搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于载波抑制单边带调制的微波光子本振倍频上转换方法

许家豪 王云新 王大勇 周涛 杨锋 钟欣 张弘骉 杨登才

引用本文:
Citation:

基于载波抑制单边带调制的微波光子本振倍频上转换方法

许家豪, 王云新, 王大勇, 周涛, 杨锋, 钟欣, 张弘骉, 杨登才

Microwave photonic frequency up-converter with LO doubling based on carrier suppression single-sideband modulation

Xu Jia-Hao, Wang Yun-Xin, Wang Da-Yong, Zhou Tao, Yang Feng, Zhong Xin, Zhang Hong-Biao, Yang Deng-Cai
PDF
HTML
导出引用
  • 提出了一种基于载波抑制单边带调制的微波光子本振倍频上转换方法. 通过将本振信号加载在马赫-曾德尔调制器上产生 ± 1阶本振边带, 利用光纤光栅进行边带分离, 将–1阶本振边带作为载波输入双平行马赫-曾德尔调制器进行二次调制. 中频信号通过90°电桥加载在双平行马赫-曾德尔调制器上, 并使其工作在载波抑制单边带调制状态. 最后将输出的中频单边带调制信号与光纤光栅反射的+1阶本振单边带信号进行合路拍频, 即可获得频率为2ωLO + ωIF的上变频信号. 为了验证该方法的有效性, 搭建了上变频链路并进行了性能测试, 实验结果表明链路的输出光谱和频谱较为纯净, 经过单边带调制后的光谱杂散抑制比达到了22.5 dB, 产生的本振倍频上转换信号的杂散抑制比达到了23.6 dB, 系统的无杂散动态范围达到了96.1 dB·Hz2/3. 该本振倍频上转换方法可有效降低对本振信号的频率需求, 并且产生的上转换信号纯净度较高, 为光载无线通信、光控相控阵雷达等系统中的高频发射提供了有效途径.
    Frequency up-converter as an essential component of the transmitter, which is used to implement the frequency up-conversion by mixing a low-frequency intermediate frequency (IF) signal with a local oscillator (LO) signal. However, only the 1st-order sideband of the LO signal and the IF signal are used in the tradtioanal microwave photonic up-converser, thus the frequency of the up-conversion signal is ωLO + ωIF. In this case, an LO with a higher frequency is needed for generating a high-frequency up-converted signal. In order to reduce the frequency requirement of the LO signal, the high-order LO singals or secondary modulation can be used to achieve high-frequency up-conversion. A microwave photonic up-converter with LO doubling based on carrier suppressing single-sideband modulation is proposed based on the cascaded structure of a Mach-Zehnder modulator (MZM) and a dual-parallel Mach-Zehnder modulator (DPMZM). The MZM is driven by an LO signal biased at the minimum transmission point for carrier suppressing double-sideband (CS-DSB) modulation. A fiber Bragg grating (FBG) is used to separate the +1st-order from -1st-order of the LO signal. The -1st-order of LO signal is then sent to a DPMZM for the secondary modulation, and the carrier suppressing single-sideband (CS-SSB) modulation is realized in order to generate the -1st-order of the IF signal by using an electrical 90° hybrid coupler. The modulated IF signal is then combined with the +1st-order LO signal reflected by the FBG and sent into the photodetector (PD) to implement the photoelectric detection. The upconverted signal with a frequency of 2ωLO + ωIF can be detected by a PD. The experimental results show that the spur suppression ratio of the optical spectrum and the up-converter signal reach 22.5 dB and 23.6 dB, respectively. The spurious-free dynamic range of the system is 96.1 dB·Hz2/3. The proposed system can effectively reduce the frequency requirement of LO signal, and the purity of the electrical spectrum is largely improved which benefits from the CS-SSB modulation. The proposed microwave photonic up-converter provides an effective way for high-frequency emissions in systems such as radio-over-fiber and optically controlled phased array radar.
      通信作者: 王大勇, wdyong@bjut.edu.cn ; 周涛, zhj_zht@163.com
    • 基金项目: 国家自然科学基金(批准号: 61871007, 61771438, 51477028)和北京市青年拔尖创新人才(批准号: CIT&TCD201504020)资助的课题.
      Corresponding author: Wang Da-Yong, wdyong@bjut.edu.cn ; Zhou Tao, zhj_zht@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61871007, 61771438, 51477028) and the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions, China (Grant No. CIT&TCD201504020).
    [1]

