搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钡作为掺杂元素调控铅基钙钛矿材料的毒性和光电特性

王雪婷 付钰豪 那广仁 李红东 张立军

引用本文:
Citation:

钡作为掺杂元素调控铅基钙钛矿材料的毒性和光电特性

王雪婷, 付钰豪, 那广仁, 李红东, 张立军

Barium as doping element tuning both toxicity and optoelectric properties of lead-based halide perovskites

Wang Xue-Ting, Fu Yu-Hao, Na Guang-Ren, Li Hong-Dong, Zhang Li-Jun
PDF
HTML
导出引用
  • 近年来, 有机-无机杂化卤化物钙钛矿材料(ABX3)由于具有优异的光电性质, 受到了材料、能源等领域的广泛关注. 但是, 卤化物钙钛矿存在两个明显阻碍其商业化应用的问题: 热稳定性差和含有有毒的铅(Pb)元素. 相比于有机-无机杂化卤化物钙钛矿, 全无机卤化物钙钛矿通常拥有更好的热稳定性. 同时, 采用一些无毒的元素部分替代B位的Pb, 可以在保持优异光电特性的同时减小材料的毒性. 本文结合无序合金结构搜索方法和第一性原理计算, 系统研究了Ba掺杂CsPbX3 (X = Cl, Br, I)钙钛矿体系的热稳定性和光电特性. 计算结果显示, 只有在高Ba浓度时, 可以在室温下形成无序固溶体. 由于Ba和Pb的离子半径和电负性等物理化学性质存在显著差异, 随着Ba掺杂浓度的增加, 带隙和载流子有效质量都呈现上升趋势, 且带隙具有很宽的调节范围. 因此, 我们预测高Ba掺杂浓度的CsPbX3 (X = Cl, Br, I)钙钛矿体系在短波段(如紫外或近紫外光)发光二极管或辐射探测器等领域具有潜在的应用价值.
    Organic-inorganic halide perovskites ABX3 (A = CH3NH3, HC(NH2)2; B = Pb; X = Cl, Br, I) have recently attracted increasing attention due to their advanced optoelectronic properties. However, the poor stability and toxicity of organic lead halogen perovskites are still a major challenge for deploying the outdoor solar cells. Element substitution is a simple and effective strategy to solve these problems. For example, the substitution of the I ions with Cl and Br has been regarded as a reliable method to improve the device stability. A-site engineering, i.e., replacing organic ions with inorganic cations (such as Cs+, Rb+), has also been reported. The B-site alloying approach has been demonstrated with Zn, Sr, Sn, etc. Inorganic halide perovskites can be synthesized by the low-cost solution spin-coating method and have similar optoelectronic properties and improved stability to their organic counterparts. Here in this paper, we report a comprehensive study of the alloyed perovskite CsPb1–xBaxX3 (X = Cl, Br, I) by combining the disorder alloy structure search method with first-principles energy calculations. We find that it is not easy to dope barium into the perovskite lattice when Ba concentration is low and the stable disordered solid solution can exist in the high Ba concentration case. Carrier effective mass and bandgap increase with the increase of Ba concentration and the bandgap change range is wide, owing to the difference in both electronegativity and ionic radius between Pb and Ba. After inducing Ba into CsPb1–xBaxX3 (X = Cl, Br, I), the higher electron concentration on the I sites also enhances the Coulomb interaction of the Pb—I bonds. Moreover, the electrons and holes tend to be located on Pb sites, and this may give rise to the formation of local potential wells, which would further induce the large lattice deformation to accommodate the self-trapped excitons. Especially, CsPbI3-Pnma perovskite is metastable in the ambient environment with a suitable photon absorption threshold. The CsPb1–xBaxI3 can be used as a capping layer on CsPbI3 in solar cells, thereby significantly improving the power conversion efficiency and long-term stability. Overall, the alloyed perovskite CsPb1–xBaxX3 (X = Cl, Br, I) with high Ba concentration can be stable and less-toxic, and they can be used in short wave light-emitting diodes, radiation detectors or other fields because of their large bandgaps (> 2.8 eV).
      通信作者: 李红东, hdli@jlu.edu.cn ; 张立军, lijun_zhang@jlu.edu.cn
    • 基金项目: 国家自然科学基金优秀青年基金(批准号: 61722403)资助的课题.
      Corresponding author: Li Hong-Dong, hdli@jlu.edu.cn ; Zhang Li-Jun, lijun_zhang@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61722403).
    [1]

