Sangster T C, Knauer J P 2006 Phys. Rev. Lett. 97 135003Google Scholar

    [10]

    Marshall F J, McKenty P W, Delettrez J A, Epstein R, Knauer J P, Smalyuk V A, Frenje J A, Li C K, Petrasso R D, Séguin F H, Mancini R C 2009 Phys. Rev. Lett. 102 185004Google Scholar

    [11]

    Tillman C, Persson A, Wahlstrom C G, Svanberg S, Herrlin K 1995 Appl. Phys. B 61 333Google Scholar

    [12]

    Tabak M, Hammer J, Glinsky M E, Kruer W L, Wilks S C, Wood-worth J, Campbell E M, Perry M D, Mason R J 1994 Phys. Plasmas 1 1626Google Scholar

    [13]

    Cai H B, Mima K, Zhou W M, Jozaki T, Nagatomo H, Sunahara A, Mason R J 2009 Phys. Rev. Lett. 102 245001Google Scholar

    [14]

    Chen L M, Kando M, Ma J, Kotaki H, Fukuda Y, Hayashi Y, Daito I, Homma T, Ogura K, Mori M, Pirozhkov A S, Koga J, Daido H, Bulanov S V, Kimura T, Tajima T, Kato Y 2007 Appl. Phys. Lett. 90 211501Google Scholar

    [15]

    孙彦乾, 陈黎明, 张璐, 毛婧一, 刘峰, 李大章, 刘成, 李伟昌, 王兆华, 李英骏, 魏志义, 张杰 2012 物理学报 61 075206Google Scholar

    Sun Y Q, Chen L M, Zhang L, Mao Q Y, Liu F, Li D Z, Liu C, Li W C, Wang Z H, Li Y J, Wei Z Y, Zhang J 2012 Acta Phys. Sin. 61 075206Google Scholar

    [16]

    Kulcsár G, AlMawlawi D, Budnik F W, Herman P R, Moskovits M, Zhao L, Marjoribanks R S 2000 Phys. Rev. Lett. 84 5049Google Scholar

    [17]

    Lei A L, Tanaka K A, Kodama R, Kumar G R, Nagai K, Norimatsu T, Yabuuchi T, Mima K 2006 Phys. Rev. Lett. 96 255006Google Scholar

    [18]

    Cao L H, Chen M, Zhao Z Q, Cai H B, Wu S Z, Gu Y Q 2011 Phys. Plasmas 18 054501Google Scholar

    [19]

    余金清, 金晓林, 周维民, 李斌, 谷渝秋 2012 物理学报 61 225202Google Scholar

    Yu J Q, Jin X L, Zhou W M, Li B, Gu Y Q 2012 Acta Phys. Sin. 61 225202Google Scholar

    [20]

    Wang W M, Sheng Z M, Zhang J 2008 Phys. Plasmas 15 030702Google Scholar

    [21]

    Hu G Y, Lei A L, Wang J W, Huang L G, Wang W T, Wang X, Xu Y, Shen B F, Liu J S, Yu W, Li R X, Xu Z Z 2010 Phys. Plasmas 17 083102Google Scholar

    [22]

    Tian Y, Liu J S, Wang W T, Wang C, Lu X M, Leng Y X, Liang X Y, Li R X, Xu Z Z 2014 Plasma Phys. Control. Fusion 56 075021Google Scholar

    [23]

    Wilks S C, Kruer W L 1997 IEEE J. Quantum Electron 33 1954Google Scholar

    [24]

    Wilks S C, Kruer W L, Tabak M, Langdon A B 1992 Phys. Rev. Lett. 69 1383Google Scholar

    [25]

    Sheng Z M, Mima K, Sentoku Y, Jovanović M S, Taguchi T, Zhang J, Meyer-ter-Vehn J 2002 Phys. Rev. Lett. 88 055004Google Scholar

    [26]

    Gibbon P 2005 Short Pulse Laser Interactions with Matter: An Introduction (London: Imperial College Press) pp31−33

    [27]

    Landau B L, Lifshits E, Holbrow C H 1963 The Classical Theory of Fields (Oxford: Pergamon Press) p121

