搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

系列CoMnZnZ四元Heusler化合物的结构和半金属铁磁性

许佳玲 贾利云 靳晓庆 郝兴楠 马丽 侯登录

引用本文:
Citation:

系列CoMnZnZ四元Heusler化合物的结构和半金属铁磁性

许佳玲, 贾利云, 靳晓庆, 郝兴楠, 马丽, 侯登录

Structure and half-metallic ferromagnetism of quaternary Heusler compounds CoMnZnZ

Xu Jia-Ling, Jia Li-Yun, Jin Xiao-Qing, Hao Xing-Nan, Ma Li, Hou Deng-Lu
PDF
HTML
导出引用
  • 通过第一原理计算理论预测了CoMnZnZ (Z = Si, Ge, Sn, Pb)系列Heusler合金的弹性常数、电子结构和磁性, 并根据弹性常数计算得到弹性模量等参量, 计算了该系列化合物声速和德拜温度. 计算采用全势线性缀加平面波方法, 交换相关函数采用基于Perdew-Burke-Ernzerhof的广义梯度近似泛函. 弹性模量结果表明晶体呈现韧性特征; 承受剪切的性能弱于承受单轴压缩的性能; 结构组成具有较低的各向异性性能. 电子结构的计算显示CoMnZnZ (Z = Si, Ge, Sn)三个化合物属于半金属铁磁体, 但是CoMnZnPb化合物并不显示半金属特性. CoMnZnZ (Z = Si, Ge, Sn)三个化合物的磁矩通过Slater-Pauling法则进行计算得到的量值与第一原理计算得到的完全一致, 遵从总的价电子数减去28的 Slater-Pauling法则, 三个化合物磁矩为整数且自旋极化率为100%. 利用轨道杂化理论解释了此系列化合物半金属性的根源.
    Using the first principle full-potential linearized augmented wave method we study the electronic structure and elastic and magnetic properties of CoMnZnZ (Z = Si, Ge, Sn, Pb) LiMgPdSn-type Heusler alloys. These compounds have the composition CoMnZnZ with 1︰1︰1︰1 stoichiometry, where Z denotes the main group element Si, or Ge, or Sn, or Pb. The exchange-correlations are treated within the generalized gradient approximation of Perdewe-Burke-Ernzerhof. For each of all studied Heusler alloys, the ferromagnetic state is considered to be more stable than the paramagnetic state, judged by the energy. The total energy of the magnetic calculation is lower than that of the nonmagnetic state for each of all three serise compounds at the equilibrium lattice constant, indicating that the magnetic state is more stable than the nonmagnetic state. We determine the elastic constants C11, C12 and C44, which have not been established previously in experiment nor in theory. The elastic constant indicates the weakened resistance to sheardeformation compared with the resistance to unidirectional compression. We derive other mechanical parameters, i.e., the shear modulus G, Young’s modulus E, Poisson’s ratio ν, and shear anisotropic factor A, which are the important elastic moduli for applications. These compounds each have a lower anisotropy and possess a low probability to develop micro-crack or structural defect in its growing process. The sound velocity and Debye temperature for each of the CoMnZnZ (Z = Si, Ge, Sn, Pb) compounds in their stable structure are calculated. The CoMnZnPb exhibits the lowest Debye temperature, and the highest value is observed for CoMnZnGe. The electronic structure calculations show that CoMnZnZ (Z = Si, Ge, Sn) each exhibit a gap in the band of minority states, and they are clearly half-metallic ferromagnets, except for the CoMnZnPb. The CoMnZnZ (Z = Si, Ge, Sn) compounds and their magnetic moments are in reasonable agreement with the Slater-Pauling rule, and they comply with a Slater-Pauling rule of Mt = Zt – 28, which indicates the half metallicity and high spin polarization for these compounds. The CoMnZnSi compound has the largest half-metallic gap value and the gap is about 0.66 eV. The magnetic properties are primarily determined by the Mn atoms, which contribute the highest magnetic moments. The localmoment of the Z element atom is negligibly small. The hybridization of the d orbitals between Co and Mn can explain the origin of the Slater-Pauling rule in half-metallic quaternary Heusler alloys. The half-metallic gap comes mainly from the interaction between the Co and Mn atoms.
      通信作者: 贾利云, jliyun@126.com
    • 基金项目: 国家自然科学基金(批准号: 11504247)、河北省自然科学基金(批准号: A2018205144, E2016205268)、河北省科技支撑计划项目(批准号: 13211032, 15211036)、张家口市财政支持计划项目(批准号: 1611070A)和河北建筑工程学院博士基金资助的课题.
      Corresponding author: Jia Li-Yun, jliyun@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11504247), the Hebei Natural Science Foundation, China (Grant Nos. A2018205144, E2016205268), the Department of Science and Technology of Hebei Province Scientific and Technological Research Project, China (Grant Nos. 13211032, 15211036), the Financial Support from Science and Technology Plan Projects of Zhangjiakou City, China (Grant No. 1611070A), and the Ph. D. Programs Foundation of Hebei Institute of Architecture Civil Engineering, China.
    [1]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [2]

