搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相对论强激光与近临界密度等离子体相互作用的质子成像

李曜均 岳东宁 邓彦卿 赵旭 魏文青 葛绪雷 远晓辉 刘峰 陈黎明

引用本文:
Citation:

相对论强激光与近临界密度等离子体相互作用的质子成像

李曜均, 岳东宁, 邓彦卿, 赵旭, 魏文青, 葛绪雷, 远晓辉, 刘峰, 陈黎明

Proton imaging of relativistic laser-produced near-critical-density plasma

Li Yao-Jun, Yue Dong-Ning, Deng Yan-Qing, Zhao Xu, Wei Wen-Qing, Ge Xu-Lei, Yuan Xiao-Hui, Liu Feng, Chen Li-Ming
PDF
HTML
导出引用
  • 近临界密度是激光等离子体相互作用中能量吸收和高能电子产生的重要等离子体参数区间. 利用激光加速产生的质子束作为电磁场探针, 研究了超强激光与近临界密度等离子体相互作用产生的等离子体结构及其时间演化. 实验发现, 初始均匀分布的质子束穿过近临界密度等离子体后分裂为两个斑. 两个质子束斑的间距随着作用时间先增大后减小. 并且两个束斑呈不对称分布. 分析认为, 幅度约为109 V/m的不对称分布瞬变电场是产生质子束偏折和分裂的主要原因. 粒子模拟的结果也验证了这一解释. 该研究对激光尾场电子加速、离子加速、惯性约束聚变快点火方案研究等有一定的参考价值.
    When ultrashort pulse laser interacts with near-critical-density plasma, extremely strong transient electromagnetic field will generate a great variety of nonlinear phenomena, such as efficient pulse absorption, magnetic self-channeling, nonlinear coherent structure, and electron and ion acceleration. It is of great significance to make a profound study of these physical processes for studying the laser-plasma interaction. Here in this work, we investigate the near-critical-density plasma structure and its temporal evolution by using proton radiography. The plasma is generated by the interaction of ultra-intense femtosecond laser (I $\sim $ 3.6 × 1018 W/cm2) with high-density gas-jet target, which can produce plasma with electron density ne $ \sim$ 0.7nc (here, nc is the near-critical-density) for 800 nm laser. The proton beam is produced by the interaction of another ultra-intense femtosecond laser with stainless steel foil target. In the experiment, the proton beam is split into two asymmetric spots. On the one hand, the distance between two spots first increases rapidly and decreases slowly as time goes by. On the other hand, the size of proton beam spot on the right side is obviously lager than the one on the left side. The modification of proton beam profile indicates that a transient electric field with a maximum amplitude of 109 V/m is produced when ultrashort laser pulse interacts with the plasma. Besides, the electric field in the direction of laser propagation axis is stronger than that in the opposite direction. When the proton beam goes through the laser-plasma interaction area, most of the protons enter into the electric field in the direction of laser propagation axis, only a small number of protons enter into the electric field in the opposite direction, resulting in the fact that the proton beam is split into two asymmetric spots. The space-charge field in the plasma is induced by the laser ponderomotive force which expels the electrons piled up into a step-like profile. This field can be sustained for a long time, as the ions expand slowly because of the coulomb repulsion between ions, and the hot electrons continue to move forward with energy of a few MeV. At the end, these expanded ions gradually recombine with the reflowed electrons, causing the space-charge field to weaken until it disappears eventually. As a result, the deflection of the proton beam by the electric field in the plasma is also weakened, so the distance between proton beam splitting spots is correspondingly reduced. The hypothesis is justified by the particle-in-cell simulations. The results may have important implications in laser wake-field electron acceleration, ion acceleration and fast ignition scheme to inertial confinement fusion.
      通信作者: 远晓辉, xiaohui.yuan@sjtu.edu.cn ; 陈黎明, lmchen@iphy.ac.cn
    • 基金项目: 中国科学院A类战略性先导科技专项(批准号: XDA17040504)资助的课题.
      Corresponding author: Yuan Xiao-Hui, xiaohui.yuan@sjtu.edu.cn ; Chen Li-Ming, lmchen@iphy.ac.cn
    • Funds: Project supported by the Class A Strategic Pilot Science and Technology Project of Chinese Academy of Sciences (Grant No. XDA17040504).
    [1]

