搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

储能电容对GaAs光电导开关快前沿正负对称脉冲输出特性的影响

桂淮濛 施卫

引用本文:
Citation:

储能电容对GaAs光电导开关快前沿正负对称脉冲输出特性的影响

桂淮濛, 施卫

Effect of capacitance on positive and negative symmetric pulse with fast rising edge based on GaAsphotoconductive semiconductor switch

Gui Huai-Meng, Shi Wei
PDF
HTML
导出引用
  • 针对GaAs光电导开关快前沿正负对称脉冲输出特性的研究, 对提高飞秒条纹相机的时间分辨率具有重要意义. 本文使用脉宽为60 fs的激光器触发电极间隙为3.5 mm的GaAs光电导开关, 在不同的储能电容及外加偏置电压条件下, 获得具有上升时间最快为149 ps, 电压传输效率最高为92.9%的快前沿正负对称输出, 测试结果满足条纹相机实现飞秒时间分辨率的设计需求. 实验结果的对比分析表明, 储能电容是影响电压传输效率及上升时间的重要因素之一. 同时, 结合GaAs光电导开关线性工作模式特点及电容储能特性分析表明, 当触发激光特性相同时, 随着储能电容的增大, 输出电脉冲传输效率及上升时间均会增加. 研究结果将有助于GaAs光电导开关更好地应用于飞秒条纹相机中.
    Femtosecond streak camera is currently the only diagnostic device with a femtosecond time resolution. Scanning circuit with bilateral symmetrical output is an important part of femtosecond streak camera. To achieve better performance of the streak camera, high requirements are placed on the output of scanning circuit. Owing to the excellent feature of litter time jitter and fast response speed, a GaAs photoconductive semiconductor switch (PCSS) has become a core device in the scanning circuit. Investigating the positive and negative symmetric pulses with fast rising edgeof GaAs PCSS is of great significance to improving the time resolution of femtosecond streak camera. In this paper, a laser with a pulse width of 60 fs was used to trigger a GaAs PCSS with an electrode gap of 3.5 mm. Under different storage capacitors and bias voltages, the positive and negative symmetric pulses withthe fastest rise time of 149 ps and the highest voltage transmission efficiency of 92.9% were obtained. The test results meet the design requirements of streak camera to realize femtosecond time resolution. Through the comparative analysis of the experimental values, it is concluded that the storage capacitor can affect the efficiency and rise time of the output electrical pulse in the same trigger laser pulse. By calculating the multiplication rate of carriers in combination with the output electrical pulse waveform, it is concluded that the GaAs PCSS operates in linear mode. According to the working characteristics of the linear mode and the energy storage characteristics of the capacitor, the analysis indicates that, when the characteristics of the trigger laser pulse are the same, the transmission efficiency and rise time of the output electric pulse voltage increase with the increase in storage capacitor, which is consistent with the experimental results. This study has a certain guiding significance for the better application of GaAs PCSS in femtosecond streak camera, which also has a certain propelling effect on improving the time resolution of femtosecond streak camera.
      通信作者: 施卫, swshi@mail.xaut.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0701005)、强脉冲辐射环境模拟与效应国家重点实验室基金(批准号: SKLIPR1812)、陕西省科技计划项目(批准号:2019NY-174)和陕西省教育厅科学研究项目计划(批准号: 17JK0056)资助的课题
      Corresponding author: Shi Wei, swshi@mail.xaut.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0701005), the State Key Laboratory of Intense Pulsed Radiation Simulation and Effect of China (Grant No, SKLIPR1812), Shaanxi Science and Technology Project, China (Grant No. 2019NY-174), and the Special Scientific Research Plan of Shaanxi Provincial Education Department, China (Grant No. 17JK0056)
    [1]

    Wang L N, Liu J L 2017 IEEE Trans. Plasma Sci. 45 3240Google Scholar

    [2]

    Ma C, Yang L, Wang S Q, Ji Y, Zhang L, Shi W 2017 IEEE Trans. Power Electr. 32 4644Google Scholar

    [3]

    Zhang T, Liu K F, Gao S J, Shi Y W 2015 IEEE Trans. Dielect. El. In. 22 1991Google Scholar

    [4]

    Zhang L, Shi W, Cao J C, Wang S Q, Dong C G, Yang L 2019 IEEE Electr. Device Lett. 40 291Google Scholar

