搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单分子光学探针揭示易混聚合物受限纳米区域的动力学

张国峰 李斌 陈瑞云 秦成兵 高岩 肖连团 贾锁堂

引用本文:
Citation:

单分子光学探针揭示易混聚合物受限纳米区域的动力学

张国峰, 李斌, 陈瑞云, 秦成兵, 高岩, 肖连团, 贾锁堂

Single-molecule probes revealed dynamics of confined nano-regions in miscible polymer blends

Zhang Guo-Feng, Li Bin, Chen Rui-Yun, Qin Cheng-Bing, Gao Yan, Xiao Lian-Tuan, Jia Suo-Tang
PDF
HTML
导出引用
  • 常规的系综研究方法显示在动力学不对称的易混聚合物中存在着受限区域, 但是不能给出受限区域的分布、尺度及受限区域内的动力学分布特征等. 单分子光学探针被用来探测苯乙烯高聚物与苯乙烯寡聚物形成的易混聚合物薄膜中的受限纳米区域的动力学. 实验发现易混聚合物中存在转动和固定不动的两种动力学形式的单分子, 指示着单分子分别耦合到苯乙烯高聚物和苯乙烯寡聚物的聚合物链片段上. 转动单分子的分布揭示了易混聚合物薄膜受限区域的分布特征. 受限区域的尺度被估计为其可能接近于单分子探针的尺度(约2 nm). 受限纳米区域中单分子的转动关联时间的分布揭示了受限纳米区域中聚合物动力学的分布特征. 实验发现在含有更高浓度的苯乙烯高聚物的混聚物薄膜中具有更快的动力学行为, 从而在单分子水平上揭示了易混聚合物中的受限纳米区域的动力学.
    Miscible mixtures of polymer blends have physical properties that are often linked simply to the blend composition, thus offering an inexpensive and convenient method to achieve new high performance polymers. Confinement effect has been found in various polymer blend systems by the ensemble methods, but further understanding the confinement effect still requires large efforts both in experiment and in theory. Single molecule spectroscopy has the potential to provide an in-depth insight to the dynamic information by directly coupling their reorientation to the segmental relaxation of the surrounding polymer matrix. We investigate the confinement effects in polystyrene and oligostyrene blend films by using single-molecule defocused wide-field fluorescence microscopy. According to the observation for dynamic behaviors of probe molecules in the blend films of 75 wt.% and 25 wt.% polystyrene, we find that there are two types of single molecules in the blend films: rotational molecules and immobile molecules. The experimental temperature of 296 K is between the glass transition temperature (Tg) values of two pure components and also is far from the two Tg values. At the temperature, oligostyrene component is trapped by the frozen polystyrene component, but they still move locally. Therefore, the rotational and immobile molecules should couple to the oligostyrene component and polystyrene component, respectively. The distribution of rotational single molecules reveals that the confined regions randomly distribute across miscible polymer blends. The length scale of confined region is estimated to be close to that of the probe molecule by taking into account the rotational dynamics of single molecules. The local relaxation of blend film is also investigated by the rotational correlation time which can be estimated by fitting the autocorrelation curve of 〈cos(Φ)〉 with a Kohlrausch-Williams-Watts stretched exponential function. The histograms of the rotational correlation times in the blend films of 75 wt.% and 25 wt.% polystyrene are obtained respectively, which reveal the characteristic of local dynamic distribution in the confined nano-regions. We find that the dynamic behavior in the blend film of 75 wt.% polystyrene is faster than that of 25 wt.% polystyrene, indicating there is a confinement effect in the blend due to the increased constraints imposed by the polystyrene component at a higher concentration of polystyrene. All results observed in the experiment can be explained qualitatively by the self-concentration model. Our work indicates that the single molecule defocused wide-field fluorescence microscopy is a powerful tool to study the complex dynamic features in the polymer blends.
      通信作者: 张国峰, guofeng.zhang@sxu.edu.cn ; 肖连团, xlt@sxu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0304203)、国家自然科学基金(批准号: 61527824, 61675119, 61875109, 11434007, 61605104)、教育部长江学者和创新团队发展计划(批准号: IRT13076)和山西省"1331工程"重点学科建设计划资助的课题.
      Corresponding author: Zhang Guo-Feng, guofeng.zhang@sxu.edu.cn ; Xiao Lian-Tuan, xlt@sxu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304203), the National Natural Science Foundation of China (Grant Nos. 61527824, 61675119, 61875109, 11434007, 61605104), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT13076), and the 1331 Project of Shanxi Province.
    [1]