    Wilks S C, Kruer W, Tabak M, Langdon A 1992 Phys. Rev. Lett. 69 1383Google Scholar

    [2]

    Pukhov A, Meyer-ter-Vehn J 1996 Phys. Rev. Lett. 76 3975Google Scholar

    [3]

    Bulanov S V, Lontano M, Esirkepov T, Pegoraro F, Pukhov A 1996 Phys. Rev. Lett. 76 3562Google Scholar

    [4]

    Bulanov S V, Esirkepov T, Naumova N, Pegoraro F, Vshivkov V 1999 Phys. Rev. Lett. 82 3440Google Scholar

    [5]

    Esirkepov T, Nishihara K, Bulanov S, Pegoraro F 2002 Phys. Rev. Lett. 89 275002Google Scholar

    [6]

    Mori W B, Joshi C, Dawson J, Forslund D, Kindel J 1988 Phys. Rev. Lett. 60 1298Google Scholar

    [7]

    Li G, Yan R, Ren C, Wang T L, Tonge J, Mori W 2008 Phys. Rev. Lett. 100 125002Google Scholar

    [8]

    Nakamura T, Mima K 2008 Phys. Rev. Lett. 100 205006Google Scholar

    [9]

    Shaw J L, Lemos N, Amorim L D, Vafaeinajafabadi N, Marsh K A, Tsung F S 2017 Phys. Rev. Lett. 118 064801Google Scholar

    [10]

    王剑, 蔡达锋, 赵宗清, 谷渝秋 2017 物理学报 66 075203Google Scholar

    Wang J, Cai D F, Zhao Z Q, Gu Y Q 2017 Acta Phys. Sin. 66 075203Google Scholar

    [11]

    Nakamura T, Bulanov S, Esirkepov T, Kando M 2010 Phys. Rev. Lett. 105 135002Google Scholar

    [12]

    Bulanov S V, Esirkepov T Z, Khoroshkov V S, Kunetsov A V, Pegoraro F 2002 Phys. Lett. A 299 240Google Scholar

    [13]

    师绍猛, 陈荣昌, 薛艳玲, 任玉琦, 杜国浩, 邓彪, 谢红兰, 肖体乔 2008 物理学报 57 6319Google Scholar

    Shi S M, Chen R C, Xue Y L, Ren Y Q, Du G H, Deng B, Xie H L, Xiao T Q 2008 Acta Phys. Sin. 57 6319Google Scholar

    [14]

    Borghesi M, Schiavi A, Campbell D H, Haines M G, Willi O, MacKinnon A J, Gizzi L A, Galimberti M, Clarke R J, Ruhl H 2001 Plasma Phys. Controlled Fusion 43 A267

    [15]

    Borghesi M, Sarri G, Cecchetti C A, Kourakis I, Hoarty D, Stevenson R M, James S, Brown C D, Hobbs P, Lockyear J, Morton J, Willi O, Jung R, Dieckmann M E 2010 Laser Part. Beams 28 277Google Scholar

    [16]

    Borghesi M, MacKinnon A, Barringer L, Gaillard R, Gizzi L, Meyer C, Willi O, Pukhov A, Meyer-ter-Vehn J 1997 Phys. Rev. Lett. 78 879Google Scholar

    [17]

    Yogo A, Daido H, Bulanov S V, Nemoto K, Oishi Y, Nayuki T, Fujii T, Ogura K, Orimo S, Sagisaka A, Ma J L, Esirkepov T Zh, Mori M, Nishiuchi M, Pirozhkov A S, Nakamura S, Noda A, Nagatomo H, Kimura T, Tajima T 2008 Phys. Rev. E 77 016401Google Scholar

    [18]

