搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fabry-Perot腔与光学参量放大复合系统中实现可调谐的非常规光子阻塞

李宏 张斯淇 郭明 李美萱 宋立军

引用本文:
Citation:

Fabry-Perot腔与光学参量放大复合系统中实现可调谐的非常规光子阻塞

李宏, 张斯淇, 郭明, 李美萱, 宋立军

Tunable unconventional phonon blockade in Fabry-Perot cavity and optical parametric amplifier composite system

Li Hong, Zhang Si-Qi, Guo Ming, Li Mei-Xuan, Song Li-Jun
PDF
HTML
导出引用
  • 本文提出在Fabry-Perot腔和光学参量放大复合系统中实现非常规光子阻塞效应. 此系统包含可调谐的复合型驱动强度相位, 用二阶关联函数描述光子统计性质, 数值模拟不同参数下的光子阻塞效应, 研究发现通过调节复合型驱动强度相位可以控制非常规光子阻塞. 在弱驱动条件下, 计算得到了强光子反聚束的最优化条件, 并给出了二阶关联函数解析式, 研究发现数值模拟结果与解析结果相符合. 研究结果为光子阻塞的相干操作提供了平台, 在量子信息处理和量子光学器件等方面具有潜在的应用前景.
    In this paper, we present a scheme to realize an unconventional photon blockade effect in a Fabry-Perot cavity and optical parametric amplifier (OPA) composite system. The system includes a tunable phase of complex driving strength, the second-order correlation function is used to describe the photon statistical properties. The numerical simulation of the photon blockade effect is conducted with different parameters. Our calculations show that the unconventional photon blockade effect can be controlled by the tunable phase of complex driving strength. Under the weak driving condition, the exact optimal conditions for strong photon anti-bunching are analytically derived (i.e. the optimal nonlinear gain of optical parametric amplifier and the phase of the field driving for the strong photon anti-bunching are obtained), and obtain the analytic calculations of the second-order correlation function. Under the optimal conditions, we perform a numerical simulation with different parameters. The optimal conditions for strong photon anti-bunching are found by analytic calculations, which are in good agreement with the numerical results. The results provide a platform for coherently operating the photon blockade and have potential applications in quantum information processing and quantum optical devices.
      通信作者: 宋立军, songlj@jlenu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11347013)、吉林省教育厅科技规划项目(批准号: JJKH20190764KJ)、吉林工程技术师范学院博士科研启动经费专项(批准号: BSKJ201825)和吉林工程技术师范学院校级一般项目(批准号: XYB201820)资助的课题.
      Corresponding author: Song Li-Jun, songlj@jlenu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11347013), the Scientific Research Foundation of the Education Department of Jilin Province, China (Grant No. JJKH20190764KJ), the Specialized Fund for the Doctoral Research of Jilin Engineering Normal University, China (Grant No. BSKJ201825), and the General Program of of Jilin Engineering Normal University, China (Grant No. XYB201820).
    [1]

    Imamoglu A, Schmidt H, Woods G, Deutsch M 1997 Phys. Rev. Lett. 79 1467Google Scholar

    [2]

    Liew T C H, Savona V 2010 Phys. Rev. Lett. 104 183601Google Scholar

    [3]

    Cao C, Mi S C, Wang T, Zhang R, Wang C 2016 IEEE J. Quantum Electron. 52 7000205Google Scholar

    [4]

    Cao C, Mi S C, Gao Y P, He L Y, Yang D, Wang T J, Zhang R, Wang C 2016 Sci. Rep. 6 22920Google Scholar

    [5]

    Cao Cong, Chen Xi, Duan Y W, Fan L, Zhang R, Wang T J, Wang C 2017 Optik 130 659Google Scholar

    [6]

    张秀龙, 鲍倩倩, 杨明珠, 田雪松 2018 物理学报 67 104203Google Scholar

    Zhang X L, Bao Q Q, Yang M Z, Tian X S 2018 Acta Phys. Sin. 67 104203Google Scholar

    [7]

    廖庆洪, 叶杨, 李红珍, 周南润 2018 物理学报 67 40302Google Scholar

    Liao Q H, Ye Y, Li H Z, Zhou N R 2018 Acta Phys. Sin. 67 40302Google Scholar

    [8]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87Google Scholar

    [9]

    Greentree A D, Tahan C, Cole J H, Hollenberg L C L 2006 Nat. Phys. 2 856Google Scholar

    [10]

    Angelakis D G, Santos M F, Bose S 2007 Phys. Rev. A 76 031805Google Scholar

    [11]