    Bell L E 2008 Science 321 1457Google Scholar

    [2]

    Zou C, Zhao Q, Zhang G, Xiong B 2016 Natural Gas Industry B 3 1Google Scholar

    [3]

    Lenzen M 2008 Energy Conversion and Management 49 2178Google Scholar

    [4]

    Polman A, Knight M, Garnett E C, Ehrler B, Sinke W C 2016 Science 352 aad4424Google Scholar

    [5]

    Milan P, Wächter M, Peinke J 2013 Phys. Rev. Lett. 110 138701Google Scholar

    [6]

    Lewis N S 2007 Science 315 798Google Scholar

    [7]

    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J 2015 Science 347 967Google Scholar

    [8]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Gratzel M, Mhaisalkar S, Sum T C 2013 Science 342 344Google Scholar

    [9]

    Han Q, Bae S H, Sun P, Hsieh Y T, Yang Y M, Rim Y S, Zhao H, Chen Q, Shi W, Li G, Yang Y 2016 Adv. Mater. 28 2253Google Scholar

    [10]

    Chen H, Xiang S, Li W, Liu H, Zhu L, Yang S 2018 Solar RRL 2 1700188Google Scholar

    [11]

    Shang M H, Zhang J, Zhang P, Yang Z, Zheng J, Haque M A, Yang W, Wei S H, Wu T 2019 J. Phys. Chem. Lett. 10 59Google Scholar

    [12]

    Huang, Y, Sun Q D, Xu W, He Y, Yin W J 2017 Acta Phys.-Chim. Sin. 33 1730

    [13]

    Qin X, Zhao Z, Wang Y, Wu J, Jiang Q, You J 2017 J. Semicond. 38 011002Google Scholar

    [14]

    Linaburg M R, McClure E T, Majher J D, Woodward P M 2017 Chem. Mater. 29 3507Google Scholar

    [15]

    Wu M C, Chen W C, Chan S H, Su W F 2018 Appl. Surf. Sci. 429 9Google Scholar

    [16]

    Lau C F J, Zhang M, Deng X, Zheng J, Bing J, Ma Q, Kim J, Hu L, Green M A, Huang S, Ho-Baillie A 2017 ACS Energy Lett. 2 2319Google Scholar

    [17]

    Navas J, Sánchez-Coronilla A, Gallardo J J, Cruz Hernández N, Piñero J C, Alcántara R, Fernández-Lorenzo C, De los Santos D M, Aguilar T, Martín-Calleja J 2015 Nanoscale 7 6216Google Scholar

    [18]

    Li F, Xia Z, Gong Y, Gu L, Liu Q 2017 J. Mater. Chem. C 5 9281Google Scholar

    [19]

    Bechtel J S, van der Ven A 2018 Phys. Rev. Mater. 2 045401Google Scholar

    [20]

    Fu Y, Rea M T, Chen J, Morrow D J, Hautzinger M P, Zhao Y, Pan D, Manger L H, Wright J C, Goldsmith R H, Jin S 2017 Chem. Mater. 29 8385Google Scholar

    [21]

    Wang P, Zhang X, Zhou Y, Jiang Q, Ye Q, Chu Z, Li X, Yang X, Yin Z, You J 2018 Nat. Commun. 9 2225Google Scholar

    [22]

    Ju M G, Dai J, Ma L, Zeng X C 2017 J. Am. Chem. Soc. 139 8038Google Scholar

    [23]

    Hao F, Stoumpos C C, Cao D H, Chang R P H, Kanatzidis M G 2014 Nature Photonics 8 489Google Scholar

    [24]

    Swarnkar A, Mir W J, Nag A 2018 ACS Energy Lett. 3 286Google Scholar

    [25]

    Xiang W, Wang Z, Kubicki D J, Tress W, Luo J, Prochowicz D, Akin S, Emsley L, Zhou J, Dietler G, Grätzel M, Hagfeldt A 2019 Joule 3 205Google Scholar

