-
高功率光纤激光器的激光输出特性优化, 对进一步提高光纤激光器的输出功率以及实际应用中的切割、加工质量具有重要意义. 斜率效率、背向漏光以及受激拉曼散射是高功率光纤激光器设计中较为关心的输出特性参数. 作为核心器件, 光纤光栅对的参数设计与匹配, 会直接影响到整个激光系统的性能. 本文旨在探究光纤光栅对的参数匹配对激光输出特性的影响, 先是通过理论分析分别阐述了斜率效率、背向漏光以及受激拉曼散射的来源与相互关系; 然后通过实验设计, 采取了两组不同参数光纤光栅对组合, 从实验上分别探究了低反光纤光栅的光谱带宽以及反射率对激光输出特性的影响. 最后得出了光纤光栅对的优化参数与匹配原则, 为提高连续光纤激光器的激光输出特性提供了理论支持与参考价值.In order to improve the output power and processing quality in industrial applications, it is important to optimize the output characteristics of the high-power fiber lasers. The slope efficiency, backward leaking power and stimulated Raman scattering are key issues in high-power fiber laser design. The parameters matching the fiber gratings, which are the critical components, have a direct influence on the whole fiber laser system. In this paper, the parameters matching the fiber gratings in fiber lasers are investigated. Firstly, the origin of slope efficiency, backward leaking power and stimulated Raman scattering are analyzed in theory. Then the influences on output characteristics of fiber lasers comprised of the output coupler gratings, which have different bandwidths and reflectivities, are experimentally studied. Finally, the optimized parameters and matching principle of fiber gratings in high-power fiber laser are obtained , thus providing an alternative method to improve the output characteristics of high-power continuous wave fiber laser.
-
Keywords:
- fiber lasers /
- fiber gratings /
- stimulated Raman scattering /
- fiber components
[1] Demtroder W 2009 Laser Spectroscopy (3rd Ed.) (Berlin: Springer-Verlag) pp851−892
[2] Duarte FJ 2009 Tunable Laser Applications (2nd Ed.) (Boca Raton: CRC Press) pp1−14
[3] Hashemzaden M, Suder W, Williams S, Powell J, Kaplan A F H, Voisey K T 2014 Phys. Procedia 56 909Google Scholar
[4] Zervas M N 2014 Int. J. Mod. Phys. B 28 12Google Scholar
[5] Zhou H, Chen Z, Zhou X, Hou J, Chen J 2015 Opt. Commun. 347 137Google Scholar
[6] Holehouse N, Magne J, Auger M, Quebec M 2015 Proc. SPIE 9344 93441FGoogle Scholar
[7] Jeong Y, Sahu J K, Payne D N 2004 Opt. Express 12 25Google Scholar
[8] IPG Photonics successfully tests world’s first 10 kilowatt single-mode producion laser. http://www.ipgphotonics.com [2009-6-16]
[9] NukW: Kilowatt laser ampifier platform http://www.nufern. com [2012-4-12]
[10] 周军, 楼祺洪, 朱健强 2006 光学学报 26 1119Google Scholar
Zhou J, Lou Q H, Zhu J Q 2006 Acta Opt. Sin. 26 1119Google Scholar
[11] 李晨, 闫平, 陈刚 2006 中国激光 33 738
Li C, Yan P, Chen G 2006 Chinese Journal of Lasers 33 738 (in Chinese)
[12] 李伟, 武子淳, 陈曦 2006 强激光与粒子束 18 890
Li W, Wu Z C, Chen X 2006 High Power Laser and Particle Beams 18 890
[13] 楼祺洪, 何兵, 薛宇豪 2009 中国激光 36 1277
Lou Q H, He B, Xue Y H 2009 Chinese Journal of Lasers 36 1277 (in Chinese)
[14] 任亚杰 2012 硕士学位论文(长沙: 国防科技大学)
Ren Y J 2012 M. S. Thesis (Changsha: National University of Defense Technology) (in Chinese)
[15] Zhan H, Liu Q Y, Wang Y Y, Ke W W, Ni L, Wang X L, Peng K, Gao C, Li Y W, Lin H H, Wang J J, Jing F, Lin A X 2016 Opt. Express 24 24Google Scholar
[16] Raman K 2010 Fiber Bragg Gratings (2nd Ed.) (USA: Academic Press) pp119−180
[17] Wang J H, Chen G, Zhang L, Hu J M, Li J Y, He B, Chen J B, Gu X J, Zhou J, Feng Y 2012 Appl. Opt. 51 29Google Scholar
[18] Xiao H, Leng J Y, Zhang H W, Huang L J, Xu J M, Zhou P 2015 Appl. Opt. 54 27Google Scholar
[19] Agrawal G P 1995 Nonlinear Fiber Optics (USA: Academic Press) p300
[20] Schreiber T, Liem A, Freier E, Matzdorf C, Eberhardt R, Jauregui C, Limpert J, Tunnermann A 2018 Proc. SPIE 8961 89611T-1Google Scholar
[21] Tao R M, Xiao H, Zhang H W, Leng J Y, Wang X L, Zhou P, Xu X J 2018 Opt. Express 26 19Google Scholar
[22] Xu H Y, Jiang M, Shi C, Zhou P, Zhao G M, Gu X J 2017 Appl. Opt. 56 12Google Scholar
[23] Liem A, Freier E, Matzdorf C, Reichel V, Schreiber T, Eberhardt R, Tunnermann A 2013 Advanced Solid-State Lasers Congress Technical Digest Paris, France, October 27−November 1, 2013 JTh2A.32
[24] Ido K, Amos A H 1998 IEEE J. Quantum Electron. 34 9
[25] Wang W C, Li L X, Chen D D, Zhang Q Y 2016 Sci. Rep. 6 31761Google Scholar
[26] Li Y H, Yang M W, Wang D N, Lu J, Sun T, Grattan K T V 2009 Opt. Express 17 22Google Scholar
-
图 4 高功率连续光纤激光器实验光路图 PC, 抽运光合束器; HR, 高反光纤光栅; OC, 低反光纤光栅; YDF, 有源光纤; GDF, 无源光纤; CPS, 包层光滤除器; QBH, 输出准直头; G, 分光玻璃片; OSA, 光谱分析仪; PM1, PM2, 光功率计
Fig. 4. Diagram of high power continue wave fiber laser in experiment. PC, pump combiner; HR, high reflection fiber grating; OC, low reflection fiber grating; YDF, active fiber; GDF, passive fiber; CPS, cladding power stripper; QBH, quartz block head of a fiber optics cable; G, beam splitter; OSA, spectrum analyzer; PM1 and PM2, power meters.
