搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于偏振依赖多模-单模-多模光纤滤波器的波长间隔可调谐双波长掺铒光纤激光器

彭万敬 刘鹏

引用本文:
Citation:

基于偏振依赖多模-单模-多模光纤滤波器的波长间隔可调谐双波长掺铒光纤激光器

彭万敬, 刘鹏

Continuously spacing-tunable dual-wavelength erbium-doped fiber laser based on polarization-dependent in-line multimode-single-mode-multimode fiber filter

Peng Wan-Jing, Liu Peng
PDF
HTML
导出引用
  • 报道了一种具有全光纤结构的双波长掺铒光纤激光器, 该激光器的核心器件为一款新型的多模-单模-多模光纤干涉滤波器. 该滤波器通过一段偏振保持光纤引入偏振依赖相位差, 因而其干涉滤波效果具有良好的偏振依赖特性. 入射抽运功率为50 mW时, 系统输出激光波长为1544.82 与1545.61 nm, 波长间隔0.8 nm, 双波长激光边模抑制比均大于45 dB, 输出峰值功率差小于1 dB, 功率波动在0.7 dB以内. 通过调整腔内的偏振控制器, 可实现双波长间隔的连续可调谐输出, 波长间隔的调谐范围为0—3 nm. 输出信号的偏振态测试结果显示, 系统保持精准的单偏振输出, 并且在不同的调谐条件下, 双波长激光表现出不同的偏振特性, 当双波长激光的偏振状态相互正交时, 系统的偏振消光比达到35 dB, 整体调谐过程表现出良好的偏振稳定度.
    A continuously spacing-tunable dual-wavelength erbium-doped all-fiber laser is proposed and experimentally demonstrated in this paper. The key component of the laser is a novel polarization-maintained multimode-single-mode-multimode fiber interference filter, which is composed of two single-mode-multimode-single-mode fiber mode converters with a polarization-maintaining fiber sandwiched between them. As the polarization-maintaining fiber gives rise to a polarization-dependent phase difference, the fiber filter shows good polarization-dependent characteristics in interference filtering. Based on the mode interference and polarization control, the good wavelength tuning results are obtained in experiment. An optimized length of 1.3 mm for multimode fiber and 1.5 mm for polarization-maintaining fiber are adopted based on the theoretical and experimental analysis. When the phase difference between the lasing in the fast axial direction and that in the slow axial direction is $ {\text{π}}$, the peaks and valleys in the transmission spectrum of the fiber filter correspond exactly to the two orthogonal polarization states. In the test, when the pump power is 50 mW, a high-quality dual-wavelength lasing output (at 1544.82 nm and 1545.61 nm) is observed to have side-mode suppression ratio better than 45 dB, the wavelength spacing of 0.8 nm, the peak power difference of less than 1 dB, and the output keeps stable with a small power fluctuation less than 0.7 dB. By adjusting the polarization controller in the ring cavity, two different dual-wavelength outputs can be obtained, which are corresponding to tuning Ⅰ and tuning Ⅱ. In tuning Ⅰ, a dual-wavelength lasing output in a wavelength spacing tuning range of 0−1.2 nm can be obtained within 1 dB peak power difference, correspondingly, 0−1.6 nm tuning range within 10 dB peak power difference. In tuning Ⅱ, with continuously adjusting the polarization controller, the short wavelength signal of the dual-wavelength output stops resonating, and simultaneously another wavelength signal near 1547.8 nm is excited, the switching is continuous and the system remains dual-wavelength output. In tuning Ⅱ, a maximum tuning range of 1.6−3 nm is obtained. In both of tuning Ⅰ and tuning Ⅱ, a 0−3 nm continuously spacing-tunable dual-wavelength output is obtained, all of which keep stable single-polarization operation. The test results show that the polarization state of the dual-wavelength lasing varies with tuning; a maximum polarization extinction ratio of 35 dB is obtained as the two wavelengths are orthogonally polarized.
      通信作者: 刘鹏, liupengcn1974@163.com
    • 基金项目: 中国工程物理研究院研究基金(批准号: TCGH1001-02)、河北省高等学校科学技术研究重点项目(批准号: ZD2017305)和河北省科技计划项目(批准号: 16210411)资助的课题.
      Corresponding author: Liu Peng, liupengcn1974@163.com
    • Funds: Project supported by the Research Foundation of CAEP, China (Grant No. TCGH1001-02), the Scientific Research Project of Hebei Education Department, China (Grant No. ZD2017305), and the Research Project of Hebei Science and Technology Department, China (Grant No. 16210411).
    [1]

