搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ar-O2混合气体电弧的数值模拟

王新鑫 迟露鑫 伍光凤 李春天 樊丁

引用本文:
Citation:

Ar-O2混合气体电弧的数值模拟

王新鑫, 迟露鑫, 伍光凤, 李春天, 樊丁

Numerical simulation of mixture gas arc of Ar-O2

Wang Xin-Xin, Chi Lu-Xin, Wu Guang-Feng, Li Chun-Tian, Fan Ding
PDF
HTML
导出引用
  • 混合气体电弧被广泛地应用于焊接制造领域, 为了深入理解混合气体电弧的传热和传质特性, 本文建立了Ar-O2混合气体电弧的二维稳态数学模型. 模型基于局域热平衡假设, 混合气体电弧的热力学参数和输运系数是温度和氧浓度的函数, 分别采用组合普通扩散系数和组合温度扩散系数描述氧和氩两种组分之间的扩散行为, 研究了不同电流条件下的氧分布及其对电弧温度场和流场的影响. 结果表明, 对于Ar-5%O2的混合气体电弧, 氧在电弧中呈现极不均匀的分布, 在电弧中心轴线附近和靠近两极的区域, 氧浓度高于混合气体浓度, 而在其他区域则明显小于混合气体浓度. 在小电流时, 氧集中分布于阴极和阳极附近, 且在阴极附近出现峰值; 而在大电流时, 氧的分布明显向阳极集中, 且在阳极中心附近出现峰值. 两种情形下, 氧在距离阳极表面0.1 mm的区域分布都不均匀. 与纯Ar保护相比, 混入5%的O2使电弧出现一定程度的收缩, 温度和等离子体流速升高.
    Mixture gas arcs are used extensively in welding manufacturing. A two-dimensional steady mathematical model for Ar-O2 mixture gas arc is developed to understand further the heat and mass transfer of the mixture gas arc. The model is based on the assumption of local thermodynamic equilibrium, and the thermodynamic parameters and transport coefficients are dependent on both the temperature and the oxygen content. In the present model, the diffusion between the argon species and oxygen species is depicted by the approach of the combined diffusion coefficient, i. e. the mixture gas arc is simplified into two different species, and the diffusion between them is formulated by combined ordinary diffusion coefficient and combined temperature diffusion coefficient; the oxygen distribution and its influence on the temperature and flow field of the arc are investigated for two different current conditions. It is shown that the oxygen species presents significant non-uniform distribution for argon gas mixed with 5% oxygen; the oxygen content is higher than that in mixed shielding gas in the regions close to the electrodes and arc axis, while its content is lower than that of the mixed shielding gas in other regions. For high current, oxygen concentrates more to the flat anode, while it concentrates more to tungsten cathode for low current. For both cases, oxygen content is inhomogeneous in the region 0.1 mm above the anode. The 5% oxygen mixed in argon constricts the arc plasma to some extent and thus raises the arc temperature as well as the plasma flow velocity.
      通信作者: 王新鑫, wang@cqut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51705054)和重庆市教委科学技术研究计划(批准号: KJ1600903, KJ1709197)资助的课题.
      Corresponding author: Wang Xin-Xin, wang@cqut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51705054) and the the Scientific and Technological Research Program of Chongqing Municipal Education Commission, China (Grant Nos. KJ1600903, KJ1709197).
    [1]

    Murphy A B, Tanaka M, Tashiro S, Sato T, Lowke J J 2009 J. Phys. D: Appl. Phys. 42 115205Google Scholar

    [2]

    Pires I, Quintino L, Miranda R M 2007 Mater. Design 28 1623Google Scholar

    [3]

    Lones L A, Eagar T W, Lang J H 1998 J. Phys. D: Appl. Phys. 31 107Google Scholar

    [4]

    Lu S P, Fujii H, Nogi K, Sato T 2007 Sci. Technol. Weld. Joi. 12 689Google Scholar

    [5]

    Palmer T A, DebRoy T 1998 Sci. Technol. Weld. Joi. 3 190Google Scholar

    [6]

    Fujii H, Sato T, Lu S P, Nogi K 2008 Mater. Sci. Eng. 495 29

    [7]

    Church J G, Imaizumi H 1990 IIW/IIS Doc. XII-1199-90

    [8]