    Alegria A, Colmenero J 2016 Soft Matter 12 7709Google Scholar

    [2]

    Maranas J K 2007 Curr. Opin. Colloid Interface Sci. 12 29Google Scholar

    [3]

    Colmenero J, Arbe A 2007 Soft Matter 3 1474Google Scholar

    [4]

    Heriot S Y, Jones R A L 2005 Nat. Mater. 4 782Google Scholar

    [5]

    Ebbens S, Hodgkinson R, Parnell A J, Dunbar A, Martin S J, Topham P D, Clarke N, Howse J R 2011 ACS Nano 5 5124Google Scholar

    [6]

    Gambino T, Alegria A, Arbe A, Colmenero J, Malicki N, Dronet S, Schnell B, Lohstroh W, Nemkovski K 2018 Macromolecules 51 6692Google Scholar

    [7]

    Evans C M, Narayanan S, Jiang Z, Torkelson J M 2012 Phys. Rev. Lett. 51 038302Google Scholar

    [8]

    Gooneie A, Schuschnigg S, Holzer C 2017 Polymers 9 16Google Scholar

    [9]

    李冬梅, 袁晓娟, 周加强 2013 物理学报 62 167202Google Scholar

    Li D M, Yuan X J, Zhou J Q 2013 Acta Phys. Sin. 62 167202Google Scholar

    [10]

    袁晓娟, 袁慧敏, 张成强, 王文静, 于元勋, 刘德胜 2015 物理学报 64 067201

    Yuan X J, Yuan H M, Zhang C Q, Wang W J, Yu Y X, Liu D S 2015 Acta Phys. Sin. 64 067201

    [11]

    Evans C M, Torkelson J M 2012 Polymer 53 6118Google Scholar

    [12]

    Dudowicz J, Douglas J F, Freed K F 2014 J. Chem. Phys. 140 244905Google Scholar

    [13]

    Zhao J S, Ediger M D, Sun Y, Yu L 2009 Macromolecules 42 6777Google Scholar

    [14]

    Yang H X, Green P F 2013 Macromolecules 46 9390Google Scholar

    [15]

    Sharma R P, Green P F 2017 Macromolecules 50 6617Google Scholar

    [16]

    Harmandaris V A, Kremer K, Floudas G 2013 Phys. Rev. Lett. 110 165701Google Scholar

    [17]

    Nassar S F, Domenek S, Guinault A, Stoclet G, Delpouve N, Sollogoub C 2018 Macromolecules 51 128Google Scholar

    [18]

    Harmandaris V, Doxastakis M 2013 J. Chem. Phys. 139 034904Google Scholar

    [19]

    Liu W J, Bedrov D, Kumar S K, Veytsman B, Colby R H 2009 Phys. Rev. Lett. 103 037801Google Scholar

    [20]

    Lodge T P, McLeish T C B 2000 Macromolecules 33 5278Google Scholar

    [21]

    Adrjanowicz K, Kaminski K, Tarnacka M, Szklarz G, Paluch M 2017 J. Phys. Chem. Lett. 8 696Google Scholar

    [22]

    Zhao L, Wang C L, Liu J, Wen B H, Tu Y S, Wang Z W, Fang H P 2014 Phys. Rev. Lett. 112 078301Google Scholar

    [23]

    李灵栋, 叶安娜, 周胜林, 张晓华, 杨朝晖 2019 物理学报 68 026402

    Li L D, Ye A N, Zhou S L, Zhang X H, Yang Z H 2019 Acta Phys. Sin. 68 026402

    [24]

    Orrit M, Ha T, Sandoghdar V 2014 Chem. Soc. Rev. 43 973Google Scholar

    [25]

    Li Y, Chen R, Zhou H, Shi Y, Qin C, Gao Y, Zhang G, Gao Y, Xiao L, Jia S 2018 J. Phys. Chem. Lett. 9 5207Google Scholar

    [26]

    Yuan H, Gaiduk A, Siekierzycka J R, Fujiyoshi S, Matsushita M, Nettels D, Schuler B, Seidel C A M, Orrit M 2015 Phys. Chem. Chem. Phys. 17 6532Google Scholar

    [27]

    石莹, 李耀, 周海涛, 陈瑞云, 张国峰, 秦成兵, 高岩, 肖连团, 贾锁堂 2019 物理学报 68 048201

    Shi Y, Li Y, Zhou H T, Chen R Y, Zhang G F, Qin C B, Gao Y, Xiao L T, Jia S T 2019 Acta Phys. Sin. 68 048201