    Shen H Z, Zhou Y H, Yi X X 2015 Phys. Rev. A 91 063808Google Scholar

    [12]

    Shen H Z, Zhou Y H, Yi X X 2014 Phys. Rev. A 90 023849Google Scholar

    [13]

    Irvine W T M, Hennessy K, Bouwmeester D 2006 Phys. Rev. Lett. 96 057405Google Scholar

    [14]

    Zhou Y H, Shen H Z, Yi X X 2015 Phys. Rev. A 92 023838Google Scholar

    [15]

    Shen H Z, Zhou Y H, Liu H D, Wang G C, Yi X X 2015 Opt. Express 23 32835Google Scholar

    [16]

    Zhou Y H, Zhang S S, Shen H Z, Yi X X 2017 Opt. Lett. 42 1289Google Scholar

    [17]

    Shen H Z, Shang C, Zhou Y H, Yi X X 2018 Phys. Rev. A 98 023856Google Scholar

    [18]

    Shen H Z, Xu S, Zhou Y H, Wang G C, Yi X X 2018 J. Phys. B 51 035503Google Scholar

    [19]

    Zhou Y H, Shen H Z, Zhang X Y, Yi X X 2018 Phys. Rev. A 97 043819Google Scholar

    [20]

    Su S L, Tian Y Z, Shen H Z, Zang H P, Liang E J, Zhang S 2017 Phys. Rev. A 96 042335Google Scholar

    [21]

    Su S L, Gao Y, Liang E J, Zhang S 2017 Phys. Rev. A 95 022319Google Scholar

    [22]

    Su S L, Liang E J, Zhang S, Wen J J, Sun L L, Jin Z, Zhu A D 2016 Phys. Rev. A 93 012306Google Scholar

    [23]

    Zhou Y H, Shen H Z, Shao X Q, Yi X X 2016 Opt. Express 24 17332Google Scholar

    [24]

    Tang J, Geng W, Xu X 2015 Sci. Rep. 5 9252Google Scholar

    [25]

    Majumdar A, Bajcsy M, Rundquist A, Vuckovic J 2012 Phys. Rev. Lett. 108 183601Google Scholar

    [26]

    Zhang W, Yu Z, Liu Y, Peng Y 2014 Phys. Rev. A 8 043832

    [27]

    Flayac H, Savona V 2016 Phys. Rev. A 94 013815Google Scholar

    [28]

    Gerace D, Savona V 2014 Phys. Rev. A 89 031803Google Scholar

    [29]

    Lemonde M A, Didier N, Clerk A A 2014 Phys. Rev. A 90 063824Google Scholar

    [30]

    Xu X W, Li Y J 2013 J. Phys. B 46 035502Google Scholar

    [31]

    Wicz A, Li H R, Miranoao J Q, Nori F, Jing H 2018 Phys. Rev. Lett. 121 153601Google Scholar

    [32]

    石海泉, 谢智强, 徐勋卫, 刘念华 2018 物理学报 67 044203Google Scholar

    Shi H Q, Xie Z Q, Xu X W, Liu N H 2018 Acta Phys. Sin. 67 044203Google Scholar

    [33]

    Sarma B, Sarma A K 2017 Phys. Rev. A 96 053827Google Scholar

  • 图 1  (a) 用激光抽运OPA, 在腔内产生参量放大的腔结构示意图; (b) 量子干涉系统的跃迁路径

    Fig. 1.  (a) Schematic diagram of the cavity setup with an OPA which is pumped by a laser to produce parametric amplification in the cavity; (b) transition paths of the system for quantum interference.

    图 3  等时二阶关联函数$\lg \left[ {{g^{\left(2\right)}}\left(0\right)} \right]$数值结果随OPA非线性增益G和相位$\theta $的等高线图${\varOmega / {\kappa = 0.01}}$, ${\varDelta _a} = 1$, $\phi = 0.5\;{\rm{rad}}$

    Fig. 3.  Contour plot of the second-order correlation functions $\lg \left[ {{g^{\left(2\right)}}\left(0\right)} \right]$ vs. the nonlinear gain G of the OPA and phase $\theta $. Other parameters are ${\varOmega / {\kappa = 0.01}}$, ${\varDelta _a} = 1$, $\phi = 0.5\;{\rm{rad}}$.

