搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

酞菁晶体结构与荧光性质的压力调控

朱陆尧 王鹏 翟春光 胡阔 姚明光 刘冰冰

引用本文:
Citation:

酞菁晶体结构与荧光性质的压力调控

朱陆尧, 王鹏, 翟春光, 胡阔, 姚明光, 刘冰冰

Effect of pressure on structure and fluorescence of phthalocyanine

Zhu Lu-Yao, Wang Peng, Zhai Chun-Guang, Hu Kuo, Yao Ming-Guang, Liu Bing-Bing
PDF
HTML
导出引用
  • 酞菁是一种重要的有机光电材料, 关于其晶体结构和光电性质间的内在关联尚存争议. 本文利用高压原位拉曼散射光谱及荧光光谱技术对酞菁晶体在高压下的结构转变和光学性质进行了研究. 当压力达到12.0 GPa时, 酞菁分子本身仍保持稳定, 没有发生开环反应. 酞菁晶体结构在压力作用下由α相逐渐转变为χ相, 这一转变在卸压后恢复到初始α相. 酞菁的高压荧光光谱研究表明, 荧光强度随压力增高而衰减, 至3.0 GPa时消失. 高压下酞菁分子间所形成的激基缔合物荧光受抑制, 而常压下α相酞菁中观察不到的酞菁分子荧光在高压下出现, 这可能与酞菁晶体中呈平行排列的分子之间在压力下重叠程度减小有关.
    Phthalocyanine (Pc) is a kind of important photoelectric material, but a lot of questions remain to be clarified, like the relationship between the structure of Pc and its photoelectric property. High pressure is a powerful tool to study the structure transformation. High pressure study on piezochromic materials, which shows color change under high pressure due to structure changing, serves as an effectively way of studying the relationship between materials’ structure and photoelectric property. In this work Raman spectrum is employed to study the phase change of α phase metal-free Pc (α-H2Pc) under high pressure, meanwhile the effect of pressure on fluorescence (FL) is also studied to show how the Pc’s structure affects the photoelectric property. The diamond anvil cell is employed to achieve the high pressure condition, by using NaCl as a pressure transmitting medium. And Raman and FL measurements are performed by using a LabRam HR Evolution spectrometer equipped with a 473 nm laser. The Raman spectra of α-H2Pc show to slightly change during compression to 12.0 GPa. The main Raman peaks remain at highest pressure, including the Raman peak from macrocyclic of Pc molecules, which shows the stability of Pc molecules. Note that an enhancement of Raman peak at 623 cm–1 can be found with the pressure increasing, which appears only in the Raman spectrum of χ phase metal-free Pc (χ-H2Pc), showing that α-H2Pc is converted into χ-H2Pc under pressure. The curve for Raman frequency as a function of pressure shows that no obvious evidence related to bonding or structure transition can be observed, which means that α-H2Pc is transformed into χ-H2Pc gradually. For FL spectrum, only the FL of excimer can be found in α-H2Pc at atmosphere pressure. When the solid α-H2Pc is compressed, the FL intensity is found to decrease as pressure increases, and it is quenched at 3.0 GPa. The FL of Pc molecule, which is not found in α-H2Pc at ambient pressure, appears at 0.7 GPa. As the pressure increases, the FL intensity ratio between Pc molecule and excimer is enhanced. Considering the pressure induced phase transition from α-H2Pc to χ-H2Pc gradually, the change in FL spectrum should be due to the structure transformation. It is proved that the degree of overlapping between Pc molecules in α-H2Pc is larger than that in χ-H2Pc. We think, the degree of overlapping decreases under high pressure, which hinders the formation of excimer. It makes the excimer emission decrease and the FL of Pc molecules appear under high pressure. Our work can explain the relationship between Pc crystal structure and its fluorescence, reveals the kinetic behavior of macromolecules similar to Pc system under high pressure, and provides a new possibility of designing the photoelectric materials with excellent performances.
      通信作者: 王鹏, wangpengtrrs@jlu.edu.cn ; 刘冰冰, liubb@jlu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51320105007, 11634004, 11474121)资助的课题.
      Corresponding author: Wang Peng, wangpengtrrs@jlu.edu.cn ; Liu Bing-Bing, liubb@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51320105007, 11634004, 11474121).
    [1]

    Zugenmaier P, Bluhm T L, Deslandes Y, Orts W J, Hamer G K 1997 J. Mater. Sci. 32 5561Google Scholar

    [2]

    Sharma V B, Jain S L, Sain B 2003 Tetrahedron Lett. 44 383Google Scholar

    [3]

    Janczak J, Kubiak R 1992 J. Alloys Compd. 190 121Google Scholar

    [4]