    [5]

    Shi W, Fu Z L 2013 IEEE Electr. Device Lett. 34 93Google Scholar

    [6]

    Gaudet J A, Skipper M C, Abdalla M D, Ahem S M. Romero S P, Mar A, Zutavem F J, Loubriel G M, O’Malley M W, Helgeson W D 2000 Intense Microwave Pulses VII Orlando, USA, April 24−28, 2000 p121

    [7]

    Hu L, Su J C, Qiu R C, Fang X 2018 IEEE Trans. Electron Dev. 65 1308Google Scholar

    [8]

    EI A S, De A A, Arnaud-Cormos D, Couderc V, Leveque P 2011 IEEE Photon. Technol. Lett. 23 673Google Scholar

    [9]

    施卫, 闫志巾 2015 物理学报 64 228702Google Scholar

    Shi W, Yan Z J 2015 Acta Phys. Sin. 64 228702Google Scholar

    [10]

    Liu J Y, Wang J, Shan B, Wang C, Chang Z H 2004 Fourth-Generation X-Ray Sources and Ultrafast X-Ray Detectors California, USA, August 4−6, 2004 p123

    [11]

    Larsson J, Chang Z, Judd E, Schuck P J, Falcone R W, Heimann P A, Padmore H A, Kapteyn H C, Bucksbaum P H, Murnane M M, Lee R W, Machacek A, Wark J S, Liu X, Shan B 1997 Opt. Lett. 22 1012Google Scholar

    [12]

    Maksimchuk A, Kim M, Workman J, Korn G, Squier J, Du D, Umstadter D, Mourou G,Bouvier M 1996 Rev. Sci. Instrum. 67 697Google Scholar

    [13]

    Liu J Y, Wang J, Shan B, Wang C, Chang Z H 2003 Appl. Phys. Lett. 82 3553Google Scholar

    [14]

    Shi W, Yang L, Hou L, Liu Z N, Xing Z Y 2019 Appl. Sci. 9 328Google Scholar

    [15]

    Shi W, Gui H M, Zhang L, Li M C, Ma C, Wang L Y, Jiang H 2013 Opt. Lett. 38 4339Google Scholar

    [16]

    Shi W, Gui H M, Zhang L, Ma C, Li M X, Xu M, Wang L Y 2013 Opt. Lett. 38 2330Google Scholar

    [17]

    Gui H M, Shi W, Ma C, Fan L L, Zhang L, Zhang S, Xu Y J 2015 IEEE Photon. Technol. Lett. 27 2015Google Scholar

    [18]

    Shi W, Zhang L, Gui H M, Hou L, Xu M, Qu G H 2013 Appl. Phys. Lett. 102 154106Google Scholar

    [19]

    桂淮濛, 施卫 2018 物理学报 67 184207Google Scholar

    Gui H M, Shi W 2018 Acta Phys. Sin. 67 184207Google Scholar

    [20]

    Xu M, Li R B, Ma C, Shi W 2016 IEEE Electr. Device Lett. 37 1147Google Scholar

  • 图 1  GaAs PCSS结构图

    Fig. 1.  Schematic diagram of GaAs PCSS.

    图 2  扫描电路结构图

    Fig. 2.  Schematic diagram of scanning circuit.

    图 3  扫描电路测试电路图

    Fig. 3.  Testing test circuit of scanning circuit.

    图 4  储能电容为33 pF, 偏置电压为± 1.9 kV时的输出波形图

    Fig. 4.  The output waveforms of 33 pF capacitor at the bias voltage is ± 1.9 kV.

    图 5  外加偏置电压为± 2.0 kV时的输出波形图(插图为上升沿波形图)

    Fig. 5.  The output waveforms at the bias voltage is ± 2.0 kV(insert is rising edge output waveform).

    表 1  不同储能电容时输出电脉冲电压传输效率

    Table 1.  The voltage transmission efficiency of output waveformwith different energy storage capacitor.

    电容容值/pF传输效率/%
    ± 1.5 kV ± 1.7 kV ± 1.9 kV ± 2.0 kV
    1050.447.246.944.3
    3372.471.168.566.2
    8278.676.273.972.1
    10089.392.292.992.6
    下载: 导出CSV

    表 2  不同储能电容时输出电脉冲上升时间

    Table 2.  The rise time of output waveform with different energy storage capacitor.

