搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅和钇双掺杂对γ-TiAl基合金稳定性和抗氧化性的影响

宋庆功 王丽杰 朱燕霞 康建海 顾威风 王明超 刘志锋

引用本文:
Citation:

硅和钇双掺杂对γ-TiAl基合金稳定性和抗氧化性的影响

宋庆功, 王丽杰, 朱燕霞, 康建海, 顾威风, 王明超, 刘志锋

Effects of Si and Y co-doping on stability and oxidation resistance of γ-TiAl based alloys

Song Qing-Gong, Wang Li-Jie, Zhu Yan-Xia, Kang Jian-Hai, Gu Wei-Feng, Wang Ming-Chao, Liu Zhi-Feng
PDF
HTML
导出引用
  • 改善TiAl基合金的高温抗氧化性, 对于拓展其应用领域具有重要意义. 本文采用基于密度泛函理论的第一性原理方法, 从原子平均形成能、弹性常数、间隙O原子的形成能、Ti空位和Al空位的形成能等方面研究了Si和Y替位双掺杂对γ-TiAl基合金抗氧化性的影响. 结果显示, 各个双掺杂γ-TiAl体系的原子平均形成能均为负值, 表明体系具有能量稳定性, 理论预报它们均可以由实验制备, 其中大多数体系的弹性常数满足力学稳定性判据. 对于满足力学稳定性条件的体系, 综合间隙O原子的形成能、Ti空位和Al空位形成能的分析结果, 揭示Si和Y均替位Ti生成体系Ti6SiYAl8对改善抗氧化性效果明显; Y替位Ti且Si替位Al生成体系Ti7YAl7Si, Si替位Ti且Y替位Al生成体系Ti7SiAl7Y对改善抗氧化性具有不确定性; Si和Y均替位Al生成体系Ti8Al6SiY不利于改善抗氧化性.
    Improving the oxidation resistance of TiAl-based alloys at high temperature has great significance for expanding their application fields. Adding ternary and quaternary elements is one of the effective ways to solve the oxidation problem of this kind of alloys materials. The first-principles method based on density functional theory was used to study the Si and Y substitution co-doping effects on the oxidation resistance of γ-TiAl based alloys from the aspects of atomic average formation energy and elastic constant of system, as well as the formation energies of interstitial O atom, Ti vacancy and Al vacancy in the system. The results indicate that the atomic average formation energies of the Si and Y dual-doped systems are all negative, which imply they possess energy stability and can be prepared by experiments. In addition, the elastic constants of most Si and Y substitution co-doping γ-TiAl systems satisfy the mechanical stability criterion. For the mechanical stable systems, the analysis results about the formation energies of the interstitial O atom, Ti vacancy and Al vacancy reveal that the Ti6SiYAl8 series, in which both Si and Y substitute Ti, have obvious promotion effect on the improvement about oxidation resistance; system Ti7YAl7Si, in which Y substitutes Ti and Si substitutes Al, and system Ti7SiAl7Y, in which Si substitutes Ti and Y substitutes Al, have uncertain influence on improving oxidation resistance; system Ti8Al6SiY, in which both Si and Y substitute Al, is harmful to the improvement about oxidation resistance of the γ-TiAl based alloys. Therefore, the preparation conditions should be controlled moderately so that both Si and Y substitute Ti at the same time to form a large proportion configurations of Ti6SiYAl8 series in the materials. In these configurations, the outward diffusion of Ti atoms and the inward diffusion of interstitial O atoms are suppressed, meanwhile the outward diffusion of the Al atoms is facilitated. In this way, the production of α-Al2O3 is promoted and that of TiO2 is weakened on the surface of co-doping γ-TiAl based alloys. Thus, a scale rich in α-Al2O3, i. e., a continuous, dense, and protective oxide scale can be grown on the surface of Si and Y substitution co-doping γ-TiAl alloys.
      通信作者: 宋庆功, qgsong@cauc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51802343)和中国民航大学自然科学基金(批准号: 08CAUC-S02)资助的课题
      Corresponding author: Song Qing-Gong, qgsong@cauc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51802343) and the Natural Science Fund of Civil Aviation University China (Grant No. 08CAUC-S02)
    [1]

    Castillo R M, Nó M L, Jiménez J A, Ruano O A, San Juan J 2016 Acta Mater. 103 46Google Scholar