    [26]

    Pazoki M, Jacobsson T J, Hagfeldt A, Boschloo G, Edvinsson T 2016 Phys. Rev. B 93 144105Google Scholar

    [27]

    Huang Q, Zou Y, Bourelle S A, Zhai T, Wu T, Tan Y, Li Y, Li J, Duhm S, Song T, Wang L, Deschler F, Sun B 2019 Nanoscale Horizons DOI: 10.1039.C9NH00066F

    [28]

    Kumar A, Balasubramaniam K R, Kangsabanik J, Vikram, Alam A 2016 Phys. Rev. B 94 180105Google Scholar

    [29]

    Song J, Li J, Li X, Xu L, Dong Y, Zeng H 2015 Adv. Mater. 27 7162Google Scholar

    [30]

    Li X, Wu Y, Zhang S, Cai B, Gu Y, Song J, Zeng H 2016 Adv. Funct. Mater. 26 2435Google Scholar

    [31]

    van de Walle A, Tiwary P, de Jong M, Olmsted D L, Asta M, Dick A, Shin D, Wang Y, Chen L Q, Liu Z K 2013 Calphad 42 13Google Scholar

    [32]

    Hass K C, Davis L C, Zunger A 1990 Phys. Rev. B 42 3757Google Scholar

    [33]

    Jiang C, Stanek C R, Sickafus K E, Uberuaga B P 2009 Phys. Rev. B 79 104203Google Scholar

    [34]

    Shin D, van de Walle A, Wang Y, Liu Z K 2007 Phys. Rev. B 76 144204Google Scholar

    [35]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [36]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [37]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [38]

    Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar

    [39]

    Hu J, Alicea J, Wu R, Franz M 2012 Phys. Rev. Lett. 109 266801Google Scholar

    [40]

    Feng Y, Ding H C, Du Y, Wan X, Wang B, Savrasov S Y, Duan C G 2014 J. Appl. Phys. 115 233901Google Scholar

    [41]

    Yun S, Zhou X, Even J, Hagfeldt A 2017 Angew. Chem. Int. Ed. 56 15806Google Scholar

    [42]

    Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E 2006 J. Chem. Phys. 125 224106Google Scholar

    [43]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [44]

    Medeiros P V C, Stafström S, Björk J 2014 Phys. Rev. B 89 041407Google Scholar

    [45]

    Medeiros P V C, Tsirkin S S, Stafström S, Björk J 2015 Phys. Rev. B 91 041116Google Scholar

    [46]

    Pauling L 1932 J. Am. Chem. Soc. 54 3570Google Scholar

    [47]

    Yu J, Kong J, Hao W, Guo X, He H, Leow W R, Liu Z, Cai P, Qian G, Li S, Chen X, Chen X 2019 Adv. Mater. 31 1806385

    [48]

    Tanaka K, Kondo T 2003 Sci. Technol. Adv. Mater. 4 599Google Scholar

    [49]

    Lee K J, Turedi B, Sinatra L, Zhumekenov A A, Maity P, Dursun I, Naphade R, Merdad N, Alsalloum A, Oh S, Wehbe N, Hedhili M N, Kang C H, Subedi R C, Cho N, Kim J S, Ooi B S, Mohammed O F, Bakr O M 2019 Nano Lett. 19 3535

    [50]

    Jiang Y, Qin C, Cui M, He T, Liu K, Huang Y, Luo M, Zhang L, Xu H, Wei J, Liu Z, Wang H, Kim G H, Yuan M, Chen J 2019 Nat. Commun. 10 1868Google Scholar

    [51]

    Zhang S, Yi C, Wang N, Sun Y, Zou W, Wei Y, Cao Y, Miao Y, Li R, Yin Y, Zhao N, Wang J, Huang W 2017 Adv. Mater. 29 1606600Google Scholar

    [52]

    Blancon J C, Stier A V, Tsai H, Nie W, Stoumpos C C, Traoré B, Pedesseau L, Kepenekian M, Katsutani F, Noe G T, Kono J, Tretiak S, Crooker S A, Katan C, Kanatzidis M G, Crochet J J, Evan J, Mohite A D 2018 Nat. Commun. 9 2254Google Scholar