    图 2  等时二阶关联函数${g^{\left(2\right)}}(0)$随OPA非线性增益G的变化${\varOmega / {\kappa = 0.01}}$, $\theta = - 0.0341{\text{π}}$, ${\varDelta _a} = 1$

    Fig. 2.  Variation curves of the zero-time-delay second-order correlation function ${g^{\left(2\right)}}(0)$ with the nonlinear gain G of the OPA. Other parameters are ${\varOmega / {\kappa = 0.01}}$, $\theta = - 0.0341{\text{π}}$, ${\varDelta _a} = 1$.

    图 4  等时二阶关联函数$\lg \left[ {{g^{\left(2\right)}}\left(0\right)} \right]$数值结果随相位$\theta $$\phi $的等高线图${\varOmega / {\kappa = 0.01}}$, ${\varDelta _a} = 1$, $G = {G_{\rm opt}}$

    Fig. 4.  Contour plot of the second-order correlation functions $\lg \left[ {{g^{\left(2\right)}}\left(0\right)} \right]$ vs. the phase $\theta $ and $\phi $. Other parameters are ${\varOmega / {\kappa = 0.01}}$, ${\varDelta _a} = 1$, $G = {G_{\rm opt}}$.

    图 5  等时二阶关联函数$\lg \left[ {{g^{\left(2\right)}}\left(0\right)} \right]$数值结果随OPA非线性增益$G$和相位$\phi $变化的等高线图${\varOmega / {\kappa = 0.01}}$, ${\varDelta _a} = 1$, $G = {G_{\rm opt}}$

    Fig. 5.  Contour plot of the second-order correlation functions $\lg \left[ {{g^{\left(2\right)}}\left(0\right)} \right]$ vs. the nonlinear gain of the optical parametric amplifier $G$ and phase $\phi $. Other parameters are ${\varOmega / {\kappa = 0.01}}$, ${\varDelta _a} = 1$, $G = {G_{\rm opt}}$.

    图 6  (a) 二阶关联函数${g^{\left(2\right)}}(0)$随OPA非线性增益$G$的变化, 其中蓝色实线由数值求解方程(3)得出, 红色菱形由(13)和(15)式解析得出; 其他参数为${\varDelta _a} = 1, \; \varOmega /\kappa = 0.01,$ $\phi = 0.5\;{\rm{rad}}, \; \theta = {\theta _{\rm opt}}$; (b) 二阶关联函数${g^{\left(2\right)}}(0)$随相位$\theta $的变化, 蓝色实线由数值求解方程(3)得出, 红色圆形由(13)和(15)式解析得出; 其他参数为${\varDelta _a} = 1, \;\varOmega /\kappa = 0.01,$ $\phi = 0.5\;{\rm{rad}}, \;G = {G_{\rm opt}}$

    Fig. 6.  (a) The second-order correlation functions ${g^{\left(2\right)}}(0)$ vs. the nonlinear gain of the optical parametric amplifier $G$; the blue solid line indicates the numerical results by numerically solving Eq. (3) and the red diamond corresponds to the analytical results of Eq. (13) and Eq. (15); other parameters are ${\varDelta _a} = 1, \; \varOmega /\kappa = 0.01, \; \phi = 0.5\;{\rm{rad}}, \; \theta = {\theta _{\rm opt}}$; (b) the second-order correlation functions ${g^{\left(2\right)}}(0)$ vs. the phase $\theta $; the blue solid line indicates the numerical results by numerically solving Eq. (3) and the red diamond corresponds to the analytical results of Eq. (13) and Eq. (15). Other parameters are ${\varDelta _a} = 1, \;\varOmega /\kappa = 0.01, \;\phi = 0.5\;{\rm{rad}},$ G = Gopt.

  • [1]

    Imamoglu A, Schmidt H, Woods G, Deutsch M 1997 Phys. Rev. Lett. 79 1467Google Scholar

    [2]

    Liew T C H, Savona V 2010 Phys. Rev. Lett. 104 183601Google Scholar

    [3]

    Cao C, Mi S C, Wang T, Zhang R, Wang C 2016 IEEE J. Quantum Electron. 52 7000205Google Scholar

    [4]

    Cao C, Mi S C, Gao Y P, He L Y, Yang D, Wang T J, Zhang R, Wang C 2016 Sci. Rep. 6 22920Google Scholar

    [5]

    Cao Cong, Chen Xi, Duan Y W, Fan L, Zhang R, Wang T J, Wang C 2017 Optik 130 659Google Scholar

    [6]

    张秀龙, 鲍倩倩, 杨明珠, 田雪松 2018 物理学报 67 104203Google Scholar

    Zhang X L, Bao Q Q, Yang M Z, Tian X S 2018 Acta Phys. Sin. 67 104203Google Scholar

    [7]