    刘江, 刘晨, 师红星, 王璞 2016 物理学报 65 194209Google Scholar

    Liu J, Liu C, Shi H X, Wang P 2016 Acta Phys. Sin. 65 194209Google Scholar

    [2]

    窦志远, 田金荣, 李克轩, 于振华, 胡梦婷, 霍明超, 宋晏蓉 2015 物理学报 64 064206Google Scholar

    Dou Z Y, Tian J R, Li K X, Yu Z H, Hu M T, Huo M C, Song Y R 2015 Acta Phys. Sin. 64 064206Google Scholar

    [3]

    Ahmad H, Muhammad F D, Chang H P, Thambiratnam K 2014 IEEE J. Sel. Top. Quant. Electron. 20 0902308Google Scholar

    [4]

    Zhu T, Zhang B M, Shi L L, Huang S H, Deng M, Liu J G, Li X 2016 Opt. Express 24 1324Google Scholar

    [5]

    Li Q, Feng S C, Peng W J, Liu P, Feng T, Tan S Y, Yan F P 2012 Microw. Opt. Techn. Let. 54 2074

    [6]

    Li Z, Zhou J, He B, Liu H K, Liu C, Wei Y R, Dong J X, Lou Q H 2012 Chin. Phys. Lett. 29 074203Google Scholar

    [7]

    冯新焕, 刘艳格, 董孝义 2007 中国激光 34 883Google Scholar

    Feng X H, Liu Y G, Dong X Y 2007 Chin. J. Las. 34 883Google Scholar

    [8]

    Ibarra-Escamilla B, Durán-Sánchez M, Álvarez-Tamayo R I, Posada-Ramírez B, Kuzin E A, Das S, Dhar A, Pal M, Paul M C, Kir’yanov A V 2019 Laser Phys. 29 015102Google Scholar

    [9]

    Yin B, Feng S C, Bai Y L, Liu Z B, Liang L J, Liu S, Jian S S 2014 IEEE Photon. Technol. Lett. 26 1227Google Scholar

    [10]

    Han J H 2010 Optik 121 2266Google Scholar

    [11]

    Feng T, Ding D L, Zhao Z W, Su H X, Yan F P, Yao X S 2016 Laser Phys. Lett. 13 105104Google Scholar

    [12]

    Feng T, Ding D L, Zhao Z W, Su H X, Yan F P, Yao X S 2016 Opt. Express 24 19760Google Scholar

    [13]

    Feng T, Yan F P, Liu S, Bai Y, Peng W J, Tan S Y 2014 Laser Phys. Lett. 11 125106Google Scholar

    [14]

    He X Y, Wang D N, Liao C R 2011 J. Lightwave Technol. 29 842

    [15]

    He X Y, Fang X, Liao C R, Wang D N, Sun J Q 2009 Opt. Express 17 21773Google Scholar

    [16]

    Pan S L, Yao J P 2009 Opt. Express 17 5414Google Scholar

    [17]

    Jasim A A, Ahmad H 2017 Opt. Laser Technol. 97 12Google Scholar

    [18]

    Wang F, Xu E M, Dong J J, Zhang X L 2011 Opt. Commun. 284 2337Google Scholar

    [19]

    Yeh C H, Chow C W, Shih F Y, Wang C H, Wu Y F, Chi S 2009 IEEE Photon. Technol. Lett. 21 125Google Scholar

    [20]

    Feng T, Yan F P, Liu S, Peng W J, Tan S Y, Bai Y L, Bai Y 2014 Laser Phys. 24 085101Google Scholar

    [21]

    Choi B K, ParkI G, Byun J H, Kim N, Han S P, Park K H, Seo J K, Lee H K, Jeon M Y 2013 Laser Phys. Lett. 10 125105Google Scholar

    [22]

    Kim R K, Chu S H, Han Y G 2012 IEEE Photon. Technol. Lett. 24 521Google Scholar

    [23]