    [2]

    Kim S W, Hong J K, Na Y S, Yeom J T, Kim S E 2014 Mater. Des. 54 814Google Scholar

    [3]

    Chen G, Peng Y B, Zheng G, Qi Z X, Wang M Z, Yu H C, Dong C L, Liu C T 2016 Nature Mater. 15 876Google Scholar

    [4]

    Pflumm R, Friedle S, Schütze M 2015 Intermetallics 56 1Google Scholar

    [5]

    Yoshihara M, Kim Y W 2005 Intermetallics 13 952Google Scholar

    [6]

    Kuranishi T, Habazaki H, Konno H 2005 Surf. Coat. Technol. 200 2438Google Scholar

    [7]

    汤守巧, 曲寿江, 冯艾寒, 冯聪, 崔扣彪, 沈军 2017 稀有金属 41 81

    Tang S Q, Qu S J, Feng A H, Feng C, Cui K B, Shen J 2017 Rare Metals 41 81

    [8]

    Hu H, Wu X, Wang R, Li W, Liu Q 2016 J. Alloys Compd. 658 689Google Scholar

    [9]

    Brotzu A, Felli F, Pilone D 2013 Intermetallics 43 131Google Scholar

    [10]

    平发平, 胡青苗, 杨锐 2013 金属学报 29 385

    Ping F P, Hu Q M, Yang R 2013 Acta Metall. Sin. 29 385

    [11]

    朱绍祥, 王清江, 刘建荣, 刘羽寅, 杨锐 2010 中国有色金属学报 20 138

    Zhu S X, Wang Q J, Liu J R, Liu Y Y, Yang R 2010 Chin. J. Nonferr. Met. 20 138

    [12]

    Izumi T, Yoshioka T, Hayashi S, Narita T 2005 Intermetallics 13 694Google Scholar

    [13]

    刘杰, 薛祥义, 杨劼人 2015 稀有金属材料与工程 44 1942

    Liu J, Xue X Y, Yang J R 2015 Rare Metal Mat. Eng. 44 1942

    [14]

    Lin J P, Zhao L L, Li G Y, Zhang L Q, Song X P, Ye F, Chen G L 2011 Intermetallics 19 136

    [15]

    杨忠波, 赵文金, 程竹青, 邱军, 张海, 卓洪 2017 金属学报 53 49

    Yang Z B, Zhao W J, Cheng Z Q, Qiu J, Zhang H, Zhuo H 2017 Acta Metall. Sin. 53 49

    [16]

    Zhao L, Zhang Y, Zhu Y, Lin J, Ren Z 2016 Mater. High Temp. 33 234Google Scholar

    [17]

    Zhao L L, Li G Y, Zhang L Q, Lin J P, Song X P, Ye F, Chen G L 2010 Intermetallics 18 1586Google Scholar

    [18]

    周玉俊, 周雪锋, 陈光 2015 热加工工艺 44 93

    Zhou Y J, Zhou X F, Chen G 2015 Hot Working Technol. 44 93

    [19]

    王艳晶, 宋玫锦, 王继杰, 杜兴蒿 2014 稀有金属材料与工程 43 1697

    Wang Y J, Song M J, Wang J J, Du X H 2014 Rare Metal Mat. Eng. 43 1697

    [20]

    董利民, 崔玉友, 杨锐, 王福会 2004 金属学报 40 383Google Scholar

    Dong L M, Cui Y Y, Yang R, Wang F H 2004 Acta Metall. Sin. 40 383Google Scholar

    [21]

    肖伟豪, 张亮, 姜惠仁 2004 北京航空航天大学学报 32 365Google Scholar

    Xiao W H, Zhang L, Jiang H R 2004 J. Beijing Univ. Aeron. Astron. 32 365Google Scholar

    [22]

    张国英, 刘贵立 2011 现代电子理论在材料设计中的应用(1) (北京: 科学出版社) 第164−167页

    Zhang G Y, Liu G L 2011 Application of Modern Electronic Theory in Material Design (Vol. 1) (Beijing: Science Press) pp179−182 (in Chinese)

    [23]

    吴红丽, 张伟, 宫声凯 2008 化学学报 66 1669Google Scholar

    Wu H L, Zhang W, Gong S K 2008 Acta Chim. Sin. 66 1669Google Scholar

    [24]

