-
提出了一种基于载波抑制单边带调制的微波光子本振倍频上转换方法. 通过将本振信号加载在马赫-曾德尔调制器上产生 ± 1阶本振边带, 利用光纤光栅进行边带分离, 将–1阶本振边带作为载波输入双平行马赫-曾德尔调制器进行二次调制. 中频信号通过90°电桥加载在双平行马赫-曾德尔调制器上, 并使其工作在载波抑制单边带调制状态. 最后将输出的中频单边带调制信号与光纤光栅反射的+1阶本振单边带信号进行合路拍频, 即可获得频率为2ωLO + ωIF的上变频信号. 为了验证该方法的有效性, 搭建了上变频链路并进行了性能测试, 实验结果表明链路的输出光谱和频谱较为纯净, 经过单边带调制后的光谱杂散抑制比达到了22.5 dB, 产生的本振倍频上转换信号的杂散抑制比达到了23.6 dB, 系统的无杂散动态范围达到了96.1 dB·Hz2/3. 该本振倍频上转换方法可有效降低对本振信号的频率需求, 并且产生的上转换信号纯净度较高, 为光载无线通信、光控相控阵雷达等系统中的高频发射提供了有效途径.Frequency up-converter as an essential component of the transmitter, which is used to implement the frequency up-conversion by mixing a low-frequency intermediate frequency (IF) signal with a local oscillator (LO) signal. However, only the 1st-order sideband of the LO signal and the IF signal are used in the tradtioanal microwave photonic up-converser, thus the frequency of the up-conversion signal is ωLO + ωIF. In this case, an LO with a higher frequency is needed for generating a high-frequency up-converted signal. In order to reduce the frequency requirement of the LO signal, the high-order LO singals or secondary modulation can be used to achieve high-frequency up-conversion. A microwave photonic up-converter with LO doubling based on carrier suppressing single-sideband modulation is proposed based on the cascaded structure of a Mach-Zehnder modulator (MZM) and a dual-parallel Mach-Zehnder modulator (DPMZM). The MZM is driven by an LO signal biased at the minimum transmission point for carrier suppressing double-sideband (CS-DSB) modulation. A fiber Bragg grating (FBG) is used to separate the +1st-order from -1st-order of the LO signal. The -1st-order of LO signal is then sent to a DPMZM for the secondary modulation, and the carrier suppressing single-sideband (CS-SSB) modulation is realized in order to generate the -1st-order of the IF signal by using an electrical 90° hybrid coupler. The modulated IF signal is then combined with the +1st-order LO signal reflected by the FBG and sent into the photodetector (PD) to implement the photoelectric detection. The upconverted signal with a frequency of 2ωLO + ωIF can be detected by a PD. The experimental results show that the spur suppression ratio of the optical spectrum and the up-converter signal reach 22.5 dB and 23.6 dB, respectively. The spurious-free dynamic range of the system is 96.1 dB·Hz2/3. The proposed system can effectively reduce the frequency requirement of LO signal, and the purity of the electrical spectrum is largely improved which benefits from the CS-SSB modulation. The proposed microwave photonic up-converter provides an effective way for high-frequency emissions in systems such as radio-over-fiber and optically controlled phased array radar.