    张建晓, 樊丁, 黄勇 2017 焊接学报 38 47Google Scholar

    Zhang J X, Fan, D, Huang Y 2017 Trans. China Weld. Inst. 38 47Google Scholar

    [9]

    Wang X, Fan D, Huang J, Huang Y 2014 J. Phys. D: Appl. Phys. 47 275202Google Scholar

    [10]

    Hsu K C, Mtemadi K, Pfender E 1983 J. Appl. Phys. 54 1293

    [11]

    Fan D, Ushio M, Matsuda F 1986 Trans. JWRI 15 1

    [12]

    Lowke J J, Morrow R, Haidar J 1997 J. Phys. D: Appl. Phys. 30 2033Google Scholar

    [13]

    Kim W H, Fan H G, Na S J 1997 Metall. Mater. Trans. B 28B 679

    [14]

    Choo R T C, Szekely J, Westhoff R C 1992 Metall. Mater. Trans. B 23B 57

    [15]

    Murphy A B, Tanaka M, Yamamoto K, Tashiro S , Sato T, Lowke J J 2009 J. Phys. D: Appl. Phys. 42 194006Google Scholar

    [16]

    Tanaka M, Terasaki H, Ushio M, Lowke J J 2003 Plasma Chem. Plasma Process. 23 585Google Scholar

    [17]

    袁行球, 李辉, 赵太泽, 王飞, 俞国扬, 郭文康, 须平 2004 物理学报 53 3806Google Scholar

    Yuan X Q, Li H, Zhao T Z, Wang F, Yu G Y, Guo W K, Xu P 2004 Acta Phys. Sin. 53 3806Google Scholar

    [18]

    石玗, 郭朝博, 黄健康, 樊丁 2011 物理学报 60 048102Google Scholar

    Shi Y, Guo C B, Huang J K, Fan D 2011 Acta Phys. Sin. 60 048102Google Scholar

    [19]

    王新鑫, 樊丁, 黄健康, 黄勇 2013 物理学报 62 228101Google Scholar

    Wang X X, Fan D, Huang J K, Huang Y 2013 Acta Phys. Sin. 62 228101Google Scholar

    [20]

    Bini R, Monno M, Boulos M I 2006 J. Phys. D: Appl. Phys. 39 3253Google Scholar

    [21]

    Hsu K C, Pfender E 1983 J. Appl. Phys. 54 4359Google Scholar

    [22]

    Konishi K, Shigeta M, Tanaka M, Murata A, Murata T, Murphy A B 2017 Weld. World 61 197Google Scholar

    [23]

    黄勇, 刘林, 王新鑫, 陆肃中 2017 焊接学报 39 6Google Scholar

    Huang Y, Liu L, Wang X X, Lu S Z 2017 Trans. China Weld. Inst. 39 6Google Scholar

    [24]

    Baeva M, Kozakov R, Gorchakov S, Uhrlandt D 2012 Plasma Sources Sci. Technol. 21 055027Google Scholar

    [25]

    Baeva M 2017 Plasma Chem. Plasma Process. 37 513Google Scholar

    [26]

    钱海洋, 吴彬 2011 核聚变与等离子体物理 31 186

    Qian H Y, Wu B 2011 Nucl. Fusion Plasma Phys. 31 186

    [27]

    Li H P, Benilov M S 2007 J. Phys. D: Appl. Phys. 40 2010Google Scholar

    [28]

    Wei F Z, Wang H X, Murphy A B, Sun W P, Liu Y 2013 J. Phys. D: Appl. Phys. 46 505205Google Scholar

    [29]

    Zhang X N, Li H P, Murphy A B, Xia W D 2013 Phys. Plasmas 20 033508Google Scholar

    [30]

    Li H P, Zhang X N, Xia W D 2013 Phys. Plasmas 20 033509Google Scholar

    [31]

    Zhao G Y, Dassanayake M, Etemadi K 1990 Plasma Chem. Plasma Process. 10 87Google Scholar

    [32]

    Tanaka M, Yamamoto K, Tashiro S, Nakata K, Yamamoto E, Yamazaki K, Suzuki K, Murphy A B, Lowke J J 2010 J. Phys. D: Appl. Phys. 43 434009Google Scholar

    [33]