    Kubiak R, Janczak J 1992 J. Alloys Compd. 190 117Google Scholar

    [5]

    Hammond R B, Roberts K J, Docherty R, Edmondson M, Gairns R 1996 J. Chem. Soc. Perkin Trans. 28 1527

    [6]

    Takano S, Enokida T, Kakuta A, Mori Y 1984 Chem. Lett. 13 2037Google Scholar

    [7]

    李战强, 李祥高, 李健, 胡雅琴 2013 有机化学 33 891

    Li Z Q, Li G Q, Li J, Hu Y Q 2013 Chin. J. Org. Chem. 33 891

    [8]

    Menzel E R, Jordan K J 1978 Chem. Phys. 32 223Google Scholar

    [9]

    Dong Y J, Xu B, Zhang J B, Tan X, Wang L J, Chen J L, Lv H G, Wen S P, Li B, Ye L, Zou B, Tian W J 2012 Angew. Chem. 124 10940Google Scholar

    [10]

    Meng X, Qi G Y, Zhang C, Wang K, Zou B, Ma Y G 2015 Chem. Commun. 51 9320Google Scholar

    [11]

    Yuan H S, Wang K, Yang K, Liu B B, Zou B 2014 J. Phys. Chem. Lett. 5 2968Google Scholar

    [12]

    郭宏伟, 刘然, 王玲瑞, 崔金星, 宋波, 王凯, 刘冰冰, 邹勃 2017 物理学报 66 030701Google Scholar

    Guo H W, Liu R, Wang L R, Cui J X, Song B, Wang K, Liu B B, Zou B 2017 Acta Phys. Sin. 66 030701Google Scholar

    [13]

    Grenoble D C, Drickamer H G 1971 J. Chem. Phys. 55 1624Google Scholar

    [14]

    Aroca R, Dilella D P, Loutfy R O 1982 J. Phys. Chem. Solids 43 707Google Scholar

    [15]

    Zhang X X, Bao M, Pan N, Zhang Y X, Jiang J Z 2004 Chin. J. Chem. 22 325

    [16]

    Lehrer S S 1997 Methods Enzymol. 278 286Google Scholar

    [17]

    Birks J B, Kazzaz A A, King T A 1966 Proc. R. Soc. London Ser. A 291 556Google Scholar

    [18]

    Tanaka J 1963 Bull. Chem. Soc. Jpn. 36 1237Google Scholar

    [19]

    Chandross E A, Dempster C J 1970 J. Am. Chem. Soc. 92 3586Google Scholar

    [20]

    Jones P F, Nicol M 1965 J. Chem. Phys. 43 3759Google Scholar

    [21]

    Birks J B 1975 Rep. Prog. Phys. 38 903Google Scholar

  • 图 1  样品的XRD表征.黑色竖线是利用文献[3]中α相酞菁晶体结构计算出的结果

    Fig. 1.  The XRD pattern of sample under ambient pressure. The black lines are from calculation result of α phase metal-free phthalocyanine (α-H2Pc)[3]

    图 2  样品拉曼光谱测试 (a) 常压与卸压样品的拉曼光谱; (b) 酞菁的高压拉曼光谱; (c) 峰位为623 cm–1的拉曼峰随着压力升高峰强增强

    Fig. 2.  The Raman spectra of α-H2Pc: (a) The Raman spectra of sample at ambient pressure and decompressed from 12.0 GPa; (b) the Raman spectra of α-H2Pc under high pressure; (c) the Raman peak around 623 cm–1 under high pressure

    图 3  样品的拉曼峰位随压力的变化

    Fig. 3.  The Raman frequency of H2Pc as functions of pressure.

    图 4  样品的荧光光谱 (a)样品的常压和卸压荧光光谱; (b) 样品的升压荧光光谱; (c) 样品的荧光中心随压力的变化及其线性拟合, 虚线为线性拟合所得直线的延长线; (d) 样品卸压过程中的荧光光谱; (e) 两个荧光中心的峰强比随压力的变化图

    Fig. 4.  The fluorescence (FL) spectra of α-H2Pc: (a) The FL spectra of α-H2Pc at ambient pressure (black line) and decompressed from 4.0 GPa (red line); (b) the FL spectra of α-H2Pc under high pressure during compressing; (c) the blue and red dots are the position of P1 and P2 during compressing, the blue and red lines are the linear fitting between the position and pressure, and the dash lines are the extension of the blue and red line; (d) the FL spectra of α-H2Pc under high pressure during decompressing; (e) the intensity ratio of P1 and P2 under high pressure

    图 5  α相和χ相酞菁的分子排布和重叠程度示意图 (a) α相酞菁的分子排布; (b) χ相酞菁的分子排布; (c) α相酞菁的分子重叠程度; (d) χ相酞菁的分子重叠程度

    Fig. 5.  The arrangement and overlapping of PC molecules in α-H2Pc and χ-H2Pc: (a) The arrangement of Pc molecules in α-H2Pc; (b) the arrangement of Pc molecules in χ-H2Pc; (c) the overlapping of Pc molecules in α-H2Pc; (d) the overlapping of Pc molecules in χ-H2Pc [1,3].