    Galanakis I, Dederichs P H, Papanikolaou N 2002 Phys. Rev. B 66 174429Google Scholar

    [3]

    Skaftouros S, Ozdogan K, Sasioglu E, Galanakis I 2013 Phys. Rev. B 87 024420Google Scholar

    [4]

    Luo H, Meng F, Liu H, Li J, Liu E, Wu G, Zhu X, Jiang C 2012 J. Magn. Magn. Mater. 324 2127Google Scholar

    [5]

    Luo H, Liu G, Meng F, Wang L, Liu E, Wu G, Zhu X, Jiang C 2011 Computat. Mater. Sci. 50 3119Google Scholar

    [6]

    Gao Q, Li L, Lei G, Deng J B, Hun X R 2015 J. Magn. Magn. Mater. 379 288Google Scholar

    [7]

    Bainsla L, Mallick A I, Coelho A A, Nigam A K, Varaprasad B, Takahashi Y K, Alam A, Suresh K G, Hono K 2015 J. Magn. Magn. Mater. 394 82Google Scholar

    [8]

    Berri S, Maouche D, Ibrir M, Zerarga F 2014 J. Magn. Magn. Mater. 354 65Google Scholar

    [9]

    Ozdogan K, Sasioglu E, Galanakis I 2013 J. Appl. Phys. 113 193903 5

    [10]

    Halder M, Mukadam M D, Suresh K G, Yusuf S M 2015 J. Magn. Magn. Mater. 377 220Google Scholar

    [11]

    Venkateswara E Y, Gupta S, Varma M R, Singh P, Suresh K G, Alam A 2015 Phys. Rev. B 92 224413

    [12]

    Bainsla L, Yadav A K, Venkateswara Y, Jha S N, Bhattacharyya D, Suresh K G 2015 J. Alloys Compounds 651 509Google Scholar

    [13]

    Al-zyadi J M K, Gao G Y, Yao K L 2015 J. Magn. Magn. Mater. 378 1Google Scholar

    [14]

    姚仲瑜, 孙丽, 潘孟美, 孙书娟, 刘汉军 2018 物理学报 67 217501Google Scholar

    Yao Z Y, Sun L, Pan M M, Sun S J, Liu H J 2018 Acta Phys. Sin. 67 217501Google Scholar

    [15]

    黄海深, 孙剑, 吴波, 杨秀德, 李平 2018 材料导报 32 2124Google Scholar

    Huang H S, Sun J, Wu B, Yang X D, Li P 2018 Mater. Reports 32 2124Google Scholar

    [16]

    Alijani V, Ouardi S, Fecher G H, Winterlik J, Naghavi S S, Kozina X, Stryganyuk G, Felser C, Ikenaga E, Yamashita Y, Ueda S, Kobayashi K 2011 Phys. Rev. B 84 224416Google Scholar

    [17]

    Klaer P, Balke B, Alijani V, Winterlik J, Fecher G H, Felser C, Elmers H J 2011 Phys. Rev. B 84 144413Google Scholar