    Schnick M, Füssel U, Hertel M, Spille-Kohoff A, Murphy A B 2010 J. Phys. D: Appl. Phys. 43 022001Google Scholar

    [34]

    Wang X, Luo Y, Wu G, Chi L, Fan D 2018 Plasma Chem. Plasma Process. 38 1095Google Scholar

    [35]

    菅晓霞, 武传松 2016 金属学报 52 1467

    Jian X X, Wu C S 2016 Acta Metall. Sin. 52 1467

    [36]

    Savas A, Ceyhun V 2012 Comp. Mater. Sci. 51 53

    [37]

    Wang L L, Lu F G, Wang H P, Murphy A B, Tang X H 2014 J. Phys. D: Appl. Phys. 47 465202Google Scholar

    [38]

    Rao Z H, Liao S M, Tsai H L 2010 J. Appl. Phys. 107 044902Google Scholar

    [39]

    Murphy A B 1994 Phys. Rev. Lett. 73 1797Google Scholar

    [40]

    Murphy A B 1997 Phys. Rev. E 55 7473

    [41]

    Murphy A B, Hiraoka K 2000 J. Phys. D: Appl. Phys. 33 2183Google Scholar

    [42]

    Bitharas I, McPherson N A, McGhie W, Roy D, Moore A J 2018 J. Mater. Process. Tech. 255 451Google Scholar

    [43]

    黄勇, 陆肃中, 王新鑫, 李慧 2016 焊接学报 37 36

    Huang Y, Lu S Z, Wang X X, Li H 2016 China Weld. Inst. 37 36

    [44]

    Chen J, Xu H, Wei X, Lv H, Song Z, Chen Z 2017 Vacuum 145 77Google Scholar

    [45]

    杨郁, 唐成双, 赵一帆, 虞一青, 辛煜 2017 物理学报 66 185202Google Scholar

    Yang Y, Tang C S, Zhao Y F, Yu Y Q, Xin Y 2017 Acta Phys. Sin. 66 185202Google Scholar

    [46]

    Murphy A B 1993 Phys. Rev. E 48 3594Google Scholar

    [47]

    Murphy A B 1993 J. Chem. Phys. 99 1340Google Scholar

    [48]

    查普曼, 考林 著 (刘大有, 王伯懿 译) 1985 非均匀气体的数学理论 (第三版) (北京: 科学出版社) 第178−191, 343−344页

    Chapman S, Cowling T G (translated by Liu D Y, Wang B Y 1970 The Mathematical Theory of Non-Uniform Gases (3rd ed.) (Beijing: Science Press) pp178−191, 343−344 (in Chinese)

    [49]

    Murphy A B 1996 J. Phys. D: Appl. Phys. 29 1922Google Scholar

    [50]

    Murphy A B 1998 J. Phys. D: Appl. Phys. 31 3383Google Scholar

    [51]

    Murphy A B, Arundell C J 1994 Plasma Chem. Plasma Process. 14 451Google Scholar

    [52]

    Cram L E 1985 J. Phys. D: Appl. Phys. 18 40

    [53]

    Choquet I, Shirvan J A, Nilsson H 2012 J. Phys. D: Appl. Phys. 45 205203Google Scholar

    [54]

    Tanaka M, Terasaki H, Ushio M, Lowke J J 2002 Metall. Mater. Trans. A 33 2043Google Scholar

    [55]

    Wang X, Huang J, Huang Y, Fan D, Guo Y 2017 Appl. Therm. Eng. 113 27Google Scholar

    [56]

    陆善平, 董文超, 李殿中, 李依依 2009 物理学报 58 94

    Lu S, Dong W, Li D, Li Y 2009 Acta Phys. Sin. 58 94

    [57]

    黄勇, 王艳磊, 张治国 2014 光谱学与光谱分析 34 1168Google Scholar

    Huang Y, Wang Y L, Zhang Z G 2014 Spectrsc. Spect. Anal. 34 1168Google Scholar

  • 图 1  扩散系数 (a) 组合普通扩散系数$\overline {D_{{\rm{Ar,}}{{\rm{O}}_{\rm{2}}}}^x} $; (b) 组合温度扩散系数$\overline {D_{{\rm{Ar,}}{{\rm{O}}_{\rm{2}}}}^T} $

    Fig. 1.  Diffusion coefficients: (a) Combined ordinary diffusion coefficient$\overline {D_{{\rm{Ar,}}{{\rm{O}}_{\rm{2}}}}^x} $; (b) combined temperature diffusion coefficient$\overline {D_{{\rm{Ar,}}{{\rm{O}}_{\rm{2}}}}^T} $

    图 2  求解域示意图

    Fig. 2.  Schematic of the computation domain.