    Willingale L, Nagel S R, Thomas A G, Bellei C, Clarke R J, Dangor A E, Heathcote R, Kaluza M C, Kamperidis C, Kneip S, Krushelnick K, Lopes N, Mangles S P, Nazarov W, Nilson P M, Najmudin Z 2009 Phys. Rev. Lett. 102 125002Google Scholar

    [19]

    Okihara S, Esirkepov T Zh, Nagai K, Shimizu S, Sato F, Hashida M, Iida T, Nishihara K, Norimatsu T, Izawa Y, Sakabe S 2004 Phys. Rev. E 69 026401Google Scholar

    [20]

    Palmer C A, Dover N P, Pogorelsky I, Babzien M, Dudnikova G I, Ispiriyan M, Polyanskiy M N, Schreiber J, Shkolnikov P, Yakimenko V, Najmudin Z 2011 Phys. Rev. Lett. 106 014801Google Scholar

    [21]

    Haberberger D, Tochitsky S, Fiuza F, Gong C, Fonseca R A, Silva L O, Mori W B, Joshi C 2012 Nat. Phys. 8 95

    [22]

    Sylla F, Flacco A, Kahaly S, Veltcheva M, Lifschitz A, Malka V, d'Humières E, Andriyash I, Tikhonchuk V 2013 Phys. Rev. Lett. 110 085001Google Scholar

    [23]

    Chen S N, Vranic M, Gangolf T, Boella E, Antici P, Bailly-Grandvaux M, Loiseau P, Pepin H, Revet G, Santos J J, Schroer A M, Starodubtsev M, Willi O, Silva L O, d'Humieres E, Fuchs J 2017 Sci. Rep. 7 13505Google Scholar

    [24]

    Mackinnon A J, Patel P K, Town R P, Edwards M J, Phillips T, Lerner S C, Price D W, Hicks D, Key M H, Hatchett S 2004 Rev. Sci. Instrum. 75 3531Google Scholar

    [25]

    Romagnani L, Borghesi M, Cecchetti C A, Kar S, Antici P, Audebert P, Bandhoupadjay S, Ceccherini F, Cowan T, Fuchs J 2008 Laser Part. Beams 26 241Google Scholar

    [26]

    Romagnani L, Bulanov S V, Borghesi M, Audebert P, Gauthier J C, Löwenbruck K, Mackinnon A J, Patel P, Pretzler G, Toncian T, Willi O 2008 Phys. Rev. Lett. 101 025004Google Scholar

    [27]

    Li C K, Séguin F H, Frenje J A, Manuel M, Casey D, Sinenian N, Petrasso R D, Amendt P A, Landen O L, Rygg J R, Town R P J, Betti R, Delettrez J, Knauer J P, Marshall F, Meyerhofer D D, Sangster T C, Shvarts D, Smalyuk V A, Soures J M, Back C A, Kilkenny J D, Nikroo A 2009 Phys. Plasmas 16 056304Google Scholar

    [28]

    Borghesi M, Mackinnon A J, Gaillard R, Willi O, Pukhov A, Meyer-ter-Vehn J 1998 Phys. Rev. Lett. 80 5137Google Scholar

    [29]

    Smyth A G, Sarri G, Vranic M, Amano Y, Doria D, Guillaume E, Habara H, Heathcote R, Hicks G, Najmudin Z, Nakamura H, Norreys P A, Kar S, Silva L O, Tanaka K A, Vieira J, Borghesi M 2016 Phys. Plasmas 23 063121Google Scholar

    [30]

    Li C K, Seguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P, Amendt P A, Hatchett S P, Landen O L, Mackinnon A J, Patel P K, Smalyuk V A, Sangster T C, Knauer J P 2006 Phys. Rev. Lett. 97 135003Google Scholar

    [31]

    Li G, Li S, Ain Q, Gao K, Mirzaie M, Hafz N A M 2019 Phys. Plasmas 26 022306Google Scholar

    [32]

    Fonseca R A, Silva L O, Tsung F S, Decyk V K, Lu W, Ren C 2002 Lect. Notes Comput. Sci. 2331 342Google Scholar

  • 图 1  (a)实验布局图; (b)距离喷口不同高度时的气体密度分布图

    Fig. 1.  (a) Experimental setup; (b) gas density lineout profile at different heights.

