搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

垂直腔面发射激光器与异质结双极型晶体管集成结构的设计和模拟

周广正 李颖 兰天 代京京 王聪聪 王智勇

引用本文:
Citation:

垂直腔面发射激光器与异质结双极型晶体管集成结构的设计和模拟

周广正, 李颖, 兰天, 代京京, 王聪聪, 王智勇

Design and simulation of integration of vertical cavity surface emitting lasers and heterojunction bipolar transistor

Zhou Guang-Zheng, Li Ying, Lan Tian, Dai Jing-Jing, Wang Cong-Cong, Wang Zhi-Yong
PDF
HTML
导出引用
  • 垂直腔面发射激光器(vertical cavity surface emitting lasers, VCSELs)和异质结双极型晶体管(heterojunction bipolar transistor, HBT)都是纵向电流器件, 可以集成在同一外延片上, 通过HBT基极电流调制VCSELs的输出光功率. 本文设计了一种VCSELs与HBT集成结构, 该结构包括VCSELs和PNP InGaP/GaAs HBT, 为直接串联结构, 并利用PICS3D软件模拟了该集成结构的电光特性. 为了模拟能够顺利进行, 在模型中加入了过渡集电极. 首先将HBT导通, 电流由发射极流向过渡集电极, 然后增大过渡集电极与N型电极之间的电压, 使VCSELs导通且把过渡集电极的电流降为零. 由于过渡集电极的电流为零, 在实际结构中可以将其移除. 模拟结果表明, 当电流增益系数为400时, 基极电流对输出光功率的最大调制率达到280 mW/mA. 本文所设计的集成结构及其模拟方法对光电集成器件(opto-electronic integrated circuit, OEIC)具有一定的指导作用.
    Vertical cavity surface emitting lasers (VCSELs) are widely used in the field of short-range optical communication and optical interconnection because of their advantages such as low threshold current, large modulation bandwidth, easy two-dimensional integration, easy coupling with optical fibers and low cost. The VCSELs and heterojunction bipolar transistor (HBT) are longitudinal current devices, so they can be well integrated on the same wafer, and the output light power can be modulated by the HBT base current. Integration of VCSELs and HBT are designed in this paper. The VCSELs and PNP InGaP/GaAs HBT form a direct series structure. The reflectivity of DBR is 99.72% at a resonant wavelength of 850 nm and 99.57% after adding HBT separately. Therefore, the addition of HBT has little influence on the reflectivity of DBR at the resonant wavelength. The electro-optical characteristics of the integrated structure are simulated by using PICS3D software. An interim collector is added into the model in order to ensure that the simulation can be carried out smoothly. Firstly, HBT is conducted and the current flows from the emitter to the interim collector. Then, the voltage across the interim collector and the N-type electrode is increased to make VCSELs conducted and the current of the transition collector drop to zero. The interim collector can be removed from the actual structure because the current is zero. The simulation results show that the current gain coefficient is 400, and the maximum modulation rate of the base current to the output light power rises up to 280 mW/mA. The maximum temperature in the active region increases with the base current increasing, and the output light power first increases and then tends to be saturated. The ac optical gain characteristics of the integrated structure is simulated by PICS3D, and the simulation result shows that cutoff frequency exceeds 1 GHz. The addition of HBT limits the modulation rate of the integrated structure, and further optimization of HBT structure parameters and geometric dimension are needed to improve the modulation rate. The integrated structure and simulation method established in this paper can also be used to integrate LED, LD, DFB or other luminescent devices with HBT.
      通信作者: 王智勇, zywang_bjut@126.com
      Corresponding author: Wang Zhi-Yong, zywang_bjut@126.com
    [1]

    张星, 张奕, 张建伟, 张建, 钟础宇, 黄佑文, 宁永强, 顾思洪, 王立军 2016 物理学报 65 134204Google Scholar

    Zhang X, Zhang Y, Zhang J W, Zhang J, Zhong C Y, Huang Y W, Ning Y Q, Gu S H, Wang L J 2016 Acta Phys. Sin. 65 134204Google Scholar

    [2]

    郝永芹, 冯源, 王菲, 晏长岭, 赵英杰, 王晓华, 王玉霞, 姜会林, 高欣, 薄报学 2011 物理学报 60 064201

    Hao Y Q, Feng Y, Wang F, Yan C L, Zhao Y J, Wang X H, Wang Y X, Jiang H L, Gao X, Bao B X 2011 Acta Phys. Sin. 60 064201

    [3]

    彭红玲, 韩勤, 杨晓红, 牛智川 2006 物理学报 56 863

    Peng H L, Han Q, Yang X H, Niu Z C 2006 Acta Phys. Sin. 56 863

    [4]