    图 3  混合气体电弧的温度场和氧组分质量分数分布 (a) 200 A; (b) 80 A

    Fig. 3.  Temperature field and oxygen mass fraction of Ar-O2 mixture gas arc for different current: (a) 200 A; (b) 80 A

    图 4  距离钨极尖端不同位置氧组分质量分数的径向分布 (a) 200 A; (b) 80 A

    Fig. 4.  Radial distributions of the mass fraction of oxygen at different distances below the cathode: (a) 200 A; (b) 80 A.

    图 5  混合气体电弧的流场 (a) 200 A; (b) 80 A

    Fig. 5.  Flow fiels of mixture gas arc:(a) 200 A; (b) 80 A.

    图 6  混合气体电弧阳极表面0.1 mm处氧组分的分布

    Fig. 6.  Oxygen mass fraction of mixture gas arc 0.1 mm above the anode.

    图 7  氧组分对电弧温度场的影响 (a) 200 A; (b) 80 A

    Fig. 7.  Effect of oxygen on the arc temperature field: (a) 200 A; (b) 80 A.

    图 8  氧组分对电弧流场的影响 (a) 200 A; (b) 80 A

    Fig. 8.  Effect of oxygen on the arc flow field: (a) 200 A; (b) 80 A.

    图 9  200 A电流TIG电弧的温度场对比

    Fig. 9.  Comparison of the calculated temperature fiels of TIG arc for 200 A current.

    图 10  距离阴极尖端不同位置氧组分径向分布的计算结果对比 (a) Murphy的结果[40]; (b) 本文的结果

    Fig. 10.  Comparison of radial distribution of oxygen calculated at different distances below the cathode: (a) Murphy’s results[40]; (b) the present model’s results.

    表 1  边界条件

    Table 1.  Boundary conditions.

    边界v/m·s–1T/KΦ/VA/Wb·m–1YA
    AB1000jz$\partial$A/$\partial$n=0
    BCvgiv500$\partial$Φ/$\partial$n=0$\partial$A/$\partial$n=00.05
    CD$\partial$v/$\partial$n=0500$\partial$Φ/$\partial$n=0A=00.05
    DE20000$\partial$A/$\partial$n=0$\partial$YA/$\partial$n=0
    EA$\partial$v/$\partial$n=0$\partial$T/$\partial$n=0$\partial$Φ/$\partial$n=0$\partial$A/$\partial$n=0$\partial$YA/$\partial$n=0
    BFNon-slip(12)式CoupledCoupledYAgiv
    下载: 导出CSV
  • [1]

    Murphy A B, Tanaka M, Tashiro S, Sato T, Lowke J J 2009 J. Phys. D: Appl. Phys. 42 115205Google Scholar

    [2]

    Pires I, Quintino L, Miranda R M 2007 Mater. Design 28 1623Google Scholar

    [3]

    Lones L A, Eagar T W, Lang J H 1998 J. Phys. D: Appl. Phys. 31 107Google Scholar

    [4]

    Lu S P, Fujii H, Nogi K, Sato T 2007 Sci. Technol. Weld. Joi. 12 689Google Scholar

    [5]

    Palmer T A, DebRoy T 1998 Sci. Technol. Weld. Joi. 3 190Google Scholar

    [6]

    Fujii H, Sato T, Lu S P, Nogi K 2008 Mater. Sci. Eng. 495 29

    [7]

    Church J G, Imaizumi H 1990 IIW/IIS Doc. XII-1199-90

    [8]

    张建晓, 樊丁, 黄勇 2017 焊接学报 38 47Google Scholar

    Zhang J X, Fan, D, Huang Y 2017 Trans. China Weld. Inst. 38 47Google Scholar

    [9]

    Wang X, Fan D, Huang J, Huang Y 2014 J. Phys. D: Appl. Phys. 47 275202Google Scholar

    [10]