-
Keywords:
- microwave photonics /
- frequency up-converter /
- carrier-suppressed single-sideband modulation
[1] Ghelfi P, Laghezza F, Scotti F, Serafino G, Capria A, Pinna S, Onori D, Porzi C, Scaffardi M, Malacarne A, Vercesi V, Lazzeri E, Berizzi F, Bogoni A 2014 Nature 507 341Google Scholar
[2] Minasian R A, Chan E H W, Yi X 2013 Opt. Exp. 21 22918Google Scholar
[3] Capmany J, Novak D 2007 Nat. Photon. 1 319Google Scholar
[4] Yang X W, Xu K, Yin J, Dai Y T, Yin F F, Li J Q, Lu H, Liu T, Ji Y F 2014 Opt. Exp. 22 869Google Scholar
[5] Gopalakrishnan G K, Burns W K, Bulmer C H 1993 IEEE Trans. Microw. Theory Tech. 41 2383Google Scholar
[6] Altaqui A, Chan E H W, Minasian R A 2014 Appl. Opt. 53 3687Google Scholar
[7] Zhang W, Wen A J, Gao Y S, Li X Y, Shang S 2016 IEEE Photon. J. 8 5500909
[8] Li T, Chan E H W, Wang X D, Feng X H, Guan B O, Yao J P 2018 IEEE Photon. J. 10 5500112
[9] 王云新, 李虹历, 王大勇, 李静楠, 钟欣, 周涛, 杨登才, 戎路 2017 物理学报 66 098401Google Scholar
Wang Y X, Li H L, Wang D Y, Li J N, Zhong X, Zhou T, Yang D C, Rong L 2017 Acta Phys. Sin. 66 098401Google Scholar
[10] Tang Z Z, Pan S L 2017 Opt. Lett. 42 33Google Scholar
[11] Gao Y S, Wen A J, Zhang W, Wang Y, Zhang H X 2017 J. Lightwave Technol. 35 1566Google Scholar
[12] Zhu S, Shi Z, Li M, Zhu N H, Li W 2018 Opt. Lett. 43 583Google Scholar
[13] 100G/400G LN Modulator data sheet, Fujitsu http://www. fujitsu.com/jp/group/foc/en/products/optical-devices/100gln/ [2019-2-26]
[14] Gao Y S, Wen A J, Zhang H X, Xiang S Y, Zhang H Q, Zhao L J, Shang L 2014 Opt. Commun. 321 11Google Scholar
[15] Yin C J, Li J Q, Li B Y, Lü Q, Dai J, Yin F F, Dai Y T, Xu K 2017 IEEE Photon. J. 9 5502307
[16] Chi H, Yao J P 2008 J. Lightwave Technol. 26 2706Google Scholar
[17] Tang Z Z, Pan S L 2016 IEEE Trans. Microw. Theory Tech. 64 3017Google Scholar
[18] Zhu D, Pan S L 2018 Photonics 5 6Google Scholar
[19] Xu J H, Wang Y X, Zhou T, Wang D Y, Li J N, Zhong X, Yang D C 2017 Applied Optics and Photonics China (AOPC)
201 7 [20] Tang Z Z, Pan S L 2016 IEEE Microw. Wirel. Co. 26 67Google Scholar
[21] Zhang J L, Chan E H W, Wang X D, Feng X H, Guan B 2017 IEEE Photon. J. 9 5501910
[22] Hraimel B, Zhang X P, Pei Y Q, Wu K, Liu T J, Xu T F, Nie Q H 2011 J. Lightwave Technol. 29 775Google Scholar
[23] Kim H, Song H, Song J 2009 IEEE Photon. Tech. L. 21 1329Google Scholar
[24] Pan H, Segami M, Choi M, Cao L, Abidi A 2000 IEEE J. Solid-St. Circ. 35 1769Google Scholar
[25] Li W, Huang Y, Hong Z 2010 Electron. Lett. 46 1187Google Scholar
-
图 2 系统中相应位置的光谱和频谱图
Fig. 2. Corresponding optical and electrical spectrums at different locations in Fig. 1.
图 4 实验链路中的各点光谱图 (a) MZM的输出光谱; (b) FBG的透射光谱; (c) FBG的反射光谱; (d) DPMZM的输出光谱; (e) DPMZM与FBG的反射谱合路后的光谱
Fig. 4. Measured optical spectrums of the proposed up-conversion link. The spectrums of (a) output of MZM; (b) transmission through FBG; (c) reflection by FBG; (d) output of DPMZM (e) combined signal from DPMZM and FBG.