    图 2  光学探针与质子探针结果(激光自左向右入射) (a)光学阴影成像; (b)原始质子束斑; (c)打靶3.3 ps后的质子束斑; (d)打靶43.3 ps后的质子束斑; (e)−(g)打靶高度处对应的质子强度图(黄线)

    Fig. 2.  Raw images of optical probe and proton probe: (a) Optical probe result; proton beam spot for (b) no gas, (c) 3.3 ps after interaction, (d) 43.3 ps after interaction; (e)−(g) the corresponding lineout intensity profiles.

    图 3  质子束被等离子体电磁场偏折示意图

    Fig. 3.  Schematic of proton beam deflected by plasma electromagnetic field.

    图 4  等离子体内部电场大小随时间的变化

    Fig. 4.  Internal electric field size of the plasma changes with time.

    图 5  等离子体内部电场分布模型

    Fig. 5.  Model of plasma internal electric field distribution.

    图 6  不同密度等离子体中不同时刻的时间平均的纵向电场强度和电势分布 (a)−(c)最高密度为0.8 × 1021 cm–3; (d)−(f)最高密度为1.2 × 1021 cm–3; (g)−(i)最高密度为1.2 × 1021 cm–3

    Fig. 6.  Averaged longitudinal electric field and potential distributions with times of plasma with different density: (a)−(c) The highest plasma density is 0.8 × 1021 cm–3; (d)−(f) the highest plasma density is 1.0 × 1021 cm–3; (g)−(i) the highest plasma density is 1.2 × 1021 cm–3.

  • [1]

    Wilks S C, Kruer W, Tabak M, Langdon A 1992 Phys. Rev. Lett. 69 1383Google Scholar

    [2]

    Pukhov A, Meyer-ter-Vehn J 1996 Phys. Rev. Lett. 76 3975Google Scholar

    [3]

    Bulanov S V, Lontano M, Esirkepov T, Pegoraro F, Pukhov A 1996 Phys. Rev. Lett. 76 3562Google Scholar

    [4]

    Bulanov S V, Esirkepov T, Naumova N, Pegoraro F, Vshivkov V 1999 Phys. Rev. Lett. 82 3440Google Scholar

    [5]

    Esirkepov T, Nishihara K, Bulanov S, Pegoraro F 2002 Phys. Rev. Lett. 89 275002Google Scholar

    [6]

    Mori W B, Joshi C, Dawson J, Forslund D, Kindel J 1988 Phys. Rev. Lett. 60 1298Google Scholar

    [7]

    Li G, Yan R, Ren C, Wang T L, Tonge J, Mori W 2008 Phys. Rev. Lett. 100 125002Google Scholar

    [8]

    Nakamura T, Mima K 2008 Phys. Rev. Lett. 100 205006Google Scholar

    [9]

    Shaw J L, Lemos N, Amorim L D, Vafaeinajafabadi N, Marsh K A, Tsung F S 2017 Phys. Rev. Lett. 118 064801Google Scholar

    [10]

    王剑, 蔡达锋, 赵宗清, 谷渝秋 2017 物理学报 66 075203Google Scholar

    Wang J, Cai D F, Zhao Z Q, Gu Y Q 2017 Acta Phys. Sin. 66 075203Google Scholar

    [11]

    Nakamura T, Bulanov S, Esirkepov T, Kando M 2010 Phys. Rev. Lett. 105 135002Google Scholar

    [12]

    Bulanov S V, Esirkepov T Z, Khoroshkov V S, Kunetsov A V, Pegoraro F 2002 Phys. Lett. A 299 240Google Scholar

    [13]