    [28]

    秦亚强, 陈瑞云, 石莹, 周海涛, 张国峰, 秦成兵, 高岩, 肖连团, 贾锁堂 2017 物理学报 66 248201Google Scholar

    Qin Y Q, Chen R Y, Shi Y, Zhou H T, Zhang G F, Qin C B, Gao Y, Xiao L T, Jia S T 2017 Acta Phys. Sin. 66 248201Google Scholar

    [29]

    Zhang G F, Xiao L T, Zhang F, Wang X B, Jia S T 2010 Phys. Chem. Chem. Phys. 12 2308Google Scholar

    [30]

    Zheng Z L, Kuang F Y, Zhao J 2010 Macromolecules 43 3165Google Scholar

    [31]

    张国峰, 张芳, 程峰钰, 孙建虎, 肖连团, 贾锁堂 2009 物理学报 58 2364Google Scholar

    Zhang G F, Zhang F, Cheng F Y, Sun J H, Xiao L T, Jia S T 2009 Acta Phys. Sin. 58 2364Google Scholar

    [32]

    Hutchison J A, Uji-i H, Deres A, Vosch T, Rocha S, Müller S, Bastian A A, Enderlein J, Nourouzi H, Li C, Herrmann A, Müllen K, de Schryver F, Hofkens J 2014 Nat. Nanotechnol. 9 131Google Scholar

    [33]

    Krajnik B, Chen J W, Watson M A, Cockroft S L, Feringa B L, Hofkens J 2017 J. Am. Chem. Soc. 139 7156Google Scholar

    [34]

    Deres A, Floudas G A, Müllen K, van der Auweraer M, de Schryver F, Enderlein J, Uji-i H, Hofkens J 2011 Macromolecules 44 9703Google Scholar

    [35]

    Dedecker P, Muls B, Deres A, Uji-i H, Hotta J, Sliwa M, Soumillion J P, Müllen K, Enderlein J, Hofkens J 2009 Adv. Mater. 21 1079Google Scholar

    [36]

    李斌, 张国峰, 景明勇, 陈瑞云, 秦成兵, 高岩, 肖连团, 贾锁堂 2016 物理学报 68 218201Google Scholar

    Bin L, Zhang G F, Jing M Y, Chen R Y, Qin C B, Gao Y, Xiao L T, Jia S T 2016 Acta Phys. Sin. 68 218201Google Scholar

  • 图 1  含有PDI单分子光学探针的苯乙烯高聚物与苯乙烯寡聚物形成的易混聚合物薄膜样品示意图, 上方插图为苯乙烯高聚物(PS, n ≈ 65)、苯乙烯寡聚物(OS, n ≈ 3)和PDI单分子的分子结构

    Fig. 1.  Schematic view of experimental samples of polystyrene/oligostyrene blend films with PDI single molecules. The above inserts are the chemical structures of polystyrene, oligostyrene and PDI dye molecule, respectively

    图 2  (a)单分子散焦宽场荧光成像显微镜实验装置示意图; (b)单分子的跃迁偶极矩可以由面内角(ϕ)和面外角(θ)来表示; (c)单分子的跃迁偶极矩的三维角位移(Φ); (d)不同ϕθ所对应的单分子散焦成像和每一行内的平均散焦成像

    Fig. 2.  (a) Schematic of single-molecule defocused wide-field fluorescence microscopy; (b) transition dipole moment of single PDI molecule presented by using in-plane (ϕ) and out-of-plane (θ) angles; (c) 3D angular displacement (Φ); (d) defocused patterns of single molecules for different ϕ and θ angles as well as an averaged image for each row.

    图 3  (a) 苯乙烯高聚物薄膜中的单分子散焦宽场荧光成像; (b)苯乙烯寡聚物薄膜中的单分子散焦宽场荧光成像; 以上的两个散焦成像都由100个单帧的成像叠加形成的, 可以直观地显示单分子在苯乙烯高聚物和苯乙烯寡聚物薄膜中的不同的动力学行为(图中标尺为4 μm)

    Fig. 3.  Defocused images of single molecules in a pure polystyrene film (a) and a pure oligostyrene film (b). Each image is formed by accumulating 100 frames of a defocused imaging sequences (scale bar is 4 μm)

