搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙钛矿NaFeF3结构物性的理论研究及应力和掺杂调控

宋蕊 冯凯 林上金 何曼丽 仝亮

引用本文:
Citation:

钙钛矿NaFeF3结构物性的理论研究及应力和掺杂调控

宋蕊, 冯凯, 林上金, 何曼丽, 仝亮

First principles study of structural, electric, and magnetic properties of fluoride perovskite NaFeF3

Song Rui, Feng Kai, Lin Shang-Jin, He Man-Li, Tong Liang
PDF
HTML
导出引用
  • 利用第一性原理计算研究了氟化物钙钛矿NaFeF3的基态电子态和磁构型, 并模拟分析了衬底应力和阴离子置换对材料基本物性的影响. 计算结果表明, NaFeF3块材的G-AFM磁基态十分稳定, 不会受到衬底应力调控以及F位氧掺杂的影响. 当低浓度掺杂(~8.3%)时, 氧离子倾向于替换FeF2面内的F, 形成非对称的Fe-O-Fe链, 导致产生局域极化. 此外, 不对等的Fe—O键还会在氧离子两侧的Fe上形成电荷序, 进而产生非零净磁矩. 值得注意的是, 该局域极化和亚铁磁性均源于不等位氧掺杂, 因此有可能通过外电场调控实现极化翻转并同时改变净磁矩的方向实现电控磁. 更高浓度的氧掺杂会使得Fe的化合价整体升高, Fe离子上的局部电荷序和净磁矩随之消失. 该研究结果有望促进氟化物的理论和实验研究, 并为多铁性材料的设计研发提供新的材料.
    On the basis of first-principles calculations, the systematic researches of the structural, electronic and magnetic properties of NaFeF3 are carried out in the present work. The influences of anion substitution and strain effect are taken into consideration in the reaearch. First, the basic properties of the NaFeF3 bulk are determined. The fully relaxed structure exhibits a distinct GdFeO3-type distortion and a relatively weak Jahn-Teller distortion. The band gap is estimated at 3 eV from our DFT calculations with Hubbard U correction. Moreover, the magnetic structure is of G-type antiferromagnetism (G-AFM). This intrinsic G-AFM magnetic state is robust, and cannot be easily destroyed by small perturbations, includinganion doping and epitaxial strain.Secondly, we study the oxygen doping effect on the properties of material with considering the fact that the radius of oxygen anion is very close to that of fluoride anion, and the oxygen substitution can be accommodated by the further oxidation of iron cation from divalent to trivalent state. According to our energy comparison calculations, when one of the twelve F sites in the NaFeF3 unit cell is taken up by an oxygen anion, whose corresponding doping concentration is approximately 8.3%, the O ion is more likely to occupy the in-plane site of the FeF6 octahedron. This low concentration doping may induce unequal Fe—O bonds, which lead to diverse valence states of surrounding Fe cations, and therefore result in local polarization and non-zero net magnetic moment. The local dipole and magnetic moment are inherently correlated with each other due to the common origin, i.e., the incoordinate Fe—O bonds. Therefore, the net magnetic moment together with the local polarization may be reversed simultaneously by an external electric field. However, when the doping concentration is further increased to 33%, the overall iron valence will rise to a higher state where the local charge order and the net moment disappear.In addition, the electronic properties of NaFeF3 also show obvious change due to the influence of biaxial strain. Specifically, the energy gap decreases monotonically as the in-plane stress gradually changes from compression to extension. However, the band structure does not change significantly. The top of the valence band and the bottom of the conduction band are both located at the Gamma point, thus making it a direct bandgap semiconductor material with an adjustable energy gap.These findings may promote further theoretical and experimental research on fluoride family and introduce a new candidate to the multiferroic field.
      通信作者: 宋蕊, snoopysr@163.com
      Corresponding author: Song Rui, snoopysr@163.com
    [1]

    Millis A J 1998 Nature 392 147Google Scholar

    [2]

    Ohtomo A, Hwang H Y 2004 Nature 427 423Google Scholar

    [3]

    Chen H, Kolpak A M, Isamail-Beigi S 2010 Adv. Mater. 22 2881Google Scholar

    [4]

    Garcia-Castro A C, Romero A H, Bousquest E 2016 Phys. Rev. Lett. 116 117202Google Scholar