    杨威, 刘训春, 朱旻, 王润梅, 申华军 2006 半导体学报 27 1603

    Yang W, Liu X C, Zhu M, Wang R M, Shen H J 2006 Chin. J. Semicond. 27 1603

    [5]

    Mishra U K, Singh J 2008 Semiconductor Device Physics and Design (Dordrecht: Springer) p246

    [6]

    Liu X, Yuan J S, Liou J J 2008 Microelectron. Reliab. 48 1212Google Scholar

    [7]

    Zhou P, Cheng J L, Zolper J C, Lear K L, Chalmers S A, Vawter G A, Leibenguth R E, Adams A C 1993 IEEE Photonic. Tech. L. 5 1035Google Scholar

    [8]

    Berger P R, Dutta N K, Sivco D L, Cho A Y 1991 Appl. Phys. Lett. 59 2826Google Scholar

    [9]

    Feng M, Qiu J Y, Holonyak N 2018 IEEE J. Quantum Elect. 54 2000514

    [10]

    Shi W, Faraji B, Greenberg M, Berggren J, Xiang Y, Hammar M, Lestrade M, Li Z Q, Li Z M S, Chrostowski L 2011 Opt. Quant. Electron. 42 659Google Scholar

    [11]

    Xiang Y, Hedlund C R, Yu X, Yang C, Zabel T, Hammar M, Akram M N 2015 J Opt. Soc. Am. 23 15680

    [12]

    Kuchta D M, Rylyakov A V, Doany F E, Schow C L, Proesel J, Baks C W, Westbergh P, Gustavsson J S, Larsson A 2015 IEEE Photonic Tech. L. 27 577Google Scholar

    [13]

    Kishi T, Nagatani M, Kanazawa S, Kobayashi W, Nosaka H 2017 J. Lightwave Technol. 35 75Google Scholar

    [14]

    Rylyakov A V, Larsson A, Baks C W, Schow C L, Kuchta D M, Gustavsson J S, Proesel J E, Westbergh P 2015 J. Lightwave Technol. 33 802Google Scholar

    [15]

    Han W T, Feng M, Holonyak N, Han W T, Holonyak N 2013 Proc. IEEE 101 2271Google Scholar

    [16]

    Dems M, Beling P, Gębski M, Piskorski L, Czyszanowski T 2015 Proc. SPIE 9381 98310K-1

    [17]

    Hui L, Jia X 2018 Opt. Commun. 415 1Google Scholar

    [18]

    Coldren L A, Corzine S W, Milan L M 2012 Diode Lasers and Photonic Integrated Circuits (2nd Ed.) (Hoboken: John Wiley & Sons) p80

    [19]

    Westbergh P, Gustavsson J S, Kögel B, Haglund A, Larsson A 2011 IEEE J. Sel. Top. Quant. 17 1603Google Scholar

    [20]

    Larisch G, Moser P, Lott J A, Bimberg D 2016 IEEE Photonic Technol. L. 28 2327Google Scholar

  • 图 1  VCSELs与HBT集成结构示意图

    Fig. 1.  Schematic diagram of integration of VCSELs and HBT.

    图 2  不同结构DBR反射率

    Fig. 2.  Reflectivity of different DBRs.

    图 3  平衡态时集成结构的能带

    Fig. 3.  Band diagram of integrated structure at equilibrium.

    图 4  HBT处于放大状态时的(a)能带图, (b)集成结构内部电流分布

    Fig. 4.  Integrated structure when HBT is in an amplified state: (a) Band diagram; (b) current distribution.

    图 5  HBT和VCSEL同时导通时的集成结构 (a)能带图; (b)内部电流分布

    Fig. 5.  Integrated structure when both HBT and VCSELs were conducted: (a) Band diagram; (b) current distribution.

    图 6  过渡集电极和N型电极电流随过渡集电极电压的变化

    Fig. 6.  Relations of interim collector currentwith voltage of interim collector.

    图 7  不同基极电流下N型电极电流随电压的变化

    Fig. 7.  I1 varying with V1 at different base currents.

    图 8  不同基极电流下输出光功率随N型电极电压的变化

    Fig. 8.  Output power varying with V1 at different base currents.

    图 9  (a)基极电流为10 μA时器件内部温度分布; (b)有源区温度和输出光功率随基极电流的变化(V1 = –6 V)

    Fig. 9.  (a) Temperature distribution of the device at a 10 μA base current; (b) temperature in active region and output power varying with the base current (V1 = –6 V).

    图 10  集成结构的交流光增益

    Fig. 10.  The ac power gain of integration structure.