    [18]

    Vajiheh A, Juergen W, Gerhard H F, Naghavi S S, Stanislav C, Thomas G, Claudia F 2012 J. Phys.: Condens. Matter 24 046001Google Scholar

    [19]

    Benkabou M, Rached H, Abdellaoui A, Rached D, Khenata R, Elahmar M H, Abidri B, Benkhettou N, Bin-Omran S 2015 J. Alloys Compd. 647 276Google Scholar

    [20]

    Jia L Y, Xu J L, Zhao R B, Pan H, Shen J L, Yuan L Y, Li G K, Ma L, Zhen C M, Hou D L 2018 J. Supercond. Nov. Magn. 31 1067Google Scholar

    [21]

    辛月朋, 马悦兴, 郝红月, 孟凡斌, 刘何燕, 罗鸿志 2016 物理学报 65 147102Google Scholar

    Xin Y P, Ma Y X, Hao H Y, Meng F B, Liu H Y, Luo H Z 2016 Acta Phys. Sin. 65 147102Google Scholar

    [22]

    Murnaghan F 1944 Proc. Nat. Acad. Sci. USA 50 697

    [23]

    Rached H, Rached D, Khenata R, Reshak A H, Rabah M 2009 Phys. Status Solidi (b) 246 1580Google Scholar

    [24]

    Rached H, Rached D, Rabah M, Khenata R, Reshak A H 2010 Physica B: Condens. Matter 405 3515Google Scholar

    [25]

    Pettifor D G 1992 Mater. Sci. Technol. 8 345Google Scholar

    [26]

    Kanchana V, Vaitheeswaran G, Ma Y, Xie Y, Svane A, Eriksson O 2009 Phys. Rev. B 80 125108Google Scholar

    [27]

    Pugh S F 1954 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 823Google Scholar

    [28]

    Haines J, Leger J, Bocquillon G 2001 Ann. Rev. Mater. Res. 31 1Google Scholar

    [29]

    Biskri Z E, Rached H, Bouchear M, Rached D 2014 J. Mech. Behav. Biomed. Mater. 32 345Google Scholar

    [30]

    Anderson O L 1963 J. Phys. Chem. Solids 24 909Google Scholar

  • 图 1  LiMgPdSb型Heusler合金的结构示意图

    Fig. 1.  Structure of LiMgPdSn-type Heusler alloys.

    图 2  四个化合物的态密度图, 其中最上方的是TDOS, 下方分别为各原子的PDOS (a) CoMnZnSi; (b) CoMnZnGe; (c) CoMnZnSn; (d) CoMnZnPb

    Fig. 2.  Totals and Partials density of states (TDOS, PDOS) in their stable structure: (a) CoMnZnSi; (b) CoMnZnGe; (c) CoMnZnSn; (d) CoMnZnPb.

    图 3  自旋向下轨道填充状态示意图

    Fig. 3.  Sketch of the spin-down orbital’s occupied states.

    表 1  CoMnZnSi, CoMnZnGe, CoMnZnSn, CoMnZnPb四种化合物对应的平衡晶格常数a0、体积弹性模量B、压力导数B'和平衡能量E0

    Table 1.  Calculated equilibrium lattice parameters a0, bulk modulus B, its pressure derivative B' and equilibrium energy E0 for CoMnZnZ (Z = Si, Ge, Sn, Pb) compounds.

    Materiala0B/GPaB'E0/Ryd
    CoMnZnSi5.81163.574.56-9276.59
    CoMnZnGe5.93154.833.78-12894.68
    CoMnZnSn6.18122.295.20-21054.64
    CoMnZnPb6.3567.8010.15-50552.93
    下载: 导出CSV

    表 2  计算得到的各化合物的单晶弹性常数Cij、多晶剪切模量G、杨氏模量E、泊松比ν和剪切各向异性常数A

    Table 2.  Calculated single crystal elastic constants Cij and polycrystalline elastic modulus (shear modulus G, Young’s modulus E, Poisson’s ratio ν) shear anisotropic factor A for compounds.