    陈国良, 林均品 1999有序金属间化合物结构材料物理金属学基础(1)(北京: 冶金工业出版社)第285页

    Chen G L, Lin J P 1999 Physicalmetallurgy Basis of Ordered Intermetallic Compound Structure Materials (Vol. 1) (Beijing: Metallurgical Industry Press) p285(in Chinese)

    [25]

    李虹, 王绍青, 叶恒强 2009 物理学报 58 224Google Scholar

    Li H, Wang S Q, Ye H Q 2009 Acta Phys. Sin. 58 224Google Scholar

    [26]

    Segall M D, Lindan P J D, Probert M J 2002 J. Phys.: Condens. Matter 14 2717Google Scholar

    [27]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Payne M C 2005 Z. Kristallogr. 220 567

    [28]

    宋庆功, 姜恩永 2008 物理学报 57 1823Google Scholar

    Song Q G, Jiang E Y 2008 Acta Phys. Sin. 57 1823Google Scholar

    [29]

    Born M, Huang K 1954 Dynamical Theory of Crystal Lattices (Oxford: Clarendon Press) pp113-117

  • 图 1  γ-TiAl晶胞结构模型 (a) L10型面心四方结构单元; (b)最小结构单元; (c) Sp0(Ti8Al8)结构单元

    Fig. 1.  Structure models of γ-TiAl: (a) The L10 face-center tetragonal unit cell; (b) the least tetragonal unit cell; (c) the unit of Sp0(Ti8Al8).

    图 2  包含O原子的γ-TiAl晶胞结构模型 (a) Sp0-Oa; (b) Sp0-Ob; (c) Sp0-Oc; (d) Sp0-Od

    Fig. 2.  Structure models of γ-TiAl including O (Ti8Al8O): (a) Sp0-Oa; (b) Sp0-Ob; (c) Sp0-Oc; (d) Sp0-Od

    图 3  包含Ti空位或Al空位的γ-TiAl典型结构模型 (a) Sp0-□Ti (Ti7□Al8); (b) Sp0-□Al (Ti8Al7□)

    Fig. 3.  Typical structure models of γ-TiAl including Ti or Al vacancy: (a) Sp0-□Ti (Ti7□Al8); (b) Sp0-□Al (Ti8Al7□)

    图 4  Si和Y替位双掺杂γ-TiAl体系的典型结构模型 (a) Sd1x (Ti6SiYAl8); (b) Sd2 (Ti7YAl7Si); (c) Sd3 (Ti7SiAl7Y); (d) Sd4(Ti8Al6SiY)

    Fig. 4.  Typical structure models of Si and Y co-doping γ-TiAl: (a) Sd1x (Ti6SiYAl8); (b) Sd2 (Ti7YAl7Si); (c)Sd3 (Ti7SiAl7Y); (d) Sd4(Ti8Al6SiY)

    图 5  Si和Y替位双掺杂γ-TiAl含氧体系的典型结构模型 (a) Sd1x-Od (Ti6SiYAl8O); (b) Sd2x-Od (Ti7YAl7SiO); (c) Sd3x-Od (Ti7SiAl7YO); (d) Sd4x-Od(Ti8Al6SiYO)

    Fig. 5.  Typical structure models of Si and Y co-doping γ-TiAl including O: (a) Sd1x-Od (Ti6SiYAl8O); (b) Sd2x-Od (Ti7YAl7SiO); (c) Sd3x-Od (Ti7SiAl7YO); (d) Sd4x-Od(Ti8Al6SiYO)

    图 6  Si和Y替位双掺杂γ-TiAl含空位体系的典型结构模型 (a) Sd1x-□Ti (Ti5SiY□Al8); (b) Sd2x-□Ti (Ti6Y□Al7Si); (c) Sd3x-□Ti(Ti6Si□Al7Y); (d) Sd4x-□Ti(Ti7□Al6SiY); (e) Sd1x-□Al (Ti6SiYAl7□); (f) Sd2x-□Al (Ti7YAl6Si□); (g) Sd3x-□Al(Ti7SiAl6Y□); (h) Sd4x-□Al(Ti8Al5SiY□)

    Fig. 6.  Typical structure models of Si and Y co-doping γ-TiAl including vacancy: (a)Sd1x-□Ti (Ti5SiY□Al8); (b) Sd2x-□Ti (Ti6Y□Al7Si); (c) Sd3x-□Ti(Ti6Si□Al7Y); (d) Sd4x-□Ti(Ti7□Al6SiY); (e) Sd1x-□Al (Ti6SiYAl7□); (f) Sd2x-□Al (Ti7YAl6Si□); (g) Sd3x-□Al(Ti7SiAl6Y□); (h) Sd4x-□Al(Ti8Al5SiY□)

    图 7  Si和Y替位双掺杂γ-TiAl含氧体系中间隙O原子的形成能

    Fig. 7.  Formation energies of interstitial O atoms in the Si and Y co-doping γ-TiAl systems.