    电容容值/pF上升时间/ps
    ± 1.5 kV ± 1.7 kV ± 1.9 kV ± 2.0 kV
    10158159163149
    33174169175174
    82189198180190
    100380385352377
    下载: 导出CSV
  • [1]

    Wang L N, Liu J L 2017 IEEE Trans. Plasma Sci. 45 3240Google Scholar

    [2]

    Ma C, Yang L, Wang S Q, Ji Y, Zhang L, Shi W 2017 IEEE Trans. Power Electr. 32 4644Google Scholar

    [3]

    Zhang T, Liu K F, Gao S J, Shi Y W 2015 IEEE Trans. Dielect. El. In. 22 1991Google Scholar

    [4]

    Zhang L, Shi W, Cao J C, Wang S Q, Dong C G, Yang L 2019 IEEE Electr. Device Lett. 40 291Google Scholar

    [5]

    Shi W, Fu Z L 2013 IEEE Electr. Device Lett. 34 93Google Scholar

    [6]

    Gaudet J A, Skipper M C, Abdalla M D, Ahem S M. Romero S P, Mar A, Zutavem F J, Loubriel G M, O’Malley M W, Helgeson W D 2000 Intense Microwave Pulses VII Orlando, USA, April 24−28, 2000 p121

    [7]

    Hu L, Su J C, Qiu R C, Fang X 2018 IEEE Trans. Electron Dev. 65 1308Google Scholar

    [8]

    EI A S, De A A, Arnaud-Cormos D, Couderc V, Leveque P 2011 IEEE Photon. Technol. Lett. 23 673Google Scholar

    [9]

    施卫, 闫志巾 2015 物理学报 64 228702Google Scholar

    Shi W, Yan Z J 2015 Acta Phys. Sin. 64 228702Google Scholar

    [10]

    Liu J Y, Wang J, Shan B, Wang C, Chang Z H 2004 Fourth-Generation X-Ray Sources and Ultrafast X-Ray Detectors California, USA, August 4−6, 2004 p123

    [11]

    Larsson J, Chang Z, Judd E, Schuck P J, Falcone R W, Heimann P A, Padmore H A, Kapteyn H C, Bucksbaum P H, Murnane M M, Lee R W, Machacek A, Wark J S, Liu X, Shan B 1997 Opt. Lett. 22 1012Google Scholar

    [12]

    Maksimchuk A, Kim M, Workman J, Korn G, Squier J, Du D, Umstadter D, Mourou G,Bouvier M 1996 Rev. Sci. Instrum. 67 697Google Scholar

    [13]

    Liu J Y, Wang J, Shan B, Wang C, Chang Z H 2003 Appl. Phys. Lett. 82 3553Google Scholar

    [14]

    Shi W, Yang L, Hou L, Liu Z N, Xing Z Y 2019 Appl. Sci. 9 328Google Scholar

    [15]

    Shi W, Gui H M, Zhang L, Li M C, Ma C, Wang L Y, Jiang H 2013 Opt. Lett. 38 4339Google Scholar

    [16]

    Shi W, Gui H M, Zhang L, Ma C, Li M X, Xu M, Wang L Y 2013 Opt. Lett. 38 2330Google Scholar

    [17]

    Gui H M, Shi W, Ma C, Fan L L, Zhang L, Zhang S, Xu Y J 2015 IEEE Photon. Technol. Lett. 27 2015Google Scholar

    [18]

    Shi W, Zhang L, Gui H M, Hou L, Xu M, Qu G H 2013 Appl. Phys. Lett. 102 154106Google Scholar

    [19]

    桂淮濛, 施卫 2018 物理学报 67 184207Google Scholar

    Gui H M, Shi W 2018 Acta Phys. Sin. 67 184207Google Scholar

    [20]