    Ghelfi P, Laghezza F, Scotti F, Serafino G, Capria A, Pinna S, Onori D, Porzi C, Scaffardi M, Malacarne A, Vercesi V, Lazzeri E, Berizzi F, Bogoni A 2014 Nature 507 341Google Scholar

    [2]

    Minasian R A, Chan E H W, Yi X 2013 Opt. Exp. 21 22918Google Scholar

    [3]

    Capmany J, Novak D 2007 Nat. Photon. 1 319Google Scholar

    [4]

    Yang X W, Xu K, Yin J, Dai Y T, Yin F F, Li J Q, Lu H, Liu T, Ji Y F 2014 Opt. Exp. 22 869Google Scholar

    [5]

    Gopalakrishnan G K, Burns W K, Bulmer C H 1993 IEEE Trans. Microw. Theory Tech. 41 2383Google Scholar

    [6]

    Altaqui A, Chan E H W, Minasian R A 2014 Appl. Opt. 53 3687Google Scholar

    [7]

    Zhang W, Wen A J, Gao Y S, Li X Y, Shang S 2016 IEEE Photon. J. 8 5500909

    [8]

    Li T, Chan E H W, Wang X D, Feng X H, Guan B O, Yao J P 2018 IEEE Photon. J. 10 5500112

    [9]

    王云新, 李虹历, 王大勇, 李静楠, 钟欣, 周涛, 杨登才, 戎路 2017 物理学报 66 098401Google Scholar

    Wang Y X, Li H L, Wang D Y, Li J N, Zhong X, Zhou T, Yang D C, Rong L 2017 Acta Phys. Sin. 66 098401Google Scholar

    [10]

    Tang Z Z, Pan S L 2017 Opt. Lett. 42 33Google Scholar

    [11]

    Gao Y S, Wen A J, Zhang W, Wang Y, Zhang H X 2017 J. Lightwave Technol. 35 1566Google Scholar

    [12]

    Zhu S, Shi Z, Li M, Zhu N H, Li W 2018 Opt. Lett. 43 583Google Scholar

    [13]

    100G/400G LN Modulator data sheet, Fujitsu http://www. fujitsu.com/jp/group/foc/en/products/optical-devices/100gln/ [2019-2-26]

    [14]

    Gao Y S, Wen A J, Zhang H X, Xiang S Y, Zhang H Q, Zhao L J, Shang L 2014 Opt. Commun. 321 11Google Scholar

    [15]

    Yin C J, Li J Q, Li B Y, Lü Q, Dai J, Yin F F, Dai Y T, Xu K 2017 IEEE Photon. J. 9 5502307

    [16]

    Chi H, Yao J P 2008 J. Lightwave Technol. 26 2706Google Scholar

    [17]

    Tang Z Z, Pan S L 2016 IEEE Trans. Microw. Theory Tech. 64 3017Google Scholar

    [18]

    Zhu D, Pan S L 2018 Photonics 5 6Google Scholar

    [19]

    Xu J H, Wang Y X, Zhou T, Wang D Y, Li J N, Zhong X, Yang D C 2017 Applied Optics and Photonics China (AOPC) 201 7

    [20]

    Tang Z Z, Pan S L 2016 IEEE Microw. Wirel. Co. 26 67Google Scholar

    [21]

    Zhang J L, Chan E H W, Wang X D, Feng X H, Guan B 2017 IEEE Photon. J. 9 5501910

    [22]