    廖庆洪, 叶杨, 李红珍, 周南润 2018 物理学报 67 40302Google Scholar

    Liao Q H, Ye Y, Li H Z, Zhou N R 2018 Acta Phys. Sin. 67 40302Google Scholar

    [8]

    Birnbaum K M, Boca A, Miller R, Boozer A D, Northup T E, Kimble H J 2005 Nature 436 87Google Scholar

    [9]

    Greentree A D, Tahan C, Cole J H, Hollenberg L C L 2006 Nat. Phys. 2 856Google Scholar

    [10]

    Angelakis D G, Santos M F, Bose S 2007 Phys. Rev. A 76 031805Google Scholar

    [11]

    Shen H Z, Zhou Y H, Yi X X 2015 Phys. Rev. A 91 063808Google Scholar

    [12]

    Shen H Z, Zhou Y H, Yi X X 2014 Phys. Rev. A 90 023849Google Scholar

    [13]

    Irvine W T M, Hennessy K, Bouwmeester D 2006 Phys. Rev. Lett. 96 057405Google Scholar

    [14]

    Zhou Y H, Shen H Z, Yi X X 2015 Phys. Rev. A 92 023838Google Scholar

    [15]

    Shen H Z, Zhou Y H, Liu H D, Wang G C, Yi X X 2015 Opt. Express 23 32835Google Scholar

    [16]

    Zhou Y H, Zhang S S, Shen H Z, Yi X X 2017 Opt. Lett. 42 1289Google Scholar

    [17]

    Shen H Z, Shang C, Zhou Y H, Yi X X 2018 Phys. Rev. A 98 023856Google Scholar

    [18]

    Shen H Z, Xu S, Zhou Y H, Wang G C, Yi X X 2018 J. Phys. B 51 035503Google Scholar

    [19]

    Zhou Y H, Shen H Z, Zhang X Y, Yi X X 2018 Phys. Rev. A 97 043819Google Scholar

    [20]

    Su S L, Tian Y Z, Shen H Z, Zang H P, Liang E J, Zhang S 2017 Phys. Rev. A 96 042335Google Scholar

    [21]

    Su S L, Gao Y, Liang E J, Zhang S 2017 Phys. Rev. A 95 022319Google Scholar

    [22]

    Su S L, Liang E J, Zhang S, Wen J J, Sun L L, Jin Z, Zhu A D 2016 Phys. Rev. A 93 012306Google Scholar

    [23]

    Zhou Y H, Shen H Z, Shao X Q, Yi X X 2016 Opt. Express 24 17332Google Scholar

    [24]

    Tang J, Geng W, Xu X 2015 Sci. Rep. 5 9252Google Scholar

    [25]

    Majumdar A, Bajcsy M, Rundquist A, Vuckovic J 2012 Phys. Rev. Lett. 108 183601Google Scholar

    [26]

    Zhang W, Yu Z, Liu Y, Peng Y 2014 Phys. Rev. A 8 043832

    [27]

    Flayac H, Savona V 2016 Phys. Rev. A 94 013815Google Scholar

    [28]

    Gerace D, Savona V 2014 Phys. Rev. A 89 031803Google Scholar

    [29]

    Lemonde M A, Didier N, Clerk A A 2014 Phys. Rev. A 90 063824Google Scholar

    [30]

    Xu X W, Li Y J 2013 J. Phys. B 46 035502Google Scholar

    [31]

    Wicz A, Li H R, Miranoao J Q, Nori F, Jing H 2018 Phys. Rev. Lett. 121 153601Google Scholar

    [32]

    石海泉, 谢智强, 徐勋卫, 刘念华 2018 物理学报 67 044203Google Scholar

    Shi H Q, Xie Z Q, Xu X W, Liu N H 2018 Acta Phys. Sin. 67 044203Google Scholar

    [33]