    [5]

    Margadonna S, Karotsis G 2006 J. Am. Chem. Soc. 128 16436Google Scholar

    [6]

    Binggeli N, Altarelli M 2004 Phys. Rev. B 70 085117Google Scholar

    [7]

    Yamauchi K, Picozzi S 2010 Phys. Rev. Lett. 105 10720

    [8]

    Karamyan A A 1973 Phys. Stat. Sol. A 16 419Google Scholar

    [9]

    Brown-Acquaye H A, Lane A P, Inorg J 1981 Nucl. Chem. 43 3143

    [10]

    Ni S, Ma J, Lv X, Yang X, Zhang L 2014 Mater. Lett. 124 264Google Scholar

    [11]

    Hao L, Liu K, Cheng S, Wang Y, Xu Y, Qian H 2017 Mater. Lett. 196 145Google Scholar

    [12]

    Wang R T, Tai E G, Chen J Y, Xu G, LaPierre R, Goktas N I, Hu N 2019 Ceram. Inter. 45 64Google Scholar

    [13]

    Dhanapala B D, Munasinghe H N, Suescun L, Rabuffetti F A 2017 Inorg. Chem. 56 13311Google Scholar

    [14]

    Bernal F L, Yusenko K V, Sottmann J, Drathen C, Guignard J, Lovvik O M, Crichton W A, Margadonna S 2014 Inorg. Mater. 53 12205

    [15]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [16]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [17]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [18]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [19]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [20]

    Alaria J, Borisov P, Dyer M S, Manning T D, Lepadatu S, Cain M G, Mishina E D, Sherstyuk N E, Ilyin N A, Hadermann J, Lederman D, Claridge J B, Rosseinsky M J 2014 Chem. Sci. 5 1599Google Scholar

    [21]

    Garcia-Castro A C, Romero A H, Bousquet E 2014 Phys. Rev. B 90 064113Google Scholar

    [22]

    Friedman Z, Melamud M, Makovsky J, Shaked H 1970 Phys. Rev. B 2 179Google Scholar

    [23]

    Shane J R, Lyons D H, Kestigian M 1967 J. Appl. Phys. 38 1280Google Scholar

    [24]

    Zheng X X, Wang D, Tang L M, Chen K Q 2015 Mod. Phys. Lett. B 29 1550137

    [25]

    颜送灵, 唐黎明, 赵宇清 2016 物理学报 65 077301Google Scholar

    Yan S L, Tang L M, Zhao Y Q 2016 Acta Phys. Sin. 65 077301Google Scholar

    [26]

    Li X X, Yang J L 2016 Natl. Sci. Rev. 3 365Google Scholar

  • 图 1  钙钛矿型氟化物NaFeF3的结构示意图 浅褐色的是由氟离子构成的FeF6八面体, 其中心为B位Fe离子, 近邻八面体之间通过共角F离子相连, A位Na离子位于FeF6八面体围成的三维框架中

    Fig. 1.  Schematic diagramof perovskite fluoride NaFeF3. The light brown structures are corner-sharing FeF6 octahedra. The center of octahedra are B-site iron ions, which are shown in dark brown. The yellow Na ions are located in the framework surrounded by the FeF6 octahedra

    图 2   (a) NaFeF3块材的原子分波态密度图; (b) 块材中Fe2+离子的3d轨道分波态密度

    Fig. 2.  (a) The projected DOS of bulk NaFeF3; (b) the 3d orbital-projected DOS of Fe2+ ion.

    图 3  面内双轴应力对NaFeF3块材中A-AFM, C-AFM, FM磁序以及G-AFM磁序之间相互能量差的影响, 以G-AFM能量作为参考值, 如虚线所示

    Fig. 3.  The biaxial strain dependent energy differences between A-AFM, C-AFM, G-AFM and FM states. The energy of G-AFM ground state is denoted by dash line for reference.

    图 4   (a)−(e) 面内双轴应力作用下NaFeF3块材的态密度分布; (f) NaFeF3块材能带结构图; (g) NaFeF3块材带隙随应力的变化

    Fig. 4.  (a)–(e) The pDOS of NaFeF3 with different biaxial strain; (f) the representative band structure of NaFeF3 with –5% in-plane strain; (g) the biaxial strain dependent band gap diagram.