    图 4  (a)苯乙烯高聚物与苯乙烯寡聚物的易混聚合物薄膜中的单分子散焦宽场荧光成像, 该散焦成像都由100个单帧的成像叠加而成, 成像图中存在两类动力学形式的单分子, 分别用方框和圆圈所标记(图中标尺为6 μm); (b) 方框所标记的单分子ϕ, θΦ角的时间轨迹曲线, 表示为固定不动的单分子; (c) 圆圈所标记的单分子的ϕ, θΦ角的时间轨迹曲线, 表示为连续转动的单分子

    Fig. 4.  (a) Defocused images of single molecules in a polystyrene/oligostyrene blend film, and the image was formed by accumulating 100 frames of a defocused imaging sequences, two typical rotational diffusion behaviors of single molecules in the polystyrene/oligostyrene blend films were marked with square and circle, respectively (scale bar is 6 μm); (b) ϕ, θ, and Φ as a function of time indicating the behavior of an immobile molecule; (c) ϕ, θ, and Φ as a function of time indicating the behavior of a rotational molecule

    图 5  (a)在混聚物薄膜中的转动单分子的转动自关联函数及其拟合曲线; (b) 在苯乙烯高聚物占比为75 wt.%的易混聚合物薄膜中的单分子的转动关联时间(τc)的统计柱状图; (c) 在苯乙烯高聚物占比为25 wt%的易混聚合物薄膜中的单分子的τc的统计柱状图

    Fig. 5.  (a) Rotational autocorrelation function of a single molecule in the polystyrene/ oligostyrene blend films, and a fitting with KWW stretched exponential function; (b) histogram of correlation times (τc) of single molecules in blend film with 75 wt.%; (c) histogram of τc of single molecules in blend film with 25 wt.%

  • [1]

    Alegria A, Colmenero J 2016 Soft Matter 12 7709Google Scholar

    [2]

    Maranas J K 2007 Curr. Opin. Colloid Interface Sci. 12 29Google Scholar

    [3]

    Colmenero J, Arbe A 2007 Soft Matter 3 1474Google Scholar

    [4]

    Heriot S Y, Jones R A L 2005 Nat. Mater. 4 782Google Scholar

    [5]

    Ebbens S, Hodgkinson R, Parnell A J, Dunbar A, Martin S J, Topham P D, Clarke N, Howse J R 2011 ACS Nano 5 5124Google Scholar

    [6]

    Gambino T, Alegria A, Arbe A, Colmenero J, Malicki N, Dronet S, Schnell B, Lohstroh W, Nemkovski K 2018 Macromolecules 51 6692Google Scholar

    [7]

    Evans C M, Narayanan S, Jiang Z, Torkelson J M 2012 Phys. Rev. Lett. 51 038302Google Scholar

    [8]

    Gooneie A, Schuschnigg S, Holzer C 2017 Polymers 9 16Google Scholar

    [9]

    李冬梅, 袁晓娟, 周加强 2013 物理学报 62 167202Google Scholar

    Li D M, Yuan X J, Zhou J Q 2013 Acta Phys. Sin. 62 167202Google Scholar

    [10]

    袁晓娟, 袁慧敏, 张成强, 王文静, 于元勋, 刘德胜 2015 物理学报 64 067201

    Yuan X J, Yuan H M, Zhang C Q, Wang W J, Yu Y X, Liu D S 2015 Acta Phys. Sin. 64 067201

    [11]

    Evans C M, Torkelson J M 2012 Polymer 53 6118Google Scholar

    [12]

    Dudowicz J, Douglas J F, Freed K F 2014 J. Chem. Phys. 140 244905Google Scholar

    [13]

    Zhao J S, Ediger M D, Sun Y, Yu L 2009 Macromolecules 42 6777Google Scholar

    [14]

    Yang H X, Green P F 2013 Macromolecules 46 9390Google Scholar

    [15]

    Sharma R P, Green P F 2017 Macromolecules 50 6617Google Scholar

    [16]

    Harmandaris V A, Kremer K, Floudas G 2013 Phys. Rev. Lett. 110 165701Google Scholar

    [17]

    Nassar S F, Domenek S, Guinault A, Stoclet G, Delpouve N, Sollogoub C 2018 Macromolecules 51 128Google Scholar

    [18]

    Harmandaris V, Doxastakis M 2013 J. Chem. Phys. 139 034904Google Scholar

    [19]

    Liu W J, Bedrov D, Kumar S K, Veytsman B, Colby R H 2009 Phys. Rev. Lett. 103 037801Google Scholar

    [20]

    Lodge T P, McLeish T C B 2000 Macromolecules 33 5278Google Scholar

    [21]

    Adrjanowicz K, Kaminski K, Tarnacka M, Szklarz G, Paluch M 2017 J. Phys. Chem. Lett. 8 696Google Scholar