    Hsu K C, Mtemadi K, Pfender E 1983 J. Appl. Phys. 54 1293

    [11]

    Fan D, Ushio M, Matsuda F 1986 Trans. JWRI 15 1

    [12]

    Lowke J J, Morrow R, Haidar J 1997 J. Phys. D: Appl. Phys. 30 2033Google Scholar

    [13]

    Kim W H, Fan H G, Na S J 1997 Metall. Mater. Trans. B 28B 679

    [14]

    Choo R T C, Szekely J, Westhoff R C 1992 Metall. Mater. Trans. B 23B 57

    [15]

    Murphy A B, Tanaka M, Yamamoto K, Tashiro S , Sato T, Lowke J J 2009 J. Phys. D: Appl. Phys. 42 194006Google Scholar

    [16]

    Tanaka M, Terasaki H, Ushio M, Lowke J J 2003 Plasma Chem. Plasma Process. 23 585Google Scholar

    [17]

    袁行球, 李辉, 赵太泽, 王飞, 俞国扬, 郭文康, 须平 2004 物理学报 53 3806Google Scholar

    Yuan X Q, Li H, Zhao T Z, Wang F, Yu G Y, Guo W K, Xu P 2004 Acta Phys. Sin. 53 3806Google Scholar

    [18]

    石玗, 郭朝博, 黄健康, 樊丁 2011 物理学报 60 048102Google Scholar

    Shi Y, Guo C B, Huang J K, Fan D 2011 Acta Phys. Sin. 60 048102Google Scholar

    [19]

    王新鑫, 樊丁, 黄健康, 黄勇 2013 物理学报 62 228101Google Scholar

    Wang X X, Fan D, Huang J K, Huang Y 2013 Acta Phys. Sin. 62 228101Google Scholar

    [20]

    Bini R, Monno M, Boulos M I 2006 J. Phys. D: Appl. Phys. 39 3253Google Scholar

    [21]

    Hsu K C, Pfender E 1983 J. Appl. Phys. 54 4359Google Scholar

    [22]

    Konishi K, Shigeta M, Tanaka M, Murata A, Murata T, Murphy A B 2017 Weld. World 61 197Google Scholar

    [23]

    黄勇, 刘林, 王新鑫, 陆肃中 2017 焊接学报 39 6Google Scholar

    Huang Y, Liu L, Wang X X, Lu S Z 2017 Trans. China Weld. Inst. 39 6Google Scholar

    [24]

    Baeva M, Kozakov R, Gorchakov S, Uhrlandt D 2012 Plasma Sources Sci. Technol. 21 055027Google Scholar

    [25]

    Baeva M 2017 Plasma Chem. Plasma Process. 37 513Google Scholar

    [26]

    钱海洋, 吴彬 2011 核聚变与等离子体物理 31 186

    Qian H Y, Wu B 2011 Nucl. Fusion Plasma Phys. 31 186

    [27]

    Li H P, Benilov M S 2007 J. Phys. D: Appl. Phys. 40 2010Google Scholar

    [28]

    Wei F Z, Wang H X, Murphy A B, Sun W P, Liu Y 2013 J. Phys. D: Appl. Phys. 46 505205Google Scholar

    [29]

    Zhang X N, Li H P, Murphy A B, Xia W D 2013 Phys. Plasmas 20 033508Google Scholar

    [30]

    Li H P, Zhang X N, Xia W D 2013 Phys. Plasmas 20 033509Google Scholar

    [31]

    Zhao G Y, Dassanayake M, Etemadi K 1990 Plasma Chem. Plasma Process. 10 87Google Scholar

    [32]

    Tanaka M, Yamamoto K, Tashiro S, Nakata K, Yamamoto E, Yamazaki K, Suzuki K, Murphy A B, Lowke J J 2010 J. Phys. D: Appl. Phys. 43 434009Google Scholar

    [33]

    Schnick M, Füssel U, Hertel M, Spille-Kohoff A, Murphy A B 2010 J. Phys. D: Appl. Phys. 43 022001Google Scholar

    [34]

    Wang X, Luo Y, Wu G, Chi L, Fan D 2018 Plasma Chem. Plasma Process. 38 1095Google Scholar

    [35]

    菅晓霞, 武传松 2016 金属学报 52 1467

    Jian X X, Wu C S 2016 Acta Metall. Sin. 52 1467

    [36]