    Villanueva G E, Pérez-Millán P, Palací J, Cruz J L, Andrés M V, Martí J 2010 IEEE Photon. Technol. Lett. 22 254Google Scholar

    [24]

    Liu J, Shen D Y, Huang H T, Zhao T, Zhang X Q, Fan D Y 2014 Appl. Phys. Express 7 032702Google Scholar

    [25]

    Yan N, Han X F, Chang P F, Huang L G, Gao F, Yu X Y, Zhang W D, Zhang Z, Zhang G Q, Xu J J 2017 Opt. Express 25 27609Google Scholar

  • 图 1  PD-MSM光纤滤波器结构示意图

    Fig. 1.  Structure of PD-MSM filter.

    图 2  五种不同SMS模式转换器的前12阶LP0n模模式激发系数

    Fig. 2.  Normalized excitation coefficients of the first 12 LP0n modes with five different SMS mode converters.

    图 3  MSM滤波器的空间频谱

    Fig. 3.  Spatial frequency spectra of MSM filter.

    图 4  PD-MSM光纤滤波器透射谱

    Fig. 4.  Transmission spectra of the PD-MSM filter.

    图 5  间隔可调双波长掺铒光纤激光器结构示意图

    Fig. 5.  Schematic setup of the proposed continuously spacing-tunable dual-wavelength EDFL.

    图 6  掺铒光纤激光器输出 (a)双波长输出; (b)输出稳定性测试

    Fig. 6.  Output of the EDFL: (a) Dual-wavelength lasing output; (b) output stability test.

    图 7  双波长输出波长间隔连续调谐过程 (a)调谐Ⅰ, 0−1.6 nm; (b)调谐Ⅱ, 1.6−3 nm

    Fig. 7.  Continuously spacing tuning of the dual-wavelength output: (a) Tuning Ⅰ, 0−1.6 nm; (b) tuning Ⅱ, 1.6−3 nm.

    图 8  双波长输出调谐过程(对比PD-MSM光纤滤波器透射谱) (a)调谐Ⅰ; (b)调谐Ⅱ

    Fig. 8.  Comparison between the transmission spectra of PD-MSM filter and spacing tuning of the dual-wavelength output: (a) Tuning Ⅰ; (b) tuning Ⅱ.

    图 9  激光输出偏振态测试系统

    Fig. 9.  Schematic of laser output polarization testing.

    图 10  偏振态测试系统1输出 (a)调谐Ⅰ; (b)调谐Ⅱ

    Fig. 10.  Output of Test 1: (a) Tuning Ⅰ; (b) tuning Ⅱ.

    图 11  偏振态测试系统2输出 (a), (b)调谐Ⅰ; (c), (d)调谐Ⅱ

    Fig. 11.  Output of Test 2: (a), (b)Tuning Ⅰ; (c), (d) tuning Ⅱ.

  • [1]

    刘江, 刘晨, 师红星, 王璞 2016 物理学报 65 194209Google Scholar

    Liu J, Liu C, Shi H X, Wang P 2016 Acta Phys. Sin. 65 194209Google Scholar

    [2]

    窦志远, 田金荣, 李克轩, 于振华, 胡梦婷, 霍明超, 宋晏蓉 2015 物理学报 64 064206Google Scholar

    Dou Z Y, Tian J R, Li K X, Yu Z H, Hu M T, Huo M C, Song Y R 2015 Acta Phys. Sin. 64 064206Google Scholar

    [3]

    Ahmad H, Muhammad F D, Chang H P, Thambiratnam K 2014 IEEE J. Sel. Top. Quant. Electron. 20 0902308Google Scholar

    [4]

    Zhu T, Zhang B M, Shi L L, Huang S H, Deng M, Liu J G, Li X 2016 Opt. Express 24 1324Google Scholar

    [5]

    Li Q, Feng S C, Peng W J, Liu P, Feng T, Tan S Y, Yan F P 2012 Microw. Opt. Techn. Let. 54 2074

    [6]

    Li Z, Zhou J, He B, Liu H K, Liu C, Wei Y R, Dong J X, Lou Q H 2012 Chin. Phys. Lett. 29 074203Google Scholar

    [7]

    冯新焕, 刘艳格, 董孝义 2007 中国激光 34 883Google Scholar

    Feng X H, Liu Y G, Dong X Y 2007 Chin. J. Las. 34 883Google Scholar

    [8]