  • [1]

    张星, 张奕, 张建伟, 张建, 钟础宇, 黄佑文, 宁永强, 顾思洪, 王立军 2016 物理学报 65 134204Google Scholar

    Zhang X, Zhang Y, Zhang J W, Zhang J, Zhong C Y, Huang Y W, Ning Y Q, Gu S H, Wang L J 2016 Acta Phys. Sin. 65 134204Google Scholar

    [2]

    郝永芹, 冯源, 王菲, 晏长岭, 赵英杰, 王晓华, 王玉霞, 姜会林, 高欣, 薄报学 2011 物理学报 60 064201

    Hao Y Q, Feng Y, Wang F, Yan C L, Zhao Y J, Wang X H, Wang Y X, Jiang H L, Gao X, Bao B X 2011 Acta Phys. Sin. 60 064201

    [3]

    彭红玲, 韩勤, 杨晓红, 牛智川 2006 物理学报 56 863

    Peng H L, Han Q, Yang X H, Niu Z C 2006 Acta Phys. Sin. 56 863

    [4]

    杨威, 刘训春, 朱旻, 王润梅, 申华军 2006 半导体学报 27 1603

    Yang W, Liu X C, Zhu M, Wang R M, Shen H J 2006 Chin. J. Semicond. 27 1603

    [5]

    Mishra U K, Singh J 2008 Semiconductor Device Physics and Design (Dordrecht: Springer) p246

    [6]

    Liu X, Yuan J S, Liou J J 2008 Microelectron. Reliab. 48 1212Google Scholar

    [7]

    Zhou P, Cheng J L, Zolper J C, Lear K L, Chalmers S A, Vawter G A, Leibenguth R E, Adams A C 1993 IEEE Photonic. Tech. L. 5 1035Google Scholar

    [8]

    Berger P R, Dutta N K, Sivco D L, Cho A Y 1991 Appl. Phys. Lett. 59 2826Google Scholar

    [9]

    Feng M, Qiu J Y, Holonyak N 2018 IEEE J. Quantum Elect. 54 2000514

    [10]

    Shi W, Faraji B, Greenberg M, Berggren J, Xiang Y, Hammar M, Lestrade M, Li Z Q, Li Z M S, Chrostowski L 2011 Opt. Quant. Electron. 42 659Google Scholar

    [11]

    Xiang Y, Hedlund C R, Yu X, Yang C, Zabel T, Hammar M, Akram M N 2015 J Opt. Soc. Am. 23 15680

    [12]

    Kuchta D M, Rylyakov A V, Doany F E, Schow C L, Proesel J, Baks C W, Westbergh P, Gustavsson J S, Larsson A 2015 IEEE Photonic Tech. L. 27 577Google Scholar

    [13]

    Kishi T, Nagatani M, Kanazawa S, Kobayashi W, Nosaka H 2017 J. Lightwave Technol. 35 75Google Scholar

    [14]

    Rylyakov A V, Larsson A, Baks C W, Schow C L, Kuchta D M, Gustavsson J S, Proesel J E, Westbergh P 2015 J. Lightwave Technol. 33 802Google Scholar

    [15]

    Han W T, Feng M, Holonyak N, Han W T, Holonyak N 2013 Proc. IEEE 101 2271Google Scholar

    [16]

    Dems M, Beling P, Gębski M, Piskorski L, Czyszanowski T 2015 Proc. SPIE 9381 98310K-1

    [17]

    Hui L, Jia X 2018 Opt. Commun. 415 1Google Scholar

    [18]

    Coldren L A, Corzine S W, Milan L M 2012 Diode Lasers and Photonic Integrated Circuits (2nd Ed.) (Hoboken: John Wiley & Sons) p80

    [19]

    Westbergh P, Gustavsson J S, Kögel B, Haglund A, Larsson A 2011 IEEE J. Sel. Top. Quant. 17 1603Google Scholar

    [20]

    Larisch G, Moser P, Lott J A, Bimberg D 2016 IEEE Photonic Technol. L. 28 2327Google Scholar