    Hraimel B, Zhang X P, Pei Y Q, Wu K, Liu T J, Xu T F, Nie Q H 2011 J. Lightwave Technol. 29 775Google Scholar

    [23]

    Kim H, Song H, Song J 2009 IEEE Photon. Tech. L. 21 1329Google Scholar

    [24]

    Pan H, Segami M, Choi M, Cao L, Abidi A 2000 IEEE J. Solid-St. Circ. 35 1769Google Scholar

    [25]

    Li W, Huang Y, Hong Z 2010 Electron. Lett. 46 1187Google Scholar

  • 图 1  微波光子本振倍频上变频系统结构图

    Fig. 1.  Schematic diagram of proposed frequency-doubling microwave photonic up-converter.

    图 2  系统中相应位置的光谱和频谱图

    Fig. 2.  Corresponding optical and electrical spectrums at different locations in Fig. 1.

    图 3  实验搭建的系统链路图

    Fig. 3.  Experimental setup of the proposed frequency-doubling microwave photonic up-converter.

    图 4  实验链路中的各点光谱图 (a) MZM的输出光谱; (b) FBG的透射光谱; (c) FBG的反射光谱; (d) DPMZM的输出光谱; (e) DPMZM与FBG的反射谱合路后的光谱

    Fig. 4.  Measured optical spectrums of the proposed up-conversion link. The spectrums of (a) output of MZM; (b) transmission through FBG; (c) reflection by FBG; (d) output of DPMZM (e) combined signal from DPMZM and FBG.

    图 5  实验链路得到的上转换频谱图

    Fig. 5.  The electrical spectrum of the proposed microwave frequency up-converter.

    图 6  系统转换效率 (a) LO频率固定, IF频率变化; (b) IF频率固定, LO频率变化

    Fig. 6.  Measured conversion efficiency when (a) LO is fixed and IF changes and (b) IF is fixed and LO changes.

    图 7  测得系统的误差矢量幅度

    Fig. 7.  Measured EVM of the generated up-conversion signal.

    图 8  系统的无杂散动态范围

    Fig. 8.  SFDR of the proposed microwave photonic up-converter.

  • [1]

    Ghelfi P, Laghezza F, Scotti F, Serafino G, Capria A, Pinna S, Onori D, Porzi C, Scaffardi M, Malacarne A, Vercesi V, Lazzeri E, Berizzi F, Bogoni A 2014 Nature 507 341Google Scholar

    [2]

    Minasian R A, Chan E H W, Yi X 2013 Opt. Exp. 21 22918Google Scholar

    [3]

    Capmany J, Novak D 2007 Nat. Photon. 1 319Google Scholar

    [4]

    Yang X W, Xu K, Yin J, Dai Y T, Yin F F, Li J Q, Lu H, Liu T, Ji Y F 2014 Opt. Exp. 22 869Google Scholar

    [5]

    Gopalakrishnan G K, Burns W K, Bulmer C H 1993 IEEE Trans. Microw. Theory Tech. 41 2383Google Scholar

    [6]

    Altaqui A, Chan E H W, Minasian R A 2014 Appl. Opt. 53 3687Google Scholar

    [7]

    Zhang W, Wen A J, Gao Y S, Li X Y, Shang S 2016 IEEE Photon. J. 8 5500909

    [8]

    Li T, Chan E H W, Wang X D, Feng X H, Guan B O, Yao J P 2018 IEEE Photon. J. 10 5500112

    [9]

    王云新, 李虹历, 王大勇, 李静楠, 钟欣, 周涛, 杨登才, 戎路 2017 物理学报 66 098401Google Scholar

    Wang Y X, Li H L, Wang D Y, Li J N, Zhong X, Zhou T, Yang D C, Rong L 2017 Acta Phys. Sin. 66 098401Google Scholar

    [10]

    Tang Z Z, Pan S L 2017 Opt. Lett. 42 33Google Scholar

    [11]