    表 1  酞菁α相[3]、β相[1]和χ相[1]的晶体结构信息

    Table 1.  Structural parameters of different phases of metal-free phthalocyanine[1,3].

    α相β相χ相
    空间群C2/nP21/nPna21
    晶系单斜单斜正交
    a/nm2.6124(3)1.4796(6)2.10(1)
    b/nm0.3801(1)0.47325(6)0.491(5)
    c/nm2.3889(3)1.7357(7)2.31(1)
    α/(°)909090
    β/(°)94.18(2)104.32(2)90
    γ/(°)909090
    下载: 导出CSV
  • [1]

    Zugenmaier P, Bluhm T L, Deslandes Y, Orts W J, Hamer G K 1997 J. Mater. Sci. 32 5561Google Scholar

    [2]

    Sharma V B, Jain S L, Sain B 2003 Tetrahedron Lett. 44 383Google Scholar

    [3]

    Janczak J, Kubiak R 1992 J. Alloys Compd. 190 121Google Scholar

    [4]

    Kubiak R, Janczak J 1992 J. Alloys Compd. 190 117Google Scholar

    [5]

    Hammond R B, Roberts K J, Docherty R, Edmondson M, Gairns R 1996 J. Chem. Soc. Perkin Trans. 28 1527

    [6]

    Takano S, Enokida T, Kakuta A, Mori Y 1984 Chem. Lett. 13 2037Google Scholar

    [7]

    李战强, 李祥高, 李健, 胡雅琴 2013 有机化学 33 891

    Li Z Q, Li G Q, Li J, Hu Y Q 2013 Chin. J. Org. Chem. 33 891

    [8]

    Menzel E R, Jordan K J 1978 Chem. Phys. 32 223Google Scholar

    [9]

    Dong Y J, Xu B, Zhang J B, Tan X, Wang L J, Chen J L, Lv H G, Wen S P, Li B, Ye L, Zou B, Tian W J 2012 Angew. Chem. 124 10940Google Scholar

    [10]

    Meng X, Qi G Y, Zhang C, Wang K, Zou B, Ma Y G 2015 Chem. Commun. 51 9320Google Scholar

    [11]

    Yuan H S, Wang K, Yang K, Liu B B, Zou B 2014 J. Phys. Chem. Lett. 5 2968Google Scholar

    [12]

    郭宏伟, 刘然, 王玲瑞, 崔金星, 宋波, 王凯, 刘冰冰, 邹勃 2017 物理学报 66 030701Google Scholar

    Guo H W, Liu R, Wang L R, Cui J X, Song B, Wang K, Liu B B, Zou B 2017 Acta Phys. Sin. 66 030701Google Scholar

    [13]

    Grenoble D C, Drickamer H G 1971 J. Chem. Phys. 55 1624Google Scholar

    [14]

    Aroca R, Dilella D P, Loutfy R O 1982 J. Phys. Chem. Solids 43 707Google Scholar

    [15]

    Zhang X X, Bao M, Pan N, Zhang Y X, Jiang J Z 2004 Chin. J. Chem. 22 325

    [16]

    Lehrer S S 1997 Methods Enzymol. 278 286Google Scholar

    [17]

    Birks J B, Kazzaz A A, King T A 1966 Proc. R. Soc. London Ser. A 291 556Google Scholar

    [18]

    Tanaka J 1963 Bull. Chem. Soc. Jpn. 36 1237Google Scholar

    [19]

    Chandross E A, Dempster C J 1970 J. Am. Chem. Soc. 92 3586Google Scholar

    [20]

    Jones P F, Nicol M 1965 J. Chem. Phys. 43 3759Google Scholar

    [21]