    MaterialC11C12C44GEνA
    CoMnZnSi106.37175.8673.270.762.270.50–2.11
    CoMnZnGe94.93150.4560.360.972.900.50–2.17
    CoMnZnSn94.17130.4260.594.8714.410.48–3.34
    CoMnZnPb58.9897.6130.17–1.69–5.120.51–1.56
    下载: 导出CSV

    表 3  计算得到的温度压力均为0状态下的纵向(vl)、横向(vt)、平均声速 (vm)和德拜温度(θD)

    Table 3.  Calculated longitudinal (vl), transverse (vt), and average (vm) sound velocity and Debye temperature (θD) for compounds.

    Materialvt/ m·s–1vl/ m·s–1vm/ m·s–1θD/K
    CoMnZnSi3732.63178.92341208.63
    CoMnZnGe13661001.96397.9284.78
    CoMnZnSn30308999.92901.3172.36
    CoMnZnPb11474121.87588.881.813
    下载: 导出CSV

    表 4  每分子式总自旋磁矩Mt、间隙区磁矩Mi和各原子磁矩(MX, M'X, MY, MZ)、自旋极化率

    Table 4.  Total, interstitial and local magnetic moments, calculated spin-polarization.

    MaterialMtBMiBMXBM'XBMYBMZBSpin polarization ratio/%
    CoMnZnSi4.000.08720.913.010.01–0.02100
    CoMnZnGe4.000.00050.813.200.02–0.03100
    CoMnZnSn4.00–0.03210.743.34–0.01–0.04100
    CoMnZnPb4.34–0.01810.873.49–0.02–0.0147
    下载: 导出CSV
  • [1]

    Bernevig B A, Hughes T L, Zhang S C 2006 Science 314 1757Google Scholar

    [2]

    Galanakis I, Dederichs P H, Papanikolaou N 2002 Phys. Rev. B 66 174429Google Scholar

    [3]

    Skaftouros S, Ozdogan K, Sasioglu E, Galanakis I 2013 Phys. Rev. B 87 024420Google Scholar

    [4]

    Luo H, Meng F, Liu H, Li J, Liu E, Wu G, Zhu X, Jiang C 2012 J. Magn. Magn. Mater. 324 2127Google Scholar

    [5]

    Luo H, Liu G, Meng F, Wang L, Liu E, Wu G, Zhu X, Jiang C 2011 Computat. Mater. Sci. 50 3119Google Scholar

    [6]

    Gao Q, Li L, Lei G, Deng J B, Hun X R 2015 J. Magn. Magn. Mater. 379 288Google Scholar

    [7]

    Bainsla L, Mallick A I, Coelho A A, Nigam A K, Varaprasad B, Takahashi Y K, Alam A, Suresh K G, Hono K 2015 J. Magn. Magn. Mater. 394 82Google Scholar

    [8]

    Berri S, Maouche D, Ibrir M, Zerarga F 2014 J. Magn. Magn. Mater. 354 65Google Scholar

    [9]

    Ozdogan K, Sasioglu E, Galanakis I 2013 J. Appl. Phys. 113 193903 5

    [10]

    Halder M, Mukadam M D, Suresh K G, Yusuf S M 2015 J. Magn. Magn. Mater. 377 220Google Scholar

    [11]

    Venkateswara E Y, Gupta S, Varma M R, Singh P, Suresh K G, Alam A 2015 Phys. Rev. B 92 224413

    [12]

    Bainsla L, Yadav A K, Venkateswara Y, Jha S N, Bhattacharyya D, Suresh K G 2015 J. Alloys Compounds 651 509Google Scholar

    [13]

    Al-zyadi J M K, Gao G Y, Yao K L 2015 J. Magn. Magn. Mater. 378 1Google Scholar

    [14]

    姚仲瑜, 孙丽, 潘孟美, 孙书娟, 刘汉军 2018 物理学报 67 217501Google Scholar

    Yao Z Y, Sun L, Pan M M, Sun S J, Liu H J 2018 Acta Phys. Sin. 67 217501Google Scholar