    Gao Y S, Wen A J, Zhang W, Wang Y, Zhang H X 2017 J. Lightwave Technol. 35 1566Google Scholar

    [12]

    Zhu S, Shi Z, Li M, Zhu N H, Li W 2018 Opt. Lett. 43 583Google Scholar

    [13]

    100G/400G LN Modulator data sheet, Fujitsu http://www. fujitsu.com/jp/group/foc/en/products/optical-devices/100gln/ [2019-2-26]

    [14]

    Gao Y S, Wen A J, Zhang H X, Xiang S Y, Zhang H Q, Zhao L J, Shang L 2014 Opt. Commun. 321 11Google Scholar

    [15]

    Yin C J, Li J Q, Li B Y, Lü Q, Dai J, Yin F F, Dai Y T, Xu K 2017 IEEE Photon. J. 9 5502307

    [16]

    Chi H, Yao J P 2008 J. Lightwave Technol. 26 2706Google Scholar

    [17]

    Tang Z Z, Pan S L 2016 IEEE Trans. Microw. Theory Tech. 64 3017Google Scholar

    [18]

    Zhu D, Pan S L 2018 Photonics 5 6Google Scholar

    [19]

    Xu J H, Wang Y X, Zhou T, Wang D Y, Li J N, Zhong X, Yang D C 2017 Applied Optics and Photonics China (AOPC) 201 7

    [20]

    Tang Z Z, Pan S L 2016 IEEE Microw. Wirel. Co. 26 67Google Scholar

    [21]

    Zhang J L, Chan E H W, Wang X D, Feng X H, Guan B 2017 IEEE Photon. J. 9 5501910

    [22]

    Hraimel B, Zhang X P, Pei Y Q, Wu K, Liu T J, Xu T F, Nie Q H 2011 J. Lightwave Technol. 29 775Google Scholar

    [23]

    Kim H, Song H, Song J 2009 IEEE Photon. Tech. L. 21 1329Google Scholar

    [24]

    Pan H, Segami M, Choi M, Cao L, Abidi A 2000 IEEE J. Solid-St. Circ. 35 1769Google Scholar

    [25]