-
[1] Demtroder W 2009 Laser Spectroscopy (3rd Ed.) (Berlin: Springer-Verlag) pp851−892
[2] Duarte FJ 2009 Tunable Laser Applications (2nd Ed.) (Boca Raton: CRC Press) pp1−14
[3] Hashemzaden M, Suder W, Williams S, Powell J, Kaplan A F H, Voisey K T 2014 Phys. Procedia 56 909Google Scholar
[4] Zervas M N 2014 Int. J. Mod. Phys. B 28 12Google Scholar
[5] Zhou H, Chen Z, Zhou X, Hou J, Chen J 2015 Opt. Commun. 347 137Google Scholar
[6] Holehouse N, Magne J, Auger M, Quebec M 2015 Proc. SPIE 9344 93441FGoogle Scholar
[7] Jeong Y, Sahu J K, Payne D N 2004 Opt. Express 12 25Google Scholar
[8] IPG Photonics successfully tests world’s first 10 kilowatt single-mode producion laser. http://www.ipgphotonics.com [2009-6-16]
[9] NukW: Kilowatt laser ampifier platform http://www.nufern. com [2012-4-12]
[10] 周军, 楼祺洪, 朱健强 2006 光学学报 26 1119Google Scholar
Zhou J, Lou Q H, Zhu J Q 2006 Acta Opt. Sin. 26 1119Google Scholar
[11] 李晨, 闫平, 陈刚 2006 中国激光 33 738
Li C, Yan P, Chen G 2006 Chinese Journal of Lasers 33 738 (in Chinese)
[12] 李伟, 武子淳, 陈曦 2006 强激光与粒子束 18 890
Li W, Wu Z C, Chen X 2006 High Power Laser and Particle Beams 18 890
[13] 楼祺洪, 何兵, 薛宇豪 2009 中国激光 36 1277
Lou Q H, He B, Xue Y H 2009 Chinese Journal of Lasers 36 1277 (in Chinese)
[14] 任亚杰 2012 硕士学位论文(长沙: 国防科技大学)
Ren Y J 2012 M. S. Thesis (Changsha: National University of Defense Technology) (in Chinese)
[15] Zhan H, Liu Q Y, Wang Y Y, Ke W W, Ni L, Wang X L, Peng K, Gao C, Li Y W, Lin H H, Wang J J, Jing F, Lin A X 2016 Opt. Express 24 24Google Scholar
[16] Raman K 2010 Fiber Bragg Gratings (2nd Ed.) (USA: Academic Press) pp119−180
[17] Wang J H, Chen G, Zhang L, Hu J M, Li J Y, He B, Chen J B, Gu X J, Zhou J, Feng Y 2012 Appl. Opt. 51 29Google Scholar
[18] Xiao H, Leng J Y, Zhang H W, Huang L J, Xu J M, Zhou P 2015 Appl. Opt. 54 27Google Scholar
[19] Agrawal G P 1995 Nonlinear Fiber Optics (USA: Academic Press) p300
[20] Schreiber T, Liem A, Freier E, Matzdorf C, Eberhardt R, Jauregui C, Limpert J, Tunnermann A 2018 Proc. SPIE 8961 89611T-1Google Scholar
[21] Tao R M, Xiao H, Zhang H W, Leng J Y, Wang X L, Zhou P, Xu X J 2018 Opt. Express 26 19Google Scholar
[22] Xu H Y, Jiang M, Shi C, Zhou P, Zhao G M, Gu X J 2017 Appl. Opt. 56 12Google Scholar
[23] Liem A, Freier E, Matzdorf C, Reichel V, Schreiber T, Eberhardt R, Tunnermann A 2013 Advanced Solid-State Lasers Congress Technical Digest Paris, France, October 27−November 1, 2013 JTh2A.32
[24] Ido K, Amos A H 1998 IEEE J. Quantum Electron. 34 9
[25] Wang W C, Li L X, Chen D D, Zhang Q Y 2016 Sci. Rep. 6 31761Google Scholar
[26] Li Y H, Yang M W, Wang D N, Lu J, Sun T, Grattan K T V 2009 Opt. Express 17 22Google Scholar
计量
- 文章访问数: 12274
- PDF下载量: 181
- 被引次数: 0