    Savas A, Ceyhun V 2012 Comp. Mater. Sci. 51 53

    [37]

    Wang L L, Lu F G, Wang H P, Murphy A B, Tang X H 2014 J. Phys. D: Appl. Phys. 47 465202Google Scholar

    [38]

    Rao Z H, Liao S M, Tsai H L 2010 J. Appl. Phys. 107 044902Google Scholar

    [39]

    Murphy A B 1994 Phys. Rev. Lett. 73 1797Google Scholar

    [40]

    Murphy A B 1997 Phys. Rev. E 55 7473

    [41]

    Murphy A B, Hiraoka K 2000 J. Phys. D: Appl. Phys. 33 2183Google Scholar

    [42]

    Bitharas I, McPherson N A, McGhie W, Roy D, Moore A J 2018 J. Mater. Process. Tech. 255 451Google Scholar

    [43]

    黄勇, 陆肃中, 王新鑫, 李慧 2016 焊接学报 37 36

    Huang Y, Lu S Z, Wang X X, Li H 2016 China Weld. Inst. 37 36

    [44]

    Chen J, Xu H, Wei X, Lv H, Song Z, Chen Z 2017 Vacuum 145 77Google Scholar

    [45]

    杨郁, 唐成双, 赵一帆, 虞一青, 辛煜 2017 物理学报 66 185202Google Scholar

    Yang Y, Tang C S, Zhao Y F, Yu Y Q, Xin Y 2017 Acta Phys. Sin. 66 185202Google Scholar

    [46]

    Murphy A B 1993 Phys. Rev. E 48 3594Google Scholar

    [47]

    Murphy A B 1993 J. Chem. Phys. 99 1340Google Scholar

    [48]

    查普曼, 考林 著 (刘大有, 王伯懿 译) 1985 非均匀气体的数学理论 (第三版) (北京: 科学出版社) 第178−191, 343−344页

    Chapman S, Cowling T G (translated by Liu D Y, Wang B Y 1970 The Mathematical Theory of Non-Uniform Gases (3rd ed.) (Beijing: Science Press) pp178−191, 343−344 (in Chinese)

    [49]

    Murphy A B 1996 J. Phys. D: Appl. Phys. 29 1922Google Scholar

    [50]

    Murphy A B 1998 J. Phys. D: Appl. Phys. 31 3383Google Scholar

    [51]

    Murphy A B, Arundell C J 1994 Plasma Chem. Plasma Process. 14 451Google Scholar

    [52]

    Cram L E 1985 J. Phys. D: Appl. Phys. 18 40

    [53]

    Choquet I, Shirvan J A, Nilsson H 2012 J. Phys. D: Appl. Phys. 45 205203Google Scholar

    [54]

    Tanaka M, Terasaki H, Ushio M, Lowke J J 2002 Metall. Mater. Trans. A 33 2043Google Scholar

    [55]

    Wang X, Huang J, Huang Y, Fan D, Guo Y 2017 Appl. Therm. Eng. 113 27Google Scholar

    [56]

    陆善平, 董文超, 李殿中, 李依依 2009 物理学报 58 94

    Lu S, Dong W, Li D, Li Y 2009 Acta Phys. Sin. 58 94

    [57]