    图 5   (a) 低浓度氧掺杂时, 费米面附近NaFeF3-xOx (x = 0.25)的原子分波态密度图; (b) 原胞中不同B位Fe离子的分波态密度, 其中插图为氧离子掺杂后的结构示意图, 为了清晰直观地表述, 图中仅给出Fe-F(O)八面体结构

    Fig. 5.  (a) The pDOS of NaFeF3-x Ox (x = 0.25) near Fermi level; (b) the PDOS of different B-site iron ions, which are specified in the inset, Na atoms are omitted for clarify.

    图 6  高浓度氧掺杂后, NaFeF2O的总态密度和原子分波态密度图, 其中插图为相应的结构示意图

    Fig. 6.  The total DOS and pDOS of NaFeF2O near Fermi level; the structure is illustrated by the inset.

    表 1  NaFeF3晶格优化后的结构参数与相应实验报道值

    Table 1.  Optimized structural parameters of NaFeF3 and the corresponding experimental values.

    a b c Space group Fe-F ∠Fe—F—Fe
    ab plane c axis ab plane c axis
    GGA + U 5.47 5.67 7.78 Pnma 2.096 2.029 2.052 145.5 143.0
    Expt.[14] 5.48 5.66 7.88 Pnma 2.084 2.052 2.072 144.6 143.9
    下载: 导出CSV
  • [1]

    Millis A J 1998 Nature 392 147Google Scholar

    [2]

    Ohtomo A, Hwang H Y 2004 Nature 427 423Google Scholar

    [3]

    Chen H, Kolpak A M, Isamail-Beigi S 2010 Adv. Mater. 22 2881Google Scholar

    [4]

    Garcia-Castro A C, Romero A H, Bousquest E 2016 Phys. Rev. Lett. 116 117202Google Scholar

    [5]

    Margadonna S, Karotsis G 2006 J. Am. Chem. Soc. 128 16436Google Scholar

    [6]

    Binggeli N, Altarelli M 2004 Phys. Rev. B 70 085117Google Scholar

    [7]

    Yamauchi K, Picozzi S 2010 Phys. Rev. Lett. 105 10720

    [8]

    Karamyan A A 1973 Phys. Stat. Sol. A 16 419Google Scholar

    [9]

    Brown-Acquaye H A, Lane A P, Inorg J 1981 Nucl. Chem. 43 3143

    [10]

    Ni S, Ma J, Lv X, Yang X, Zhang L 2014 Mater. Lett. 124 264Google Scholar

    [11]

    Hao L, Liu K, Cheng S, Wang Y, Xu Y, Qian H 2017 Mater. Lett. 196 145Google Scholar

    [12]

    Wang R T, Tai E G, Chen J Y, Xu G, LaPierre R, Goktas N I, Hu N 2019 Ceram. Inter. 45 64Google Scholar

    [13]

    Dhanapala B D, Munasinghe H N, Suescun L, Rabuffetti F A 2017 Inorg. Chem. 56 13311Google Scholar

    [14]

    Bernal F L, Yusenko K V, Sottmann J, Drathen C, Guignard J, Lovvik O M, Crichton W A, Margadonna S 2014 Inorg. Mater. 53 12205

    [15]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [16]

    Kresse G, Furthmuller J 1996 Phys. Rev. B 54 11169Google Scholar

    [17]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [18]

    Perdew J P, Ruzsinszky A, Csonka G I, Vydrov O A, Scuseria G E, Constantin L A, Zhou X, Burke K 2008 Phys. Rev. Lett. 100 136406Google Scholar

    [19]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [20]

    Alaria J, Borisov P, Dyer M S, Manning T D, Lepadatu S, Cain M G, Mishina E D, Sherstyuk N E, Ilyin N A, Hadermann J, Lederman D, Claridge J B, Rosseinsky M J 2014 Chem. Sci. 5 1599Google Scholar

    [21]

    Garcia-Castro A C, Romero A H, Bousquet E 2014 Phys. Rev. B 90 064113Google Scholar

    [22]

    Friedman Z, Melamud M, Makovsky J, Shaked H 1970 Phys. Rev. B 2 179Google Scholar