    Birks J B 1975 Rep. Prog. Phys. 38 903Google Scholar

  • [1] 王飞, 李全军, 胡阔, 刘冰冰. 高压导致纳米TiO2形变的电子显微研究. 物理学报, 2023, 72(3): 036201. doi: 10.7498/aps.72.20221656
    [2] 时凯居, 李睿, 李长富, 王成新, 徐现刚, 冀子武. 荧光法测定半导体禁带宽度. 物理学报, 2022, 71(6): 067803. doi: 10.7498/aps.71.20211894
    [3] 张云, 林爽, 张云峰, 张鹤, 常明莹, 于淼, 王雅秋, 蔡晓明, 姜远飞, 陈安民, 李苏宇, 金明星. 飞秒激光在空气中成丝诱导氮荧光发射的空间分布. 物理学报, 2021, 70(13): 134206. doi: 10.7498/aps.70.20201704
    [4] 郭静, 吴奇, 孙力玲. 高压下的铁基超导体:现象与物理. 物理学报, 2018, 67(20): 207409. doi: 10.7498/aps.67.20181651
    [5] 董家君, 姚明光, 刘世杰, 刘冰冰. 高压下准一维纳米结构的研究. 物理学报, 2017, 66(3): 039101. doi: 10.7498/aps.66.039101
    [6] 李晓东, 李晖, 李鹏善. 同步辐射高压单晶衍射实验技术. 物理学报, 2017, 66(3): 036203. doi: 10.7498/aps.66.036203
    [7] 侯国辉, 罗腾, 陈秉灵, 刘杰, 林子扬, 陈丹妮, 屈军乐. 双光子荧光与相干反斯托克斯拉曼散射显微成像技术的实验研究. 物理学报, 2017, 66(10): 104204. doi: 10.7498/aps.66.104204
    [8] 吴宝嘉, 李燕, 彭刚, 高春晓. InSe的高压电输运性质研究. 物理学报, 2013, 62(14): 140702. doi: 10.7498/aps.62.140702
    [9] 明星, 王小兰, 杜菲, 陈岗, 王春忠, 尹建武. 菱铁矿FeCO3高压相变与性质的第一性原理研究. 物理学报, 2012, 61(9): 097102. doi: 10.7498/aps.61.097102
    [10] 秦杰明, 张莹, 曹建明, 田立飞, 董中伟, 李岳. 高压下制备的透明低阻n-ZnO陶瓷的表征. 物理学报, 2011, 60(3): 036105. doi: 10.7498/aps.60.036105
    [11] 周密, 李占龙, 陆国会, 李东飞, 孙成林, 高淑琴, 里佐威. 高压拉曼光谱方法研究联苯分子费米共振. 物理学报, 2011, 60(5): 050702. doi: 10.7498/aps.60.050702
    [12] 李占龙, 陆国会, 孙成林, 门志伟, 里佐威, 高淑琴. 四磺酸基苯基卟啉荧光增强苯的高阶受激拉曼散射. 物理学报, 2011, 60(8): 084211. doi: 10.7498/aps.60.084211
    [13] 汪津, 赵毅, 谢文法, 段羽, 陈平, 刘式墉. 利用DPVBi插层提高蓝色荧光有机电致发光器件的效率. 物理学报, 2011, 60(10): 107203. doi: 10.7498/aps.60.107203.2
    [14] 吴宝嘉, 韩永昊, 彭刚, 刘才龙, 王月, 高春晓. 原位高压微米氧化锌电学性质的研究. 物理学报, 2010, 59(6): 4235-4239. doi: 10.7498/aps.59.4235
    [15] 马丽, 高勇. 半超结SiGe高压快速软恢复开关二极管. 物理学报, 2009, 58(1): 529-535. doi: 10.7498/aps.58.529
    [16] 林浩铭, 邵永红, 屈军乐, 尹 君, 陈思平, 牛憨笨. 散斑照明宽场荧光层析显微成像技术研究. 物理学报, 2008, 57(12): 7641-7649. doi: 10.7498/aps.57.7641
    [17] 丁迎春, 徐 明, 潘洪哲, 沈益斌, 祝文军, 贺红亮. γ-Si3N4在高压下的电子结构和物理性质研究. 物理学报, 2007, 56(1): 117-122. doi: 10.7498/aps.56.117
    [18] 邵光杰, 秦秀娟, 刘日平, 王文魁, 姚玉书. 氧化锌纳米晶高压下的晶粒演化和性能. 物理学报, 2006, 55(1): 472-476. doi: 10.7498/aps.55.472
    [19] 王防震, 陈张海, 柏利慧, 黄少华, 沈学础. CdSe/ZnSe异质结构中Zn1-xCdxSe量子岛(点)的显微荧光光谱和显微拉曼光谱研究. 物理学报, 2006, 55(5): 2628-2632. doi: 10.7498/aps.55.2628
    [20] 梁海春, 容敏智, 章明秋, 曾汉民. 微乳液法制备纳米银粒子的结构及其荧光现象研究. 物理学报, 2002, 51(1): 49-54. doi: 10.7498/aps.51.49
计量
  • 文章访问数:  9410
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-17
  • 修回日期:  2019-06-24
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-05

/

返回文章
返回