    黄勇, 王艳磊, 张治国 2014 光谱学与光谱分析 34 1168Google Scholar

    Huang Y, Wang Y L, Zhang Z G 2014 Spectrsc. Spect. Anal. 34 1168Google Scholar

  • [1] 魏振宇, 刘亚坤. 不同氧浓度混合气体二次流注放电下激发态氧原子生成特性与影响因素研究. 物理学报, 2025, 74(3): . doi: 10.7498/aps.74.20241550
    [2] 邹雄, 漆小波, 张涛先, 高章帆, 黄卫星. 惯性约束聚变靶丸内杂质气体抽空流洗过程的数值模拟. 物理学报, 2021, 70(7): 075207. doi: 10.7498/aps.70.20201491
    [3] 王前进, 孙鹏帅, 张志荣, 张乐文, 杨曦, 吴边, 庞涛, 夏滑, 李启勇. 混合气体测量中重叠吸收谱线交叉干扰的分离解析方法. 物理学报, 2021, 70(14): 144203. doi: 10.7498/aps.70.20210286
    [4] 郭恒, 张晓宁, 聂秋月, 李和平, 曾实, 李志辉. 亚大气压六相交流电弧放电等离子体射流特性数值模拟. 物理学报, 2018, 67(5): 055201. doi: 10.7498/aps.67.20172557
    [5] 蔡继兴, 郭明, 渠旭, 李贺, 金光勇. 激光诱导等离子体的气体动力学和燃烧波扩展速度研究. 物理学报, 2017, 66(9): 094202. doi: 10.7498/aps.66.094202
    [6] 周祥曼, 张海鸥, 王桂兰, 柏兴旺. 电弧增材成形中熔积层表面形貌对电弧形态影响的仿真. 物理学报, 2016, 65(3): 038103. doi: 10.7498/aps.65.038103
    [7] 刘扬, 韩燕龙, 贾富国, 姚丽娜, 王会, 史宇菲. 椭球颗粒搅拌运动及混合特性的数值模拟研究. 物理学报, 2015, 64(11): 114501. doi: 10.7498/aps.64.114501
    [8] 赵家瑞, 李毅飞, 马景龙, 王进光, 黄开, 韩玉晶, 马勇, 闫文超, 李大章, 袁大伟, 李玉同, 张杰, 陈黎明. 常温下氙气以及氢氙混合气体形成的团簇的特性研究. 物理学报, 2015, 64(4): 042101. doi: 10.7498/aps.64.042101
    [9] 宁利中, 王娜, 袁喆, 李开继, 王卓运. 分离比对混合流体Rayleigh-Bénard对流解的影响. 物理学报, 2014, 63(10): 104401. doi: 10.7498/aps.63.104401
    [10] 白占国, 李新政, 李燕, 赵昆. 气体放电系统中多臂螺旋波的数值分析. 物理学报, 2014, 63(22): 228201. doi: 10.7498/aps.63.228201
    [11] 陈石, 王辉, 沈胜强, 梁刚涛. 液滴振荡模型及与数值模拟的对比. 物理学报, 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [12] 王新鑫, 樊丁, 黄健康, 黄勇. 双钨极耦合电弧数值模拟. 物理学报, 2013, 62(22): 228101. doi: 10.7498/aps.62.228101
    [13] 杜宏亮, 何立明, 兰宇丹, 王峰. 约化场强对氮-氧混合气放电等离子体演化特性的影响. 物理学报, 2011, 60(11): 115201. doi: 10.7498/aps.60.115201
    [14] 石玗, 郭朝博, 黄健康, 樊丁. 脉冲电流作用下TIG电弧的数值分析. 物理学报, 2011, 60(4): 048102. doi: 10.7498/aps.60.048102
    [15] 兰宇丹, 何立明, 丁伟, 王峰. 不同初始温度下H2/O2混合物等离子体的演化. 物理学报, 2010, 59(4): 2617-2621. doi: 10.7498/aps.59.2617
    [16] 赵啦啦, 刘初升, 闫俊霞, 蒋小伟, 朱艳. 不同振动模式下颗粒分离行为的数值模拟. 物理学报, 2010, 59(4): 2582-2588. doi: 10.7498/aps.59.2582
    [17] 蔡利兵, 王建国. 介质表面高功率微波击穿的数值模拟. 物理学报, 2009, 58(5): 3268-3273. doi: 10.7498/aps.58.3268
    [18] 袁行球, 李 辉, 赵太泽, 王 飞, 俞国扬, 郭文康, 须 平. 直流电弧等离子体炬的特性研究. 物理学报, 2004, 53(11): 3806-3813. doi: 10.7498/aps.53.3806
    [19] 邹 秀, 宫 野, 刘金远, 宫继全. 外加磁场、电流及弧柱半径对电弧螺旋不稳定性的影响. 物理学报, 2004, 53(3): 824-828. doi: 10.7498/aps.53.824
    [20] 宫继全, 宫野, 刘金远, 张鹏云. 气流对电弧螺旋不稳定性的影响. 物理学报, 2002, 51(2): 291-295. doi: 10.7498/aps.51.291
计量
  • 文章访问数:  9144
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-25
  • 修回日期:  2019-06-16
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-05

/

返回文章
返回