    [15]

    黄海深, 孙剑, 吴波, 杨秀德, 李平 2018 材料导报 32 2124Google Scholar

    Huang H S, Sun J, Wu B, Yang X D, Li P 2018 Mater. Reports 32 2124Google Scholar

    [16]

    Alijani V, Ouardi S, Fecher G H, Winterlik J, Naghavi S S, Kozina X, Stryganyuk G, Felser C, Ikenaga E, Yamashita Y, Ueda S, Kobayashi K 2011 Phys. Rev. B 84 224416Google Scholar

    [17]

    Klaer P, Balke B, Alijani V, Winterlik J, Fecher G H, Felser C, Elmers H J 2011 Phys. Rev. B 84 144413Google Scholar

    [18]

    Vajiheh A, Juergen W, Gerhard H F, Naghavi S S, Stanislav C, Thomas G, Claudia F 2012 J. Phys.: Condens. Matter 24 046001Google Scholar

    [19]

    Benkabou M, Rached H, Abdellaoui A, Rached D, Khenata R, Elahmar M H, Abidri B, Benkhettou N, Bin-Omran S 2015 J. Alloys Compd. 647 276Google Scholar

    [20]

    Jia L Y, Xu J L, Zhao R B, Pan H, Shen J L, Yuan L Y, Li G K, Ma L, Zhen C M, Hou D L 2018 J. Supercond. Nov. Magn. 31 1067Google Scholar

    [21]

    辛月朋, 马悦兴, 郝红月, 孟凡斌, 刘何燕, 罗鸿志 2016 物理学报 65 147102Google Scholar

    Xin Y P, Ma Y X, Hao H Y, Meng F B, Liu H Y, Luo H Z 2016 Acta Phys. Sin. 65 147102Google Scholar

    [22]

    Murnaghan F 1944 Proc. Nat. Acad. Sci. USA 50 697

    [23]

    Rached H, Rached D, Khenata R, Reshak A H, Rabah M 2009 Phys. Status Solidi (b) 246 1580Google Scholar

    [24]

    Rached H, Rached D, Rabah M, Khenata R, Reshak A H 2010 Physica B: Condens. Matter 405 3515Google Scholar

    [25]

    Pettifor D G 1992 Mater. Sci. Technol. 8 345Google Scholar

    [26]

    Kanchana V, Vaitheeswaran G, Ma Y, Xie Y, Svane A, Eriksson O 2009 Phys. Rev. B 80 125108Google Scholar

    [27]

    Pugh S F 1954 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 823Google Scholar

    [28]

    Haines J, Leger J, Bocquillon G 2001 Ann. Rev. Mater. Res. 31 1Google Scholar

    [29]

    Biskri Z E, Rached H, Bouchear M, Rached D 2014 J. Mech. Behav. Biomed. Mater. 32 345Google Scholar

    [30]