-
[1] Ghelfi P, Laghezza F, Scotti F, Serafino G, Capria A, Pinna S, Onori D, Porzi C, Scaffardi M, Malacarne A, Vercesi V, Lazzeri E, Berizzi F, Bogoni A 2014 Nature 507 341Google Scholar
[2] Minasian R A, Chan E H W, Yi X 2013 Opt. Exp. 21 22918Google Scholar
[3] Capmany J, Novak D 2007 Nat. Photon. 1 319Google Scholar
[4] Yang X W, Xu K, Yin J, Dai Y T, Yin F F, Li J Q, Lu H, Liu T, Ji Y F 2014 Opt. Exp. 22 869Google Scholar
[5] Gopalakrishnan G K, Burns W K, Bulmer C H 1993 IEEE Trans. Microw. Theory Tech. 41 2383Google Scholar
[6] Altaqui A, Chan E H W, Minasian R A 2014 Appl. Opt. 53 3687Google Scholar
[7] Zhang W, Wen A J, Gao Y S, Li X Y, Shang S 2016 IEEE Photon. J. 8 5500909
[8] Li T, Chan E H W, Wang X D, Feng X H, Guan B O, Yao J P 2018 IEEE Photon. J. 10 5500112
[9] 王云新, 李虹历, 王大勇, 李静楠, 钟欣, 周涛, 杨登才, 戎路 2017 物理学报 66 098401Google Scholar
Wang Y X, Li H L, Wang D Y, Li J N, Zhong X, Zhou T, Yang D C, Rong L 2017 Acta Phys. Sin. 66 098401Google Scholar
[10] Tang Z Z, Pan S L 2017 Opt. Lett. 42 33Google Scholar
[11] Gao Y S, Wen A J, Zhang W, Wang Y, Zhang H X 2017 J. Lightwave Technol. 35 1566Google Scholar
[12] Zhu S, Shi Z, Li M, Zhu N H, Li W 2018 Opt. Lett. 43 583Google Scholar
[13] 100G/400G LN Modulator data sheet, Fujitsu http://www. fujitsu.com/jp/group/foc/en/products/optical-devices/100gln/ [2019-2-26]
[14] Gao Y S, Wen A J, Zhang H X, Xiang S Y, Zhang H Q, Zhao L J, Shang L 2014 Opt. Commun. 321 11Google Scholar
[15] Yin C J, Li J Q, Li B Y, Lü Q, Dai J, Yin F F, Dai Y T, Xu K 2017 IEEE Photon. J. 9 5502307
[16] Chi H, Yao J P 2008 J. Lightwave Technol. 26 2706Google Scholar
[17] Tang Z Z, Pan S L 2016 IEEE Trans. Microw. Theory Tech. 64 3017Google Scholar
[18] Zhu D, Pan S L 2018 Photonics 5 6Google Scholar
[19] Xu J H, Wang Y X, Zhou T, Wang D Y, Li J N, Zhong X, Yang D C 2017 Applied Optics and Photonics China (AOPC)
201 7 [20] Tang Z Z, Pan S L 2016 IEEE Microw. Wirel. Co. 26 67Google Scholar
[21] Zhang J L, Chan E H W, Wang X D, Feng X H, Guan B 2017 IEEE Photon. J. 9 5501910
[22] Hraimel B, Zhang X P, Pei Y Q, Wu K, Liu T J, Xu T F, Nie Q H 2011 J. Lightwave Technol. 29 775Google Scholar
[23] Kim H, Song H, Song J 2009 IEEE Photon. Tech. L. 21 1329Google Scholar
[24] Pan H, Segami M, Choi M, Cao L, Abidi A 2000 IEEE J. Solid-St. Circ. 35 1769Google Scholar
[25] Li W, Huang Y, Hong Z 2010 Electron. Lett. 46 1187Google Scholar
计量
- 文章访问数: 12146
- PDF下载量: 209
- 被引次数: 0