    [22]

    Zhao L, Wang C L, Liu J, Wen B H, Tu Y S, Wang Z W, Fang H P 2014 Phys. Rev. Lett. 112 078301Google Scholar

    [23]

    李灵栋, 叶安娜, 周胜林, 张晓华, 杨朝晖 2019 物理学报 68 026402

    Li L D, Ye A N, Zhou S L, Zhang X H, Yang Z H 2019 Acta Phys. Sin. 68 026402

    [24]

    Orrit M, Ha T, Sandoghdar V 2014 Chem. Soc. Rev. 43 973Google Scholar

    [25]

    Li Y, Chen R, Zhou H, Shi Y, Qin C, Gao Y, Zhang G, Gao Y, Xiao L, Jia S 2018 J. Phys. Chem. Lett. 9 5207Google Scholar

    [26]

    Yuan H, Gaiduk A, Siekierzycka J R, Fujiyoshi S, Matsushita M, Nettels D, Schuler B, Seidel C A M, Orrit M 2015 Phys. Chem. Chem. Phys. 17 6532Google Scholar

    [27]

    石莹, 李耀, 周海涛, 陈瑞云, 张国峰, 秦成兵, 高岩, 肖连团, 贾锁堂 2019 物理学报 68 048201

    Shi Y, Li Y, Zhou H T, Chen R Y, Zhang G F, Qin C B, Gao Y, Xiao L T, Jia S T 2019 Acta Phys. Sin. 68 048201

    [28]

    秦亚强, 陈瑞云, 石莹, 周海涛, 张国峰, 秦成兵, 高岩, 肖连团, 贾锁堂 2017 物理学报 66 248201Google Scholar

    Qin Y Q, Chen R Y, Shi Y, Zhou H T, Zhang G F, Qin C B, Gao Y, Xiao L T, Jia S T 2017 Acta Phys. Sin. 66 248201Google Scholar

    [29]

    Zhang G F, Xiao L T, Zhang F, Wang X B, Jia S T 2010 Phys. Chem. Chem. Phys. 12 2308Google Scholar

    [30]

    Zheng Z L, Kuang F Y, Zhao J 2010 Macromolecules 43 3165Google Scholar

    [31]

    张国峰, 张芳, 程峰钰, 孙建虎, 肖连团, 贾锁堂 2009 物理学报 58 2364Google Scholar

    Zhang G F, Zhang F, Cheng F Y, Sun J H, Xiao L T, Jia S T 2009 Acta Phys. Sin. 58 2364Google Scholar

    [32]

    Hutchison J A, Uji-i H, Deres A, Vosch T, Rocha S, Müller S, Bastian A A, Enderlein J, Nourouzi H, Li C, Herrmann A, Müllen K, de Schryver F, Hofkens J 2014 Nat. Nanotechnol. 9 131Google Scholar

    [33]

    Krajnik B, Chen J W, Watson M A, Cockroft S L, Feringa B L, Hofkens J 2017 J. Am. Chem. Soc. 139 7156Google Scholar

    [34]

    Deres A, Floudas G A, Müllen K, van der Auweraer M, de Schryver F, Enderlein J, Uji-i H, Hofkens J 2011 Macromolecules 44 9703Google Scholar

    [35]

    Dedecker P, Muls B, Deres A, Uji-i H, Hotta J, Sliwa M, Soumillion J P, Müllen K, Enderlein J, Hofkens J 2009 Adv. Mater. 21 1079Google Scholar

    [36]

    李斌, 张国峰, 景明勇, 陈瑞云, 秦成兵, 高岩, 肖连团, 贾锁堂 2016 物理学报 68 218201Google Scholar

    Bin L, Zhang G F, Jing M Y, Chen R Y, Qin C B, Gao Y, Xiao L T, Jia S T 2016 Acta Phys. Sin. 68 218201Google Scholar