    图 8  Si和Y双掺杂γ-TiAl含空位体系中Ti空位和Al空位的形成能

    Fig. 8.  Formation energies of Ti and Al vacancies in Si and Y co-doping γ-TiAl systems.

    表 1  γ-TiAl体系与Si和Y替位双掺杂γ-TiAl体系的能量性质

    Table 1.  Energy properties of pure γ-TiAl and Si and Y co-doping γ-TiAl systems.

    体系能量性质
    Et /eVE f/eV
    Sp0–13283.2619–0.3579
    Sd17–10375.5782–0.2448
    Sd19–10375.3125–0.2282
    Sd2–11923.1797–0.3078
    Sd3–11921.0891–0.1771
    Sd4–13468.5526–0.2315
    下载: 导出CSV

    表 2  γ-TiAl体系与Si和Y替位双掺杂γ-TiAl体系中四方晶系的弹性常数

    Table 2.  Elastic constants of tetragonal systems in pure γ-TiAl and Si and Y co-doping γ-TiAl systems.

    体系C11/GPaC12/GPaC13/GPaC33/GPaC44/GPaC66/GPa
    Sp0232.243839.847069.3592196.4413112.348644.8147
    Sd11130.867175.643487.7505134.253570.055846.6357
    Sd13136.829675.181286.9261134.115864.960149.0225
    Sd14180.507543.152981.6884138.519373.064219.7364
    Sd15136.695274.636484.6822128.579767.393447.4253
    Sd16160.122590.060187.6092137.2518106.894143.0277
    Sd19130.885074.386278.7846125.464668.990656.7747
    Sd110132.456695.9060-40.8881351.452424.813542.5965
    Sd4174.452659.450376.4982151.930382.916812.5223
    下载: 导出CSV

    表 3  Si和Y替位双掺杂γ-TiAl体系Sd17, Sd2和Sd3的弹性常数

    Table 3.  Elastic constants of Si and Y co-doping γ-TiAl systems Sd17, Sd2 and Sd3.

    体系C11/GPaC12/GPaC13/GPaC15/GPaC22/GPaC23/GPaC25/GPa
    Sd17174.048951.012878.8477178.679973.6936
    Sd2177.540869.150469.7969–3.6774172.713465.2400–1.6610
    Sd3158.959758.600472.7099–10.1161160.360673.2300–0.1101
    体系C33/GPaC35/GPaC44/GPaC46/GPaC55/GPaC66/GPa
    Sd17117.274859.822064.145210.4758
    Sd2170.8100–1.473277.8416–1.271978.479838.6156
    Sd3139.6061–1.437767.24110.765767.631726.4129
    下载: 导出CSV

    表 4  γ-TiAl体系及其含氧体系的能量性质

    Table 4.  Energy properties of pure γ-TiAl and the systems including O.

    体系能量性质
    Et /eVE f /eV
    Sp0–13283.2619–0.3579
    Sp0-Oa–13718.1429–0.0716
    Sp0-Ob–13720.0413–0.1832
    Sp0-Oc–13720.6086–0.2166
    Sp0-Od–13720.9863–0.2388
    下载: 导出CSV

    表 5  Si和Y替位双掺杂γ-TiAl含氧体系中间隙O原子的形成能

    Table 5.  Formation energies of interstitial O atoms in Si and Y co-doping γ-TiAl systems.