    [53]

    Kulbak M, Cahen D, Hodes G 2015 J. Phys. Chem. Lett. 6 2452Google Scholar

  • 图 1  CsPb1-xBaxX3 (X = Cl, Br, I; x = 0, 0.25, 0.5, 0.75, 1)合金钙钛矿体系的(a)晶体结构示意图, (b)计算得到的形成能

    Fig. 1.  (a) Schematic diagram of crystal structure, (b) density functional theory-calculated formation energies of the alloyed perovskite CsPb1-xBaxX3 (X = Cl, Br, I; x = 0, 0.25, 0.5, 0.75, 1).

    图 2  计算得到的CsPb1–xBaxI3合金钙钛矿体系的能带结构 (a) x = 0%; (b) x = 25%; (c) x = 50%; (d) x = 75%; (e) x = 100%; 其中, 图(b)−(d)是通过能带展开技术得到的, 彩色刻度尺代表指定波矢下穿过能量区间的原胞能带数目

    Fig. 2.  Calculated band structures of the alloyed perovskite CsPb1–xBaxI3, x = (a) 0%, (b) 25%, (c) 50%, (d) 75%, (e) 100%; panels (b)−(d) are obtained by band unfolding technique. The color scale represents the number of the primitive cell bands crossing the energy interval at a given primitive wave vector.

    图 3  计算得到的CsPb1–xBaxX3 (X = Cl, Br, I; x = 0, 0.25, 0.5, 0.75, 1)合金钙钛矿体系的带隙变化规律

    Fig. 3.  Calculated band gaps of the alloyed perovskite CsPb1–xBaxX3 (X = Cl, Br, I; x = 0, 0.25, 0.5, 0.75, 1) varied with Ba concentration.

    图 4  计算得到的CsPb1–xBaxI3 (x = 0, 0.25, 0.5, 0.75, 1)合金钙钛矿体系的(a)−(e)投影态密度, (f)总态密度

    Fig. 4.  Calculated (a)−(e) Atomic-orbital-projected density of states (PDOS), (f) total density of states (TDOS) of the alloyed perovskite CsPb1–xBaxI3 (x = 0, 0.25, 0.5, 0.75, 1).

    图 5  计算得到的CsPb1-xBaxI3合金钙钛矿体系的部分电荷密度分布图样 (a), (f) 0%; (b), (g) 25%; (c), (h) 50%; (d), (i) 75%; (e), (j) 100%

    Fig. 5.  Calculated partial charge distribution patterns of the alloyed perovskite CsPb1-xBaxI3: (a), (f) 0%; (b), (g) 25%; (c), (h) 50%; (d), (i) 75%; (e), (j) 100%.

    图 6  计算得到的CsPbX3和CsPb0.25Ba0.75X3 (X = Cl, Br, I)合金钙钛矿的光吸收谱

    Fig. 6.  Calculated photo absorption spectra of the perovskite CsPbX3 and CsPb0.25Ba0.75X3 (X = Cl, Br, I).

    表 1  CsPbX3 (X = Cl, Br, I)的晶格常数[14,20]和带隙的理论计算值与实验值的对比

    Table 1.  Experimental lattice parameters and band gaps in comparison with the computational (this work) results for CsPbX3 (X = Cl, Br, I).

    晶格常数/Å 理论[实验] 带隙/eV
    a b c PBE HSE HSE + SOC 实验
    CsPbCl3 7.993 [7.902] 11.365 [11.248] 7.953 [7.899] 2.42 3.19 2.08 2.91[14]
    CsPbBr3 8.388 [8.252] 11.978 [11.753] 8.353 [8.203] 1.99 2.67 1.57 2.27[14]
    CsPbI3 9.021 [8.845] 12.768 [12.524] 8.760 [8.612] 1.74 2.32 1.23 1.75[20]
    下载: 导出CSV
  • [1]

    Bell L E 2008 Science 321 1457Google Scholar

    [2]

    Zou C, Zhao Q, Zhang G, Xiong B 2016 Natural Gas Industry B 3 1Google Scholar

    [3]

    Lenzen M 2008 Energy Conversion and Management 49 2178Google Scholar

    [4]