  • [1] 张先骏. 冷冻光学显微镜技术在光合作用研究中的发展与应用. 物理学报, 2024, 73(22): 229201. doi: 10.7498/aps.73.20241072
    [2] 王康颖, 马才媛, 蔚慧敏, 张海涛, 岑建勇, 王英英, 潘俊星, 张进军. 振荡场作用下聚合物/纳米棒混合体系的自组装. 物理学报, 2023, 72(7): 079401. doi: 10.7498/aps.72.20222207
    [3] 刘裕芮, 许艳菲. 导热高分子聚合物研究进展. 物理学报, 2022, 71(2): 023601. doi: 10.7498/aps.71.20211876
    [4] 沈忠慧, 江彦达, 李宝文, 张鑫. 高储能密度铁电聚合物纳米复合材料研究进展. 物理学报, 2020, 69(21): 217706. doi: 10.7498/aps.69.20201209
    [5] 孙肖宁, 曲兆明, 王庆国, 袁扬. VO2纳米粒子填充型聚合物薄膜电致相变特性. 物理学报, 2020, 69(24): 247201. doi: 10.7498/aps.69.20200834
    [6] 周彦玲, 范军, 王斌. 塑料类高分子聚合物材料水中目标声学参数反演. 物理学报, 2019, 68(21): 214301. doi: 10.7498/aps.68.20190991
    [7] 石莹, 李耀, 周海涛, 陈瑞云, 张国峰, 秦成兵, 高岩, 肖连团, 贾锁堂. 一种共轭聚合物单分子发色团吸收和发射特性动态演变过程的实时测量. 物理学报, 2019, 68(4): 048201. doi: 10.7498/aps.68.20181986
    [8] 秦亚强, 陈瑞云, 石莹, 周海涛, 张国峰, 秦成兵, 高岩, 肖连团, 贾锁堂. 共轭聚合物单分子构象和能量转移特性研究. 物理学报, 2017, 66(24): 248201. doi: 10.7498/aps.66.248201
    [9] 李斌, 张国峰, 景明勇, 陈瑞云, 秦成兵, 高岩, 肖连团, 贾锁堂. 利用单分子光学探针测量幂律分布的聚合物动力学. 物理学报, 2016, 65(21): 218201. doi: 10.7498/aps.65.218201
    [10] 段芳莉, 王源. 单个纳米粒子对聚合物结晶行为的影响. 物理学报, 2014, 63(13): 136102. doi: 10.7498/aps.63.136102
    [11] 李国龙, 何力军, 李进, 李学生, 梁森, 高忙忙, 袁海雯. 纳米银增强聚合物太阳能电池光吸收的研究. 物理学报, 2013, 62(19): 197202. doi: 10.7498/aps.62.197202
    [12] 许裕栗, 陈学谦, 陈厚样, 徐首红, 刘洪来. 接枝聚合物对小分子的选择性吸附研究. 物理学报, 2011, 60(11): 117104. doi: 10.7498/aps.60.117104
    [13] 赵磊, 王龙阁, 胡宾, 黄明举. 掺杂TiO2纳米颗粒的抗缩皱光致聚合物全息特性的研究. 物理学报, 2011, 60(4): 044213. doi: 10.7498/aps.60.044213
    [14] 范冰冰, 王利娜, 温合静, 关莉, 王海龙, 张锐. 水分子链受限于单壁碳纳米管结构的密度泛函理论研究. 物理学报, 2011, 60(1): 012101. doi: 10.7498/aps.60.012101
    [15] 苏进, 欧阳洁, 王晓东. 棒状分子聚合物溶液的微宏观数值模拟. 物理学报, 2010, 59(5): 3362-3369. doi: 10.7498/aps.59.3362
    [16] 陈军, 蒙大桥, 杜际广, 蒋刚, 高涛, 朱正和. 钚氧化物的分子结构和分子光谱研究. 物理学报, 2010, 59(3): 1658-1664. doi: 10.7498/aps.59.1658
    [17] 刘 维, 樊荣伟, 李晓晖, 陈 辉, 夏元钦, 陈德应. 小分子改性的聚合物固体染料激光特性研究. 物理学报, 2007, 56(9): 5276-5280. doi: 10.7498/aps.56.5276
    [18] 何 兰, 沈允文, 容启亮, 徐 雁. 基于分子动力学模拟的主链型液晶聚合物的新模型. 物理学报, 2006, 55(9): 4407-4413. doi: 10.7498/aps.55.4407
    [19] 谢 耩, 温建忠, 汪国平, 王建波. 聚合物表面银纳米颗粒的大面积均匀沉积及其应用. 物理学报, 2005, 54(1): 242-245. doi: 10.7498/aps.54.242
    [20] 袁仁宽, 黄振春, 郑有炓, 唐文国, 李自元, 沈学础. 导电聚合物P3MT的荧光光谱. 物理学报, 1988, 37(5): 857-862. doi: 10.7498/aps.37.857
计量
  • 文章访问数:  6218
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-25
  • 修回日期:  2019-05-13
  • 刊出日期:  2019-07-20

/

返回文章
返回