    体系能量性质
    Et(SdO)/eVEt (Sd)/eVE f(O)/eV
    Sp0-Od–13720.9863–13283.26191.6665
    Sd11-Od–10812.9929–10375.41801.8160
    Sd13-Od–10813.0355–10375.38111.7365
    Sd14-Od–10813.1059–10375.41751.7025
    Sd15-Od–10813.0129–10375.39881.7768
    Sd16-Od–10813.0989–10375.39831.6903
    Sd17-Od–10813.1600–10375.57821.8091
    Sd19-Od–10813.0084–10375.31251.6950
    Sd110-Od–10813.0341–10375.31211.6689
    Sd21-Od–12361.2419–11923.17971.3287
    Sd22-Od–12361.1930–11923.17971.3776
    Sd23-Od–12361.2834–11923.17971.2872
    Sd31-Od–12359.6285–11921.08910.8515
    Sd32-Od–12360.0430–11921.08910.4370
    Sd33-Od–12359.9518–11921.08910.5282
    Sd41-Od–13907.6183–13468.55260.3252
    Sd42-Od–13906.9550–13468.55260.9885
    Sd43-Od–13906.7798–13468.55261.1637
    下载: 导出CSV

    表 6  Si和Y双掺杂γ-TiAl含空位体系中Ti空位和Al空位的形成能

    Table 6.  Formation energies of Ti and Al vacancies in Si and Y co-doping γ-TiAl systems.

    体系Et (Sd)/eVEt (Sd□Al)/eVEt (Sd□Ti)/eVE f (□Al)/eVE f (□Ti)/eV
    Sp0-□–13283.2619–13224.0362–11678.30612.67641.8132
    Sd11-□–10375.4180–10317.9824–8770.22880.88632.0466
    Sd13-□–10375.3811–10317.9645–8770.19410.86732.0444
    Sd14-□–10375.4175–10317.9637–8770.28840.90451.9865
    Sd15-□–10375.3988–10317.9620–8770.21130.88752.0449
    Sd16-□–10375.3983–10317.9032–8770.26490.90981.9908
    Sd17-□–10375.5782–10317.4973–8770.09001.53162.3456
    Sd19-□–10375.3125–10318.4246–8770.25570.33861.9143
    Sd110-□–10375.3121–10318.0212–8770.26090.74161.9086
    Sd2-□–11923.1797–11865.3646–10317.98101.26582.0561
    Sd3-□–11921.0891–11865.3095–10317.6100–0.76970.3365
    Sd4-□–13468.5526–13409.4369–11865.35622.56640.0538
    下载: 导出CSV
  • [1]

    Castillo R M, Nó M L, Jiménez J A, Ruano O A, San Juan J 2016 Acta Mater. 103 46Google Scholar

    [2]

    Kim S W, Hong J K, Na Y S, Yeom J T, Kim S E 2014 Mater. Des. 54 814Google Scholar

    [3]

    Chen G, Peng Y B, Zheng G, Qi Z X, Wang M Z, Yu H C, Dong C L, Liu C T 2016 Nature Mater. 15 876Google Scholar

    [4]

    Pflumm R, Friedle S, Schütze M 2015 Intermetallics 56 1Google Scholar

    [5]

    Yoshihara M, Kim Y W 2005 Intermetallics 13 952Google Scholar

    [6]

    Kuranishi T, Habazaki H, Konno H 2005 Surf. Coat. Technol. 200 2438Google Scholar

    [7]

    汤守巧, 曲寿江, 冯艾寒, 冯聪, 崔扣彪, 沈军 2017 稀有金属 41 81

    Tang S Q, Qu S J, Feng A H, Feng C, Cui K B, Shen J 2017 Rare Metals 41 81

    [8]

    Hu H, Wu X, Wang R, Li W, Liu Q 2016 J. Alloys Compd. 658 689Google Scholar

    [9]

    Brotzu A, Felli F, Pilone D 2013 Intermetallics 43 131Google Scholar

    [10]

    平发平, 胡青苗, 杨锐 2013 金属学报 29 385

    Ping F P, Hu Q M, Yang R 2013 Acta Metall. Sin. 29 385

    [11]

    朱绍祥, 王清江, 刘建荣, 刘羽寅, 杨锐 2010 中国有色金属学报 20 138

    Zhu S X, Wang Q J, Liu J R, Liu Y Y, Yang R 2010 Chin. J. Nonferr. Met. 20 138

    [12]

    Izumi T, Yoshioka T, Hayashi S, Narita T 2005 Intermetallics 13 694Google Scholar

    [13]

    刘杰, 薛祥义, 杨劼人 2015 稀有金属材料与工程 44 1942

    Liu J, Xue X Y, Yang J R 2015 Rare Metal Mat. Eng. 44 1942

    [14]