  • [1] 张凯林, 韩胜贤, 岳生俊, 刘作业, 胡碧涛. 强激光场对原子核α衰变的影响. 物理学报, 2024, 73(6): 062101. doi: 10.7498/aps.73.20231627
    [2] 吉亮亮, 耿学松, 伍艺通, 沈百飞, 李儒新. 超强激光驱动的辐射反作用力效应与极化粒子加速. 物理学报, 2021, 70(8): 085203. doi: 10.7498/aps.70.20210091
    [3] 蔡怀鹏, 高健, 李博原, 刘峰, 陈黎明, 远晓辉, 陈民, 盛政明, 张杰. 相对论圆偏振激光与固体靶作用产生高次谐波. 物理学报, 2018, 67(21): 214205. doi: 10.7498/aps.67.20181574
    [4] 杨思谦, 周维民, 王思明, 矫金龙, 张智猛, 曹磊峰, 谷渝秋, 张保汉. 通道靶对超强激光加速质子束的聚焦效应. 物理学报, 2017, 66(18): 184101. doi: 10.7498/aps.66.184101
    [5] 李夏至, 邹德滨, 周泓宇, 张世杰, 赵娜, 余德尧, 卓红斌. 等离子体光栅靶的表面粗糙度对高次谐波产生的影响. 物理学报, 2017, 66(24): 244209. doi: 10.7498/aps.66.244209
    [6] 胡杨, 杨海亮, 孙剑锋, 孙江, 张鹏飞. 强流电子束入射角二维分布测量方法. 物理学报, 2015, 64(24): 245203. doi: 10.7498/aps.64.245203
    [7] 尹传磊, 王伟民, 廖国前, 李梦超, 李玉同, 张杰. 超强圆偏振激光直接加速产生超高能量电子束. 物理学报, 2015, 64(14): 144102. doi: 10.7498/aps.64.144102
    [8] 吴凤娟, 周维民, 单连强, 李芳, 刘东晓, 张智猛, 李博原, 毕碧, 伍波, 王为武, 张锋, 谷渝秋, 张保汉. 强激光与锥型结构靶相互作用准直电子束粒子模拟研究. 物理学报, 2014, 63(9): 094101. doi: 10.7498/aps.63.094101
    [9] 穆洁, 盛政明, 郑君, 张杰. 强激光与细锥靶相互作用产生强流高能电子束的研究. 物理学报, 2013, 62(13): 135202. doi: 10.7498/aps.62.135202
    [10] 李艳, 蔡杰, 吕鹏, 邹阳, 万明珍, 彭冬晋, 顾倩倩, 关庆丰. 强流脉冲电子束诱发纯钛表面的微观结构及应力状态. 物理学报, 2012, 61(5): 056105. doi: 10.7498/aps.61.056105
    [11] 关庆丰, 顾倩倩, 李艳, 邱冬华, 彭冬晋, 王雪涛. 强流脉冲电子束作用下金属纯Cu的微观结构状态变形结构. 物理学报, 2011, 60(8): 086106. doi: 10.7498/aps.60.086106
    [12] 闫春燕, 张秋菊, 罗牧华. 激光与相对论电子束相互作用中阿秒X射线脉冲的产生. 物理学报, 2011, 60(3): 035202. doi: 10.7498/aps.60.035202
    [13] 董克攻, 谷渝秋, 朱斌, 吴玉迟, 曹磊峰, 何颖玲, 刘红杰, 洪伟, 周维民, 赵宗清, 焦春晔, 温贤伦, 张保汉, 王晓方. 超强飞秒激光尾波场加速产生58 MeV准单能电子束实验. 物理学报, 2010, 59(12): 8733-8738. doi: 10.7498/aps.59.8733
    [14] 闫春燕, 张秋菊. 相对传播的双脉冲激光与薄膜靶作用产生的强单色谐波. 物理学报, 2010, 59(1): 322-328. doi: 10.7498/aps.59.322
    [15] 关庆丰, 程笃庆, 邱冬华, 朱健, 王雪涛, 程秀围. 强流脉冲电子束辐照诱发多晶纯铝中的空位缺陷簇结构. 物理学报, 2009, 58(7): 4846-4852. doi: 10.7498/aps.58.4846
    [16] 程笃庆, 关庆丰, 朱健, 邱东华, 程秀围, 王雪涛. 强流脉冲电子束诱发纯镍表层纳米结构的形成机制. 物理学报, 2009, 58(10): 7300-7306. doi: 10.7498/aps.58.7300
    [17] 张永鹏, 刘国治, 邵浩, 杨占峰, 宋志敏, 林郁正. 一维漂移空间内强流电子束的稳态传输特性. 物理学报, 2009, 58(10): 6973-6978. doi: 10.7498/aps.58.6973
    [18] 廖庆亮, 张 跃, 黄运华, 齐俊杰, 高战军, 夏连胜, 张 篁. 碳纳米管阴极的短脉冲爆炸场发射与等离子体膨胀. 物理学报, 2008, 57(3): 1778-1783. doi: 10.7498/aps.57.1778
    [19] 关庆丰, 安春香, 秦 颖, 邹建新, 郝胜志, 张庆瑜, 董 闯, 邹广田. 强流脉冲电子束应力诱发的微观结构. 物理学报, 2005, 54(8): 3927-3934. doi: 10.7498/aps.54.3927
    [20] 夏江帆, 张军, 张杰. 用激光等离子体实验对天体物理动力学过程进行模拟的可行性研究. 物理学报, 2001, 50(5): 994-1000. doi: 10.7498/aps.50.994
计量
  • 文章访问数:  7556
  • PDF下载量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-28
  • 修回日期:  2019-03-12
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-05

/

返回文章
返回