    Ibarra-Escamilla B, Durán-Sánchez M, Álvarez-Tamayo R I, Posada-Ramírez B, Kuzin E A, Das S, Dhar A, Pal M, Paul M C, Kir’yanov A V 2019 Laser Phys. 29 015102Google Scholar

    [9]

    Yin B, Feng S C, Bai Y L, Liu Z B, Liang L J, Liu S, Jian S S 2014 IEEE Photon. Technol. Lett. 26 1227Google Scholar

    [10]

    Han J H 2010 Optik 121 2266Google Scholar

    [11]

    Feng T, Ding D L, Zhao Z W, Su H X, Yan F P, Yao X S 2016 Laser Phys. Lett. 13 105104Google Scholar

    [12]

    Feng T, Ding D L, Zhao Z W, Su H X, Yan F P, Yao X S 2016 Opt. Express 24 19760Google Scholar

    [13]

    Feng T, Yan F P, Liu S, Bai Y, Peng W J, Tan S Y 2014 Laser Phys. Lett. 11 125106Google Scholar

    [14]

    He X Y, Wang D N, Liao C R 2011 J. Lightwave Technol. 29 842

    [15]

    He X Y, Fang X, Liao C R, Wang D N, Sun J Q 2009 Opt. Express 17 21773Google Scholar

    [16]

    Pan S L, Yao J P 2009 Opt. Express 17 5414Google Scholar

    [17]

    Jasim A A, Ahmad H 2017 Opt. Laser Technol. 97 12Google Scholar

    [18]

    Wang F, Xu E M, Dong J J, Zhang X L 2011 Opt. Commun. 284 2337Google Scholar

    [19]

    Yeh C H, Chow C W, Shih F Y, Wang C H, Wu Y F, Chi S 2009 IEEE Photon. Technol. Lett. 21 125Google Scholar

    [20]

    Feng T, Yan F P, Liu S, Peng W J, Tan S Y, Bai Y L, Bai Y 2014 Laser Phys. 24 085101Google Scholar

    [21]

    Choi B K, ParkI G, Byun J H, Kim N, Han S P, Park K H, Seo J K, Lee H K, Jeon M Y 2013 Laser Phys. Lett. 10 125105Google Scholar

    [22]

    Kim R K, Chu S H, Han Y G 2012 IEEE Photon. Technol. Lett. 24 521Google Scholar

    [23]

    Villanueva G E, Pérez-Millán P, Palací J, Cruz J L, Andrés M V, Martí J 2010 IEEE Photon. Technol. Lett. 22 254Google Scholar

    [24]

    Liu J, Shen D Y, Huang H T, Zhao T, Zhang X Q, Fan D Y 2014 Appl. Phys. Express 7 032702Google Scholar

    [25]

    Yan N, Han X F, Chang P F, Huang L G, Gao F, Yu X Y, Zhang W D, Zhang Z, Zhang G Q, Xu J J 2017 Opt. Express 25 27609Google Scholar