    Polman A, Knight M, Garnett E C, Ehrler B, Sinke W C 2016 Science 352 aad4424Google Scholar

    [5]

    Milan P, Wächter M, Peinke J 2013 Phys. Rev. Lett. 110 138701Google Scholar

    [6]

    Lewis N S 2007 Science 315 798Google Scholar

    [7]

    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J 2015 Science 347 967Google Scholar

    [8]

    Xing G, Mathews N, Sun S, Lim S S, Lam Y M, Gratzel M, Mhaisalkar S, Sum T C 2013 Science 342 344Google Scholar

    [9]

    Han Q, Bae S H, Sun P, Hsieh Y T, Yang Y M, Rim Y S, Zhao H, Chen Q, Shi W, Li G, Yang Y 2016 Adv. Mater. 28 2253Google Scholar

    [10]

    Chen H, Xiang S, Li W, Liu H, Zhu L, Yang S 2018 Solar RRL 2 1700188Google Scholar

    [11]

    Shang M H, Zhang J, Zhang P, Yang Z, Zheng J, Haque M A, Yang W, Wei S H, Wu T 2019 J. Phys. Chem. Lett. 10 59Google Scholar

    [12]

    Huang, Y, Sun Q D, Xu W, He Y, Yin W J 2017 Acta Phys.-Chim. Sin. 33 1730

    [13]

    Qin X, Zhao Z, Wang Y, Wu J, Jiang Q, You J 2017 J. Semicond. 38 011002Google Scholar

    [14]

    Linaburg M R, McClure E T, Majher J D, Woodward P M 2017 Chem. Mater. 29 3507Google Scholar

    [15]

    Wu M C, Chen W C, Chan S H, Su W F 2018 Appl. Surf. Sci. 429 9Google Scholar

    [16]

    Lau C F J, Zhang M, Deng X, Zheng J, Bing J, Ma Q, Kim J, Hu L, Green M A, Huang S, Ho-Baillie A 2017 ACS Energy Lett. 2 2319Google Scholar

    [17]

    Navas J, Sánchez-Coronilla A, Gallardo J J, Cruz Hernández N, Piñero J C, Alcántara R, Fernández-Lorenzo C, De los Santos D M, Aguilar T, Martín-Calleja J 2015 Nanoscale 7 6216Google Scholar

    [18]

    Li F, Xia Z, Gong Y, Gu L, Liu Q 2017 J. Mater. Chem. C 5 9281Google Scholar

    [19]

    Bechtel J S, van der Ven A 2018 Phys. Rev. Mater. 2 045401Google Scholar

    [20]

    Fu Y, Rea M T, Chen J, Morrow D J, Hautzinger M P, Zhao Y, Pan D, Manger L H, Wright J C, Goldsmith R H, Jin S 2017 Chem. Mater. 29 8385Google Scholar

    [21]

    Wang P, Zhang X, Zhou Y, Jiang Q, Ye Q, Chu Z, Li X, Yang X, Yin Z, You J 2018 Nat. Commun. 9 2225Google Scholar

    [22]

    Ju M G, Dai J, Ma L, Zeng X C 2017 J. Am. Chem. Soc. 139 8038Google Scholar

    [23]

    Hao F, Stoumpos C C, Cao D H, Chang R P H, Kanatzidis M G 2014 Nature Photonics 8 489Google Scholar

    [24]

    Swarnkar A, Mir W J, Nag A 2018 ACS Energy Lett. 3 286Google Scholar

    [25]

    Xiang W, Wang Z, Kubicki D J, Tress W, Luo J, Prochowicz D, Akin S, Emsley L, Zhou J, Dietler G, Grätzel M, Hagfeldt A 2019 Joule 3 205Google Scholar

    [26]

    Pazoki M, Jacobsson T J, Hagfeldt A, Boschloo G, Edvinsson T 2016 Phys. Rev. B 93 144105Google Scholar

    [27]

    Huang Q, Zou Y, Bourelle S A, Zhai T, Wu T, Tan Y, Li Y, Li J, Duhm S, Song T, Wang L, Deschler F, Sun B 2019 Nanoscale Horizons DOI: 10.1039.C9NH00066F

    [28]