    Anderson O L 1963 J. Phys. Chem. Solids 24 909Google Scholar

  • [1] 陈国祥, 樊晓波, 李思琦, 张建民. 碱金属和碱土金属掺杂二维GaN材料电磁特性的第一性原理计算. 物理学报, 2019, 68(23): 237303. doi: 10.7498/aps.68.20191246
    [2] 杨艳敏, 李佳, 马洪然, 杨广, 毛秀娟, 李聪聪. Co2-基Heusler合金Co2FeAl1–xSix(x = 0.25, x = 0.5, x = 0.75)的结构、电子结构及热电特性的第一性原理研究. 物理学报, 2019, 68(4): 046101. doi: 10.7498/aps.68.20181641
    [3] 姚仲瑜, 孙丽, 潘孟美, 孙书娟, 刘汉军. 第一性原理研究half-Heusler合金VLiBi和CrLiBi的半金属铁磁性. 物理学报, 2018, 67(21): 217501. doi: 10.7498/aps.67.20181129
    [4] 姚仲瑜, 孙丽, 潘孟美, 孙书娟. 第一性原理研究semi-Heusler合金CoCrTe和CoCrSb的半金属性和磁性. 物理学报, 2016, 65(12): 127501. doi: 10.7498/aps.65.127501
    [5] 杨彪, 王丽阁, 易勇, 王恩泽, 彭丽霞. C, N, O原子在金属V中扩散行为的第一性原理计算. 物理学报, 2015, 64(2): 026602. doi: 10.7498/aps.64.026602
    [6] 马振宁, 蒋敏, 王磊. Mg-Y-Zn合金三元金属间化合物的电子结构及其相稳定性的第一性原理研究. 物理学报, 2015, 64(18): 187102. doi: 10.7498/aps.64.187102
    [7] 赵立凯, 赵二俊, 武志坚. 5d过渡金属二硼化物的结构和热、力学性质的第一性原理计算. 物理学报, 2013, 62(4): 046201. doi: 10.7498/aps.62.046201
    [8] 胡洁琼, 谢明, 张吉明, 刘满门, 杨有才, 陈永泰. Au-Sn金属间化合物的第一性原理研究. 物理学报, 2013, 62(24): 247102. doi: 10.7498/aps.62.247102
    [9] 王风, 王新强, 聂招秀, 程志梅, 刘高斌. 三元化合物ZnVSe2半金属铁磁性的第一性原理计算. 物理学报, 2011, 60(4): 046301. doi: 10.7498/aps.60.046301
    [10] 刘凤丽, 蒋刚, 白丽娜, 孔凡杰. Bi2Te3-xSex(x≤3)同晶化合物电子结构的第一性原理研究. 物理学报, 2011, 60(3): 037104. doi: 10.7498/aps.60.037104
    [11] 文黎巍, 王玉梅, 裴慧霞, 丁俊. Sb系half-Heusler合金磁性及电子结构的第一性原理研究. 物理学报, 2011, 60(4): 047110. doi: 10.7498/aps.60.047110
    [12] 程志梅, 王新强, 王风, 鲁丽娅, 刘高斌, 段壮芬, 聂招秀. 三元化合物ZnCrS2电子结构和半金属铁磁性的第一性原理研究. 物理学报, 2011, 60(9): 096301. doi: 10.7498/aps.60.096301
    [13] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [14] 罗礼进, 仲崇贵, 江学范, 方靖淮, 蒋青. Heusler合金Ni2MnSi的电子结构、磁性、压力响应及四方变形的第一性原理研究. 物理学报, 2010, 59(1): 521-526. doi: 10.7498/aps.59.521
    [15] 宋久旭, 杨银堂, 刘红霞, 张志勇. 掺氮碳化硅纳米管电子结构的第一性原理研究. 物理学报, 2009, 58(7): 4883-4887. doi: 10.7498/aps.58.4883
    [16] 陈宇辉, 王阳, 左方圆, 赖天树, 吴谊群. 半金属锑薄膜中电子动力学研究. 物理学报, 2009, 58(5): 3548-3552. doi: 10.7498/aps.58.3548
    [17] 许红斌, 王渊旭. 过渡金属Tc及其氮化物TcN,TcN2,TcN3与TcN4低压缩性的第一性原理计算研究. 物理学报, 2009, 58(8): 5645-5652. doi: 10.7498/aps.58.5645
    [18] 倪建刚, 刘 诺, 杨果来, 张 曦. 第一性原理研究BaTiO3(001)表面的电子结构. 物理学报, 2008, 57(7): 4434-4440. doi: 10.7498/aps.57.4434
    [19] 段满益, 徐 明, 周海平, 沈益斌, 陈青云, 丁迎春, 祝文军. 过渡金属与氮共掺杂ZnO电子结构和光学性质的第一性原理研究. 物理学报, 2007, 56(9): 5359-5365. doi: 10.7498/aps.56.5359
    [20] 潘志军, 张澜庭, 吴建生. CoSi电子结构第一性原理研究. 物理学报, 2005, 54(1): 328-332. doi: 10.7498/aps.54.328
计量
  • 文章访问数:  8311
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-17
  • 修回日期:  2019-05-16
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-05

/

返回文章
返回