    Sarma B, Sarma A K 2017 Phys. Rev. A 96 053827Google Scholar

  • [1] 杨金颖, 王彬彬, 刘恩克. 磁性拓扑材料中贝利曲率驱动的非常规电输运行为. 物理学报, 2023, 72(17): 177103. doi: 10.7498/aps.72.20230995
    [2] 刘雪莹, 成书杰, 高先龙. 完备Buck-Sukumar模型的光子阻塞效应. 物理学报, 2022, 71(13): 134203. doi: 10.7498/aps.70.20220238
    [3] 李建新. 自旋涨落与非常规超导配对. 物理学报, 2021, 70(1): 017408. doi: 10.7498/aps.70.20202180
    [4] 胡江平. 探索非常规高温超导体. 物理学报, 2021, 70(1): 017101. doi: 10.7498/aps.70.20202122
    [5] 赵国栋, 杨亚利, 任伟. 钙钛矿型氧化物非常规铁电研究进展. 物理学报, 2018, 67(15): 157504. doi: 10.7498/aps.67.20180936
    [6] 程金光. 高压调控的磁性量子临界点和非常规超导电性. 物理学报, 2017, 66(3): 037401. doi: 10.7498/aps.66.037401
    [7] 王建波, 钱进, 刘忠有, 陆祖良, 黄璐, 杨雁, 殷聪, 李同保. 计算电容中Fabry-Perot干涉仪测量位移的相位修正方法. 物理学报, 2016, 65(11): 110601. doi: 10.7498/aps.65.110601
    [8] 张晨, 曹祥玉, 高军, 李思佳, 郑月军. 一种基于共享孔径Fabry-Perot谐振腔结构的宽带高增益磁电偶极子微带天线. 物理学报, 2016, 65(13): 134205. doi: 10.7498/aps.65.134205
    [9] 韩笑纯, 黄靖正, 方晨, 曾贵华. 群速度色散对于纠缠光场二阶关联函数影响的研究. 物理学报, 2015, 64(7): 070301. doi: 10.7498/aps.64.070301
    [10] 白岩, 赵卫疆, 任德明, 曲彦臣, 刘闯, 袁晋鹤, 钱黎明, 陈振雷. 基于有源Fabry-Perot腔的激光脉冲延时自外差研究. 物理学报, 2012, 61(9): 094218. doi: 10.7498/aps.61.094218
    [11] 王晶晶, 何博, 于波, 刘岩, 王晓波, 肖连团, 贾锁堂. 单光子调制锁定Fabry-Perot腔. 物理学报, 2012, 61(20): 204203. doi: 10.7498/aps.61.204203
    [12] 王亚伟, 刘明礼, 刘仁杰, 雷海娜, 田相龙. Fabry-Perot腔谐振对横电波激励下亚波长一维金属光栅的异常透射性的作用. 物理学报, 2011, 60(2): 024217. doi: 10.7498/aps.60.024217
    [13] 周可余, 叶辉, 甄红宇, 尹伊, 沈伟东. 基于压电聚合物薄膜可调谐Fabry-Perot滤波器的研究. 物理学报, 2010, 59(1): 365-369. doi: 10.7498/aps.59.365
    [14] 王争, 赵新杰, 何明, 周铁戈, 岳宏卫, 阎少林. 嵌入到Fabry-Perot谐振腔的双晶约瑟夫森结阵列的阻抗匹配和相位锁定研究. 物理学报, 2010, 59(5): 3481-3487. doi: 10.7498/aps.59.3481
    [15] 岳宏卫, 阎少林, 周铁戈, 谢清连, 游峰, 王争, 何明, 赵新杰, 方兰, 杨扬, 王福音, 陶薇薇. 嵌入Fabry-Perot谐振腔的高温超导双晶约瑟夫森结的毫米波辐照特性研究. 物理学报, 2010, 59(2): 1282-1287. doi: 10.7498/aps.59.1282
    [16] 许 鸥, 鲁韶华, 简水生. 用于单频光纤激光器的光纤光栅双腔Fabry-Perot结构传输谱特性理论研究. 物理学报, 2008, 57(10): 6404-6411. doi: 10.7498/aps.57.6404
    [17] 甘琛利, 张彦鹏, 余孝军, 聂志强, 李 岭, 宋建平, 葛 浩, 姜 彤, 张相臣, 卢克清. 基于双光子不对称色锁二阶随机关联的阿秒极化拍研究. 物理学报, 2007, 56(5): 2670-2677. doi: 10.7498/aps.56.2670
    [18] 程桂平, 柯莎莎, 张立辉, 李高翔. 光腔中两原子共振荧光的相干性质. 物理学报, 2007, 56(2): 830-836. doi: 10.7498/aps.56.830
    [19] 李永贵, 张洪钧, 杨君慧, 高存秀. 混合型非线性Fabry-Perot标准具的光学双稳特性. 物理学报, 1982, 31(4): 446-459. doi: 10.7498/aps.31.446
    [20] 詹达三. 完全相干场的二阶关联函数的分解性质. 物理学报, 1979, 28(1): 117-120. doi: 10.7498/aps.28.117
计量
  • 文章访问数:  7621
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-27
  • 修回日期:  2019-04-04
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-20

/

返回文章
返回