    [23]

    Shane J R, Lyons D H, Kestigian M 1967 J. Appl. Phys. 38 1280Google Scholar

    [24]

    Zheng X X, Wang D, Tang L M, Chen K Q 2015 Mod. Phys. Lett. B 29 1550137

    [25]

    颜送灵, 唐黎明, 赵宇清 2016 物理学报 65 077301Google Scholar

    Yan S L, Tang L M, Zhao Y Q 2016 Acta Phys. Sin. 65 077301Google Scholar

    [26]

    Li X X, Yang J L 2016 Natl. Sci. Rev. 3 365Google Scholar

  • [1] 郑鹏飞, 柳志旭, 王超, 刘卫芳. 基团替代调控无铅有机钙钛矿铁电体的极化和压电特性的第一性原理研究. 物理学报, 2024, 73(12): 126202. doi: 10.7498/aps.73.20240385
    [2] 严志, 方诚, 王芳, 许小红. 过渡金属元素掺杂对SmCo3合金结构和磁性能影响的第一性原理计算. 物理学报, 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [3] 杨海林, 陈琦丽, 顾星, 林宁. 氧原子在氟化石墨烯上扩散的第一性原理计算. 物理学报, 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [4] 宋谢飞, 晒旭霞, 李洁, 马新茹, 伏云昌, 曾春华. 无机非铅钙钛矿Cs3Bi2I9的电子和光学性质. 物理学报, 2022, 71(1): 017101. doi: 10.7498/aps.71.20211599
    [5] 宋谢飞, 晒旭霞, 李洁, 马新茹, 伏云昌, 曾春华. 无机非铅钙钛矿Cs3Bi2I9的电子和光学性质. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211599
    [6] 郤育莺, 韩悦, 李国辉, 翟爱平, 冀婷, 郝玉英, 崔艳霞. 异质结构在光伏型卤化物钙钛矿光电转换器件中的应用. 物理学报, 2020, 69(16): 167804. doi: 10.7498/aps.69.20200591
    [7] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [8] 王继飞, 林东旭, 袁永波. 有机金属卤化物钙钛矿中的离子迁移现象及其研究进展. 物理学报, 2019, 68(15): 158801. doi: 10.7498/aps.68.20190853
    [9] 黄伟, 李跃龙, 任慧志, 王鹏阳, 魏长春, 侯国付, 张德坤, 许盛之, 王广才, 赵颖, 袁明鉴, 张晓丹. 基于N型纳米晶硅氧电子注入层的钙钛矿发光二极管. 物理学报, 2019, 68(12): 128103. doi: 10.7498/aps.68.20190258
    [10] 赵国栋, 杨亚利, 任伟. 钙钛矿型氧化物非常规铁电研究进展. 物理学报, 2018, 67(15): 157504. doi: 10.7498/aps.67.20180936
    [11] 赵润, 杨浩. 多铁性钙钛矿薄膜的氧空位调控研究进展. 物理学报, 2018, 67(15): 156101. doi: 10.7498/aps.67.20181028
    [12] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究. 物理学报, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [13] 张召富, 耿朝晖, 王鹏, 胡耀乔, 郑宇斐, 周铁戈. 5d过渡金属原子掺杂氮化硼纳米管的第一性原理计算. 物理学报, 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [14] 张召富, 周铁戈, 左旭. 氧、硫掺杂六方氮化硼单层的第一性原理计算. 物理学报, 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [15] 王晓中, 林理彬, 何捷, 陈军. 第一性原理方法研究He掺杂Al晶界力学性质. 物理学报, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [16] 李荣, 罗小玲, 梁国明, 付文升. 掺杂Fe对VH2解氢性能影响的第一性原理研究. 物理学报, 2011, 60(11): 117105. doi: 10.7498/aps.60.117105
    [17] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [18] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [19] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算. 物理学报, 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
    [20] 向 军, 李莉萍, 苏文辉. 钙钛矿型氧离子导体KNb1-xMgxO3-δ的制备和表征. 物理学报, 2003, 52(6): 1474-1478. doi: 10.7498/aps.52.1474
计量
  • 文章访问数:  10196
  • PDF下载量:  144
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-18
  • 修回日期:  2019-05-18
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-20

/

返回文章
返回