    Xu M, Li R B, Ma C, Shi W 2016 IEEE Electr. Device Lett. 37 1147Google Scholar

  • [1] 任航, 赵丹, 董立强, 刘少刚, 杨金水. 基于机器学习的磁流变弹性体磁致储能模量的快速准确表征. 物理学报, 2024, 73(16): 165101. doi: 10.7498/aps.73.20240482
    [2] 田立强, 潘璁, 施卫, 潘艺柯, 冉恩泽, 李存霞. GaAs光电导开关非线性模式的雪崩畴输运机理. 物理学报, 2023, 72(17): 178101. doi: 10.7498/aps.72.20230711
    [3] 闫志巾, 施卫. 太赫兹GaAs光电导天线阵列辐射特性. 物理学报, 2021, 70(24): 248704. doi: 10.7498/aps.70.20211210
    [4] 徐强, 司雪, 佘维汉, 杨光敏. 超电容储能电极材料的密度泛函理论研究. 物理学报, 2021, 70(10): 107301. doi: 10.7498/aps.70.20201988
    [5] 桂淮濛, 施卫. 线性模式下GaAs光电导开关的时间抖动特性. 物理学报, 2018, 67(18): 184207. doi: 10.7498/aps.67.20180548
    [6] 施卫, 闫志巾. 雪崩倍增GaAs光电导太赫兹辐射源研究进展. 物理学报, 2015, 64(22): 228702. doi: 10.7498/aps.64.228702
    [7] 施卫, 马湘蓉, 薛红. 半绝缘GaAs光电导开关的瞬态热效应. 物理学报, 2010, 59(8): 5700-5705. doi: 10.7498/aps.59.5700
    [8] 严雄伟, 於海武, 曹丁象, 李明中, 蒋东镔, 蒋新颖, 段文涛, 徐美健. 脉冲储能型重复频率Yb:YAG片状激光放大器ASE效应研究. 物理学报, 2009, 58(6): 4230-4238. doi: 10.7498/aps.58.4230
    [9] 施卫, 薛红, 马湘蓉. 半绝缘GaAs光电导开关体内热电子的光电导振荡特性. 物理学报, 2009, 58(12): 8554-8559. doi: 10.7498/aps.58.8554
    [10] 施卫, 屈光辉, 王馨梅. 半绝缘GaAs光电导开关非线性电脉冲超快上升特性研究. 物理学报, 2009, 58(1): 477-481. doi: 10.7498/aps.58.477
    [11] 贾婉丽, 施 卫, 屈光辉, 孙小芳. GaAs光电导天线辐射太赫兹波功率的计算. 物理学报, 2008, 57(9): 5425-5428. doi: 10.7498/aps.57.5425
    [12] 施 卫, 王馨梅, 侯 磊, 徐 鸣, 刘 峥. 高增益双层组合GaAs光电导开关设计与实验研究. 物理学报, 2008, 57(11): 7185-7189. doi: 10.7498/aps.57.7185
    [13] 贾婉丽, 施 卫, 纪卫莉, 马德明. 光电导开关产生太赫兹电磁波双极特性分析. 物理学报, 2007, 56(7): 3845-3850. doi: 10.7498/aps.56.3845
    [14] 施 卫, 贾婉丽, 纪卫莉, 刘 锴. 光电导开关工作模式的蒙特卡罗模拟. 物理学报, 2007, 56(11): 6334-6339. doi: 10.7498/aps.56.6334
    [15] 於海武, 徐美健, 段文涛, 隋 展. Yb离子抽运动力学及脉冲储能特性研究. 物理学报, 2007, 56(7): 4158-4168. doi: 10.7498/aps.56.4158
    [16] 贾婉丽, 纪卫莉, 施 卫. 半绝缘GaAs光电导开关产生太赫兹波电场屏蔽效应的二维Monte Carlo模拟. 物理学报, 2007, 56(4): 2042-2046. doi: 10.7498/aps.56.2042
    [17] 邱圣德, 胡承正, 王爱军, 周 详. 十次对称准晶的光电导率. 物理学报, 2006, 55(2): 743-747. doi: 10.7498/aps.55.743
    [18] 葛愉成. 用光电子能谱相位确定法同时测量阿秒超紫外线XUV脉冲的频率和强度时间分布. 物理学报, 2005, 54(6): 2653-2661. doi: 10.7498/aps.54.2653
    [19] 施 卫, 马德明, 赵 卫. 用光电导开关产生稳幅ps量级时间晃动超快电脉冲的研究. 物理学报, 2004, 53(6): 1716-1720. doi: 10.7498/aps.53.1716
    [20] 施卫, 赵卫, 张显斌, 李恩玲. 高功率亚纳秒GaAs光电导开关的研究. 物理学报, 2002, 51(4): 867-872. doi: 10.7498/aps.51.867
计量
  • 文章访问数:  7530
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-07
  • 修回日期:  2019-06-18
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-05

/

返回文章
返回