    Kumar A, Balasubramaniam K R, Kangsabanik J, Vikram, Alam A 2016 Phys. Rev. B 94 180105Google Scholar

    [29]

    Song J, Li J, Li X, Xu L, Dong Y, Zeng H 2015 Adv. Mater. 27 7162Google Scholar

    [30]

    Li X, Wu Y, Zhang S, Cai B, Gu Y, Song J, Zeng H 2016 Adv. Funct. Mater. 26 2435Google Scholar

    [31]

    van de Walle A, Tiwary P, de Jong M, Olmsted D L, Asta M, Dick A, Shin D, Wang Y, Chen L Q, Liu Z K 2013 Calphad 42 13Google Scholar

    [32]

    Hass K C, Davis L C, Zunger A 1990 Phys. Rev. B 42 3757Google Scholar

    [33]

    Jiang C, Stanek C R, Sickafus K E, Uberuaga B P 2009 Phys. Rev. B 79 104203Google Scholar

    [34]

    Shin D, van de Walle A, Wang Y, Liu Z K 2007 Phys. Rev. B 76 144204Google Scholar

    [35]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [36]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [37]

    Grimme S 2006 J. Comput. Chem. 27 1787Google Scholar

    [38]

    Gajdoš M, Hummer K, Kresse G, Furthmüller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar

    [39]

    Hu J, Alicea J, Wu R, Franz M 2012 Phys. Rev. Lett. 109 266801Google Scholar

    [40]

    Feng Y, Ding H C, Du Y, Wan X, Wang B, Savrasov S Y, Duan C G 2014 J. Appl. Phys. 115 233901Google Scholar

    [41]

    Yun S, Zhou X, Even J, Hagfeldt A 2017 Angew. Chem. Int. Ed. 56 15806Google Scholar

    [42]

    Krukau A V, Vydrov O A, Izmaylov A F, Scuseria G E 2006 J. Chem. Phys. 125 224106Google Scholar

    [43]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [44]

    Medeiros P V C, Stafström S, Björk J 2014 Phys. Rev. B 89 041407Google Scholar

    [45]

    Medeiros P V C, Tsirkin S S, Stafström S, Björk J 2015 Phys. Rev. B 91 041116Google Scholar

    [46]

    Pauling L 1932 J. Am. Chem. Soc. 54 3570Google Scholar

    [47]

    Yu J, Kong J, Hao W, Guo X, He H, Leow W R, Liu Z, Cai P, Qian G, Li S, Chen X, Chen X 2019 Adv. Mater. 31 1806385

    [48]

    Tanaka K, Kondo T 2003 Sci. Technol. Adv. Mater. 4 599Google Scholar

    [49]

    Lee K J, Turedi B, Sinatra L, Zhumekenov A A, Maity P, Dursun I, Naphade R, Merdad N, Alsalloum A, Oh S, Wehbe N, Hedhili M N, Kang C H, Subedi R C, Cho N, Kim J S, Ooi B S, Mohammed O F, Bakr O M 2019 Nano Lett. 19 3535

    [50]

    Jiang Y, Qin C, Cui M, He T, Liu K, Huang Y, Luo M, Zhang L, Xu H, Wei J, Liu Z, Wang H, Kim G H, Yuan M, Chen J 2019 Nat. Commun. 10 1868Google Scholar

    [51]

    Zhang S, Yi C, Wang N, Sun Y, Zou W, Wei Y, Cao Y, Miao Y, Li R, Yin Y, Zhao N, Wang J, Huang W 2017 Adv. Mater. 29 1606600Google Scholar

    [52]

    Blancon J C, Stier A V, Tsai H, Nie W, Stoumpos C C, Traoré B, Pedesseau L, Kepenekian M, Katsutani F, Noe G T, Kono J, Tretiak S, Crooker S A, Katan C, Kanatzidis M G, Crochet J J, Evan J, Mohite A D 2018 Nat. Commun. 9 2254Google Scholar

    [53]