    Li W, Huang Y, Hong Z 2010 Electron. Lett. 46 1187Google Scholar

  • [1] 陈永强, 许光远, 王军, 方宇, 吴幸智, 丁亚琼, 孙勇. 基于非对称微波光子晶体的电磁二极管. 物理学报, 2022, 71(3): 034701. doi: 10.7498/aps.71.20211291
    [2] 陈永强, 许光远, 王军, 方宇, 吴幸智, 丁亚琼, 孙勇. 基于非对称微波光子晶体的电磁二极管. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211291
    [3] 刘鹏翔, 李伟, 郭丽媛, 祁峰, 庞子博, 李惟帆, 汪业龙, 刘朝阳. 基于有机吡啶盐晶体的太赫兹频率上转换探测. 物理学报, 2021, 70(5): 050701. doi: 10.7498/aps.70.20201908
    [4] 麻艳娜, 王文睿, 宋开臣, 于晋龙, 马闯, 张华芳. 基于双波长时域合成技术的微波光子波形产生. 物理学报, 2019, 68(17): 174203. doi: 10.7498/aps.68.20190151
    [5] 白鹏, 张月蘅, 沈文忠. 半导体上转换单光子探测技术研究进展. 物理学报, 2018, 67(22): 221401. doi: 10.7498/aps.67.20180618
    [6] 王云新, 李虹历, 王大勇, 李静楠, 钟欣, 周涛, 杨登才, 戎路. 基于双平行马赫-曾德尔调制器的大动态范围微波光子下变频方法. 物理学报, 2017, 66(9): 098401. doi: 10.7498/aps.66.098401
    [7] 王冬, 徐莎, 曹延伟, 秦奋. 光子晶体高功率微波模式转换器设计. 物理学报, 2014, 63(1): 018401. doi: 10.7498/aps.63.018401
    [8] 张重阳, 刘阿娣, 李弘, 陈志鹏, 李斌, 杨州军, 周楚, 谢锦林, 兰涛, 刘万东, 庄革, 俞昌旋. 双极化频率调制微波反射计在J-TEXT托卡马克上的应用. 物理学报, 2014, 63(12): 125204. doi: 10.7498/aps.63.125204
    [9] 李晶, 宁提纲, 裴丽, 简伟, 郑晶晶, 油海东, 孙剑, 王一群, 李超. 基于谐波拟合产生周期性三角形光脉冲串的实验研究. 物理学报, 2014, 63(15): 154210. doi: 10.7498/aps.63.154210
    [10] 郑狄, 潘炜, 闫连山, 罗斌, 邹喜华, 刘新开, 易安林. 基于布里渊载波相移的宽带可调谐二倍频微波信号生成. 物理学报, 2014, 63(15): 154214. doi: 10.7498/aps.63.154214
    [11] 李晶, 宁提纲, 裴丽, 简伟, 油海东, 陈宏尧, 张婵, 李超. 基于双平行马赫曾德调制器的动态可调光载波边带比光单边带调制:理论分析与实验研究. 物理学报, 2013, 62(22): 224210. doi: 10.7498/aps.62.224210
    [12] 李晶, 宁提纲, 裴丽, 周倩, 胡旭东, 祁春慧, 高嵩, 杨龙. 三角形谱啁啾光纤光栅的制备及其在光纤无线单边带调制系统中的应用. 物理学报, 2011, 60(5): 054203. doi: 10.7498/aps.60.054203
    [13] 刘华刚, 胡明列, 刘博文, 宋有建, 柴路, 王清月. 高功率高重复频率多波长飞秒激光系统的研究. 物理学报, 2010, 59(6): 3979-3985. doi: 10.7498/aps.59.3979
    [14] 高当丽, 张翔宇, 张正龙, 徐良敏, 雷瑜, 郑海荣. 调控声子提高Tm3+掺杂体系的频率上转换荧光. 物理学报, 2009, 58(9): 6108-6112. doi: 10.7498/aps.58.6108
    [15] 王身云, 刘少斌. 基于等离子体缺陷层的一维可调谐微波光子晶体滤波特性. 物理学报, 2009, 58(10): 7062-7066. doi: 10.7498/aps.58.7062
    [16] 周利刚, 沈文忠. GaN/AlGaN双带红外探测及光子频率上转换研究. 物理学报, 2009, 58(10): 6863-6872. doi: 10.7498/aps.58.6863
    [17] 李小燕, 郑志强, 冯卓宏, 刘 璟, 姜翠华, 孔令凯, 明 海. 掺铒锆钛酸铅镧陶瓷的上转换动力学分析. 物理学报, 2008, 57(5): 3244-3248. doi: 10.7498/aps.57.3244
    [18] 李善锋, 苗 壮, 彭 扬, 张庆瑜. 掺Yb硼硅酸盐玻璃的光学特性及其双光子合作上转换荧光. 物理学报, 2006, 55(8): 4315-4320. doi: 10.7498/aps.55.4315
    [19] 吴 昆, 吴 健, 徐 晗, 曾和平. 超短激光脉冲调制上转换放大. 物理学报, 2005, 54(8): 3749-3756. doi: 10.7498/aps.54.3749
    [20] 吴长锋, 秦伟平, 秦冠仕, 黄世华, 张继森, 赵 丹, 吕少哲, 林海燕, 刘晃清. TiO2∶Mo体系的光子雪崩上转换. 物理学报, 2003, 52(6): 1540-1544. doi: 10.7498/aps.52.1540
计量
  • 文章访问数:  12434
  • PDF下载量:  212
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-27
  • 修回日期:  2019-05-14
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-05

/

返回文章
返回