    Lin J P, Zhao L L, Li G Y, Zhang L Q, Song X P, Ye F, Chen G L 2011 Intermetallics 19 136

    [15]

    杨忠波, 赵文金, 程竹青, 邱军, 张海, 卓洪 2017 金属学报 53 49

    Yang Z B, Zhao W J, Cheng Z Q, Qiu J, Zhang H, Zhuo H 2017 Acta Metall. Sin. 53 49

    [16]

    Zhao L, Zhang Y, Zhu Y, Lin J, Ren Z 2016 Mater. High Temp. 33 234Google Scholar

    [17]

    Zhao L L, Li G Y, Zhang L Q, Lin J P, Song X P, Ye F, Chen G L 2010 Intermetallics 18 1586Google Scholar

    [18]

    周玉俊, 周雪锋, 陈光 2015 热加工工艺 44 93

    Zhou Y J, Zhou X F, Chen G 2015 Hot Working Technol. 44 93

    [19]

    王艳晶, 宋玫锦, 王继杰, 杜兴蒿 2014 稀有金属材料与工程 43 1697

    Wang Y J, Song M J, Wang J J, Du X H 2014 Rare Metal Mat. Eng. 43 1697

    [20]

    董利民, 崔玉友, 杨锐, 王福会 2004 金属学报 40 383Google Scholar

    Dong L M, Cui Y Y, Yang R, Wang F H 2004 Acta Metall. Sin. 40 383Google Scholar

    [21]

    肖伟豪, 张亮, 姜惠仁 2004 北京航空航天大学学报 32 365Google Scholar

    Xiao W H, Zhang L, Jiang H R 2004 J. Beijing Univ. Aeron. Astron. 32 365Google Scholar

    [22]

    张国英, 刘贵立 2011 现代电子理论在材料设计中的应用(1) (北京: 科学出版社) 第164−167页

    Zhang G Y, Liu G L 2011 Application of Modern Electronic Theory in Material Design (Vol. 1) (Beijing: Science Press) pp179−182 (in Chinese)

    [23]

    吴红丽, 张伟, 宫声凯 2008 化学学报 66 1669Google Scholar

    Wu H L, Zhang W, Gong S K 2008 Acta Chim. Sin. 66 1669Google Scholar

    [24]

    陈国良, 林均品 1999有序金属间化合物结构材料物理金属学基础(1)(北京: 冶金工业出版社)第285页

    Chen G L, Lin J P 1999 Physicalmetallurgy Basis of Ordered Intermetallic Compound Structure Materials (Vol. 1) (Beijing: Metallurgical Industry Press) p285(in Chinese)

    [25]

    李虹, 王绍青, 叶恒强 2009 物理学报 58 224Google Scholar

    Li H, Wang S Q, Ye H Q 2009 Acta Phys. Sin. 58 224Google Scholar

    [26]

    Segall M D, Lindan P J D, Probert M J 2002 J. Phys.: Condens. Matter 14 2717Google Scholar

    [27]

    Clark S J, Segall M D, Pickard C J, Hasnip P J, Payne M C 2005 Z. Kristallogr. 220 567

    [28]

    宋庆功, 姜恩永 2008 物理学报 57 1823Google Scholar

    Song Q G, Jiang E Y 2008 Acta Phys. Sin. 57 1823Google Scholar

    [29]

    Born M, Huang K 1954 Dynamical Theory of Crystal Lattices (Oxford: Clarendon Press) pp113-117