    Kulbak M, Cahen D, Hodes G 2015 J. Phys. Chem. Lett. 6 2452Google Scholar

  • [1] 严志, 方诚, 王芳, 许小红. 过渡金属元素掺杂对SmCo3合金结构和磁性能影响的第一性原理计算. 物理学报, 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [2] 汪帆帆, 陈栋, 袁军, 张珠峰, 姜涛, 周骏. Sb/SnC范德瓦耳斯异质结光电性质的层间转角依赖性及其应用. 物理学报, 2024, 73(22): 227101. doi: 10.7498/aps.73.20241138
    [3] 郑鹏飞, 柳志旭, 王超, 刘卫芳. 基团替代调控无铅有机钙钛矿铁电体的极化和压电特性的第一性原理研究. 物理学报, 2024, 73(12): 126202. doi: 10.7498/aps.73.20240385
    [4] 丁莉洁, 张笑天, 郭欣宜, 薛阳, 林常青, 黄丹. SrSnO3作为透明导电氧化物的第一性原理研究. 物理学报, 2023, 72(1): 013101. doi: 10.7498/aps.72.20221544
    [5] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算. 物理学报, 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [6] 胡前库, 秦双红, 吴庆华, 李丹丹, 张斌, 袁文凤, 王李波, 周爱国. 三元Nb系和Ta系硼碳化物稳定性和物理性能的第一性原理研究. 物理学报, 2020, 69(11): 116201. doi: 10.7498/aps.69.20200234
    [7] 罗雄, 孟威威, 陈国旭佳, 管晓溪, 贾双凤, 郑赫, 王建波. 二维Nb2SiTe4基化合物稳定性、电子结构和光学性质的第一性原理研究. 物理学报, 2020, 69(19): 197102. doi: 10.7498/aps.69.20200848
    [8] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究. 物理学报, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [9] 张淑亭, 孙志, 赵磊. 石墨烯纳米片大自旋特性第一性原理研究. 物理学报, 2018, 67(18): 187102. doi: 10.7498/aps.67.20180867
    [10] 贾婉丽, 周淼, 王馨梅, 纪卫莉. Fe掺杂GaN光电特性的第一性原理研究. 物理学报, 2018, 67(10): 107102. doi: 10.7498/aps.67.20172290
    [11] 叶红军, 王大威, 姜志军, 成晟, 魏晓勇. 钙钛矿结构SnTiO3铁电相变的第一性原理研究. 物理学报, 2016, 65(23): 237101. doi: 10.7498/aps.65.237101
    [12] 刘越颖, 周铁戈, 路远, 左旭. 第一主族元素(Li,Na,K)和第二主族元素(Be,Mg,Ca) 掺杂二维六方氮化硼单层的第一性原理计算研究. 物理学报, 2012, 61(23): 236301. doi: 10.7498/aps.61.236301
    [13] 杨天兴, 成强, 许红斌, 王渊旭. 几种三元过渡金属碳化物弹性及电子结构的第一性原理研究. 物理学报, 2010, 59(7): 4919-4924. doi: 10.7498/aps.59.4919
    [14] 张学军, 高攀, 柳清菊. 氮铁共掺锐钛矿相TiO2电子结构和光学性质的第一性原理研究. 物理学报, 2010, 59(7): 4930-4938. doi: 10.7498/aps.59.4930
    [15] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [16] 胡方, 明星, 范厚刚, 陈岗, 王春忠, 魏英进, 黄祖飞. 梯形化合物NaV2O4F电子结构的第一性原理研究. 物理学报, 2009, 58(2): 1173-1178. doi: 10.7498/aps.58.1173
    [17] 宋庆功, 王延峰, 宋庆龙, 康建海, 褚 勇. 插层化合物Ag1/4TiSe2电子结构的第一性原理研究. 物理学报, 2008, 57(12): 7827-7832. doi: 10.7498/aps.57.7827
    [18] 明 星, 范厚刚, 胡 方, 王春忠, 孟 醒, 黄祖飞, 陈 岗. 自旋-Peierls化合物GeCuO3电子结构的第一性原理研究. 物理学报, 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
    [19] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算. 物理学报, 2008, 57(1): 438-442. doi: 10.7498/aps.57.438
    [20] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究. 物理学报, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
计量
  • 文章访问数:  13819
  • PDF下载量:  317
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-23
  • 修回日期:  2019-06-12
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-05

/

返回文章
返回