  • [1] 闫观鑫, 郝永芹, 张秋波. 高功率垂直腔面发射激光器阵列热特性. 物理学报, 2024, 73(5): 054204. doi: 10.7498/aps.73.20231614
    [2] 潘智鹏, 李伟, 吕家纲, 聂语葳, 仲莉, 刘素平, 马骁宇. 940 nm 垂直腔面发射激光器单管器件的设计与制备. 物理学报, 2023, 72(11): 114203. doi: 10.7498/aps.72.20230297
    [3] 张福领, 付丽珊, 胡丕丽, 韩文杰, 王宏卓, 张峰, 关宝璐. 795 nm亚波长光栅耦合腔垂直腔面发射激光器的超窄线宽特性. 物理学报, 2021, 70(22): 224207. doi: 10.7498/aps.70.20210293
    [4] 王志鹏, 张峰, 杨嘉炜, 李鹏涛, 关宝璐. 表面液晶-垂直腔面发射激光器阵列的热特性. 物理学报, 2020, 69(6): 064203. doi: 10.7498/aps.69.20191793
    [5] 于洪岩, 尧舜, 张红梅, 王青, 张杨, 周广正, 吕朝晨, 程立文, 郎陆广, 夏宇, 周天宝, 康联鸿, 王智勇, 董国亮. 940 nm垂直腔面发射激光器的设计及制备. 物理学报, 2019, 68(6): 064207. doi: 10.7498/aps.68.20181822
    [6] 张浩, 郭星星, 项水英. 基于单向注入垂直腔面发射激光器系统的密钥分发. 物理学报, 2018, 67(20): 204202. doi: 10.7498/aps.67.20181038
    [7] 周广正, 尧舜, 于洪岩, 吕朝晨, 王青, 周天宝, 李颖, 兰天, 夏宇, 郎陆广, 程立文, 董国亮, 康联鸿, 王智勇. 高速850 nm垂直腔面发射激光器的优化设计与外延生长. 物理学报, 2018, 67(10): 104205. doi: 10.7498/aps.67.20172550
    [8] 关宝璐, 刘欣, 江孝伟, 刘储, 徐晨. 多横模垂直腔面发射激光器及其波长特性. 物理学报, 2015, 64(16): 164203. doi: 10.7498/aps.64.164203
    [9] 邓伟, 夏光琼, 吴正茂. 基于双光反馈垂直腔面发射激光器的双信道混沌同步通信. 物理学报, 2013, 62(16): 164209. doi: 10.7498/aps.62.164209
    [10] 毛明明, 徐晨, 魏思民, 解意洋, 刘久澄, 许坤. 质子注入能量对垂直腔面发射激光器的阈值和功率的影响. 物理学报, 2012, 61(21): 214207. doi: 10.7498/aps.61.214207
    [11] 刘发, 徐晨, 赵振波, 周康, 解意洋, 毛明明, 魏思民, 曹田, 沈光地. 氧化孔形状对光子晶体垂直腔面发射激光器模式的影响. 物理学报, 2012, 61(5): 054203. doi: 10.7498/aps.61.054203
    [12] 郝永芹, 冯源, 王菲, 晏长岭, 赵英杰, 王晓华, 王玉霞, 姜会林, 高欣, 薄报学. 808nm大孔径垂直腔面发射激光器研究. 物理学报, 2011, 60(6): 064201. doi: 10.7498/aps.60.064201
    [13] 关宝璐, 郭霞, 张敬兰, 任秀娟, 郭帅, 李硕, 揣东旭, 沈光地. 双波长垂直腔面发射激光器及特性研究. 物理学报, 2011, 60(1): 014209. doi: 10.7498/aps.60.014209
    [14] 刘安金, 邢名欣, 渠红伟, 陈微, 周文君, 郑婉华. 光子晶体波导对垂直腔面发射激光器光束远场形貌的调控. 物理学报, 2010, 59(2): 1035-1039. doi: 10.7498/aps.59.1035
    [15] 王宝强, 徐晨, 刘英明, 解意洋, 刘发, 赵振波, 周康, 沈光地. 光子晶体垂直腔面发射激光器的电流分布研究. 物理学报, 2010, 59(12): 8542-8547. doi: 10.7498/aps.59.8542
    [16] 王同喜, 关宝璐, 郭霞, 沈光地. 载流子输运和寄生参数对隧道再生双有源区垂直腔面发射激光器调制特性的影响. 物理学报, 2009, 58(3): 1694-1699. doi: 10.7498/aps.58.1694
    [17] 杨 浩, 郭 霞, 关宝璐, 王同喜, 沈光地. 注入电流对垂直腔面发射激光器横模特性的影响. 物理学报, 2008, 57(5): 2959-2965. doi: 10.7498/aps.57.2959
    [18] 彭红玲, 韩 勤, 杨晓红, 牛智川. 1.3μm量子点垂直腔面发射激光器高频响应的优化设计. 物理学报, 2007, 56(2): 863-870. doi: 10.7498/aps.56.863
    [19] 赵红东, 宋殿友, 张智峰, 孙 静, 孙 梅, 武 一, 温幸饶. n型DBR中电势对垂直腔面发射激光器阈值的影响. 物理学报, 2004, 53(11): 3744-3747. doi: 10.7498/aps.53.3744
    [20] 赵红东, 康志龙, 王胜利, 陈国鹰, 张以谟. 高速调制响应垂直腔面发射激光器中的微腔效应. 物理学报, 2003, 52(1): 77-80. doi: 10.7498/aps.52.77
计量
  • 文章访问数:  8515
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-11
  • 修回日期:  2019-06-15
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-20

/

返回文章
返回