  • [1] 奚小明, 杨保来, 王鹏, 张汉伟, 王小林, 韩凯, 王泽锋, 许晓军, 陈金宝. 万瓦级光纤激光双色镜合成技术. 物理学报, 2023, 72(18): 184203. doi: 10.7498/aps.72.20230657
    [2] 沈晓红, 曾盈莹, 毛琳, 朱仁江, 王涛, 罗海军, 佟存柱, 汪丽杰, 宋晏蓉, 张鹏. 双波长自锁模半导体薄片激光器. 物理学报, 2022, 71(20): 204202. doi: 10.7498/aps.71.20220483
    [3] 赵畅, 黄千千, 黄梓楠, 戴礼龙, SergeyevSergey, RozhinAleksey, 牟成博. 偏振动态可调耗散孤子光纤激光器实验研究. 物理学报, 2020, 69(18): 184218. doi: 10.7498/aps.69.20201305
    [4] 刘茵紫, 邢颍滨, 廖雷, 王一礴, 彭景刚, 李海清, 戴能利, 李进延. 530 W全光纤结构连续掺铥光纤激光器. 物理学报, 2020, 69(18): 184209. doi: 10.7498/aps.69.20200466
    [5] 窦微, 浦双双, 牛娜, 曲大鹏, 孟祥峻, 赵岭, 郑权. 双波长二极管合束端面抽运掺镨氟化钇锂单纵模360 nm紫外激光器. 物理学报, 2019, 68(5): 054202. doi: 10.7498/aps.68.20182018
    [6] 邱小浪, 王爽爽, 张晓健, 朱仁江, 张鹏, 郭于鹤洋, 宋晏蓉. 双波长外腔面发射激光器. 物理学报, 2019, 68(11): 114204. doi: 10.7498/aps.68.20182261
    [7] 刘江, 刘晨, 师红星, 王璞. 342W全光纤结构窄线宽连续掺铥光纤激光器. 物理学报, 2016, 65(19): 194209. doi: 10.7498/aps.65.194209
    [8] 张丽梦, 胡明列, 顾澄琳, 范锦涛, 王清月. 高功率, 红光至中红外可调谐腔内和频光学参量振荡器. 物理学报, 2014, 63(5): 054205. doi: 10.7498/aps.63.054205
    [9] 杜文博, 冷进勇, 朱家健, 周朴, 许晓军, 舒柏宏. 增益竞争双波长放大单频光纤放大器理论研究. 物理学报, 2012, 61(11): 114203. doi: 10.7498/aps.61.114203
    [10] 关宝璐, 郭霞, 张敬兰, 任秀娟, 郭帅, 李硕, 揣东旭, 沈光地. 双波长垂直腔面发射激光器及特性研究. 物理学报, 2011, 60(1): 014209. doi: 10.7498/aps.60.014209
    [11] 刘艳, 汪磊石, 陶沛琳, 冯素春, 尹国路, 任文华, 谭中伟, 简水生. 波长可调谐取样光纤光栅激光器的输出特性研究. 物理学报, 2011, 60(2): 024207. doi: 10.7498/aps.60.024207
    [12] 蒋建, 常建华, 冯素娟, 毛庆和. 基于光纤激光器的中红外差频多波长激光产生. 物理学报, 2010, 59(11): 7892-7898. doi: 10.7498/aps.59.7892
    [13] 杨薇, 刘迎, 肖立峰, 杨兆祥, 潘建旋. 声光可调谐环形腔掺铒光纤激光器. 物理学报, 2010, 59(2): 1030-1034. doi: 10.7498/aps.59.1030
    [14] 任广军, 魏臻, 姚建铨. 调Q脉冲保偏光纤激光器的研究. 物理学报, 2009, 58(2): 941-945. doi: 10.7498/aps.58.941
    [15] 延凤平, 毛向桥, 王琳, 傅永军, 魏淮, 郑凯, 龚桃荣, 刘鹏, 陶沛琳, 简水生. 基于偏振保持掺Er3+光纤的高稳定性单波长光纤激光器. 物理学报, 2009, 58(9): 6296-6299. doi: 10.7498/aps.58.6296
    [16] 王静, 郑凯, 李坚, 刘利松, 陈根祥, 简水生. 基于高双折射Sagnac环的可调环形腔掺铒光纤激光器理论与实验研究. 物理学报, 2009, 58(11): 7695-7701. doi: 10.7498/aps.58.7695
    [17] 林燕凤, 张戈, 朱海永, 黄呈辉, 李爱红, 魏勇. Nd:YAG调Q激光器双波长振荡机理分析. 物理学报, 2009, 58(6): 3909-3914. doi: 10.7498/aps.58.3909
    [18] 王建明, 段开椋, 王屹山. 两光纤激光器相干合成的实验研究. 物理学报, 2008, 57(9): 5627-5631. doi: 10.7498/aps.57.5627
    [19] 许 鸥, 鲁韶华, 简水生. 用于单频光纤激光器的光纤光栅双腔Fabry-Perot结构传输谱特性理论研究. 物理学报, 2008, 57(10): 6404-6411. doi: 10.7498/aps.57.6404
    [20] 任广军, 张 强, 王 鹏, 姚建铨. 掺钕保偏光纤激光器的研究. 物理学报, 2007, 56(7): 3917-3923. doi: 10.7498/aps.56.3917
计量
  • 文章访问数:  7199
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-04
  • 修回日期:  2019-05-05
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-05

/

返回文章
返回