  • [1] 雷雪玲, 朱巨湧, 柯强, 欧阳楚英. 第一性原理研究硼掺杂氧化石墨烯对过氧化锂氧化反应的催化机理. 物理学报, 2024, 73(9): 098804. doi: 10.7498/aps.73.20240197
    [2] 陈暾, 崔节超, 李敏, 陈文, 孙志鹏, 付宝勤, 侯氢. 合金元素Sn, Nb对锆合金腐蚀氧化膜相稳定性影响的第一性原理研究. 物理学报, 2024, 73(15): 157101. doi: 10.7498/aps.73.20240602
    [3] 苗瑞霞, 谢妙春, 程开, 李田甜, 杨小峰, 王业飞, 张德栋. Te掺杂对二维InSe抗氧化性以及电子结构的影响. 物理学报, 2023, 72(12): 123101. doi: 10.7498/aps.72.20230004
    [4] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究. 物理学报, 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [5] 张小娅, 宋佳讯, 王鑫豪, 王金斌, 钟向丽. In掺杂h-LuFeO3光吸收及极化性能的第一性原理计算. 物理学报, 2021, 70(3): 037101. doi: 10.7498/aps.70.20201287
    [6] 林洪斌, 林春, 陈越, 钟克华, 张健敏, 许桂贵, 黄志高. 第一性原理研究Mg掺杂对LiCoO2正极材料结构稳定性及其电子结构的影响. 物理学报, 2021, 70(13): 138201. doi: 10.7498/aps.70.20210064
    [7] 胡前库, 秦双红, 吴庆华, 李丹丹, 张斌, 袁文凤, 王李波, 周爱国. 三元Nb系和Ta系硼碳化物稳定性和物理性能的第一性原理研究. 物理学报, 2020, 69(11): 116201. doi: 10.7498/aps.69.20200234
    [8] 王丹, 邹娟, 唐黎明. 氢化二维过渡金属硫化物的稳定性和电子特性: 第一性原理研究. 物理学报, 2019, 68(3): 037102. doi: 10.7498/aps.68.20181597
    [9] 陈东运, 高明, 李拥华, 徐飞, 赵磊, 马忠权. MoO3/Si界面区钼掺杂非晶氧化硅层形成的第一性原理研究. 物理学报, 2019, 68(10): 103101. doi: 10.7498/aps.68.20190067
    [10] 林启民, 张霞, 芦启超, 罗彦彬, 崔建功, 颜鑫, 任晓敏, 黄雪. 氧化石墨烯的结构稳定性及硝酸催化作用的第一性原理研究. 物理学报, 2019, 68(24): 247302. doi: 10.7498/aps.68.20191304
    [11] 董珊, 张岩星, 张喜林, 许晓培, 毛建军, 李东霖, 陈志明, 马款, 范政权, 魏丹丹, 杨宗献. Ni与钇稳定的氧化锆(111)表面相互作用以及界面活性的第一性原理研究. 物理学报, 2016, 65(6): 068201. doi: 10.7498/aps.65.068201
    [12] 陈庆玲, 戴振宏, 刘兆庆, 安玉凤, 刘悦林. 双层h-BN/Graphene结构稳定性及其掺杂特性的第一性原理研究. 物理学报, 2016, 65(13): 136101. doi: 10.7498/aps.65.136101
    [13] 薛丽, 易林. Al掺杂对合金Mg1-xTix及其氢化物稳定性的影响. 物理学报, 2013, 62(13): 138801. doi: 10.7498/aps.62.138801
    [14] 令狐佳珺, 梁工英. In掺杂ZnTe发光性能的第一性原理计算. 物理学报, 2013, 62(10): 103102. doi: 10.7498/aps.62.103102
    [15] 陈海军, 李高清, 薛具奎. 变分法研究一维Bose-Fermi系统的稳定性. 物理学报, 2011, 60(4): 040304. doi: 10.7498/aps.60.040304.1
    [16] 刘爽, 刘彬, 张业宽, 闻岩. 一类时滞非线性相对转动系统的Hopf分岔与周期解的稳定性. 物理学报, 2010, 59(1): 38-43. doi: 10.7498/aps.59.38
    [17] 时培明, 刘 彬, 刘 爽. 一类谐波激励相对转动非线性动力系统的稳定性与近似解. 物理学报, 2008, 57(8): 4675-4684. doi: 10.7498/aps.57.4675
    [18] 王作雷. 一类简化Lang-Kobayashi方程的Hopf分岔及其稳定性. 物理学报, 2008, 57(8): 4771-4776. doi: 10.7498/aps.57.4771
    [19] 谢 莉, 雷银照. 线性瞬态涡流电磁场定解问题解的唯一性和稳定性. 物理学报, 2006, 55(9): 4397-4406. doi: 10.7498/aps.55.4397
    [20] 张 凯, 冯 俊. 相对论Birkhoff系统的对称性与稳定性. 物理学报, 2005, 54(7): 2985-2989. doi: 10.7498/aps.54.2985
计量
  • 文章访问数:  8903
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-03
  • 修回日期:  2019-07-29
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-05

/

返回文章
返回