    师绍猛, 陈荣昌, 薛艳玲, 任玉琦, 杜国浩, 邓彪, 谢红兰, 肖体乔 2008 物理学报 57 6319Google Scholar

    Shi S M, Chen R C, Xue Y L, Ren Y Q, Du G H, Deng B, Xie H L, Xiao T Q 2008 Acta Phys. Sin. 57 6319Google Scholar

    [14]

    Borghesi M, Schiavi A, Campbell D H, Haines M G, Willi O, MacKinnon A J, Gizzi L A, Galimberti M, Clarke R J, Ruhl H 2001 Plasma Phys. Controlled Fusion 43 A267

    [15]

    Borghesi M, Sarri G, Cecchetti C A, Kourakis I, Hoarty D, Stevenson R M, James S, Brown C D, Hobbs P, Lockyear J, Morton J, Willi O, Jung R, Dieckmann M E 2010 Laser Part. Beams 28 277Google Scholar

    [16]

    Borghesi M, MacKinnon A, Barringer L, Gaillard R, Gizzi L, Meyer C, Willi O, Pukhov A, Meyer-ter-Vehn J 1997 Phys. Rev. Lett. 78 879Google Scholar

    [17]

    Yogo A, Daido H, Bulanov S V, Nemoto K, Oishi Y, Nayuki T, Fujii T, Ogura K, Orimo S, Sagisaka A, Ma J L, Esirkepov T Zh, Mori M, Nishiuchi M, Pirozhkov A S, Nakamura S, Noda A, Nagatomo H, Kimura T, Tajima T 2008 Phys. Rev. E 77 016401Google Scholar

    [18]

    Willingale L, Nagel S R, Thomas A G, Bellei C, Clarke R J, Dangor A E, Heathcote R, Kaluza M C, Kamperidis C, Kneip S, Krushelnick K, Lopes N, Mangles S P, Nazarov W, Nilson P M, Najmudin Z 2009 Phys. Rev. Lett. 102 125002Google Scholar

    [19]

    Okihara S, Esirkepov T Zh, Nagai K, Shimizu S, Sato F, Hashida M, Iida T, Nishihara K, Norimatsu T, Izawa Y, Sakabe S 2004 Phys. Rev. E 69 026401Google Scholar

    [20]

    Palmer C A, Dover N P, Pogorelsky I, Babzien M, Dudnikova G I, Ispiriyan M, Polyanskiy M N, Schreiber J, Shkolnikov P, Yakimenko V, Najmudin Z 2011 Phys. Rev. Lett. 106 014801Google Scholar

    [21]

    Haberberger D, Tochitsky S, Fiuza F, Gong C, Fonseca R A, Silva L O, Mori W B, Joshi C 2012 Nat. Phys. 8 95

    [22]

    Sylla F, Flacco A, Kahaly S, Veltcheva M, Lifschitz A, Malka V, d'Humières E, Andriyash I, Tikhonchuk V 2013 Phys. Rev. Lett. 110 085001Google Scholar

    [23]

    Chen S N, Vranic M, Gangolf T, Boella E, Antici P, Bailly-Grandvaux M, Loiseau P, Pepin H, Revet G, Santos J J, Schroer A M, Starodubtsev M, Willi O, Silva L O, d'Humieres E, Fuchs J 2017 Sci. Rep. 7 13505Google Scholar

    [24]

    Mackinnon A J, Patel P K, Town R P, Edwards M J, Phillips T, Lerner S C, Price D W, Hicks D, Key M H, Hatchett S 2004 Rev. Sci. Instrum. 75 3531Google Scholar

    [25]

    Romagnani L, Borghesi M, Cecchetti C A, Kar S, Antici P, Audebert P, Bandhoupadjay S, Ceccherini F, Cowan T, Fuchs J 2008 Laser Part. Beams 26 241Google Scholar

    [26]

    Romagnani L, Bulanov S V, Borghesi M, Audebert P, Gauthier J C, Löwenbruck K, Mackinnon A J, Patel P, Pretzler G, Toncian T, Willi O 2008 Phys. Rev. Lett. 101 025004Google Scholar

    [27]

    Li C K, Séguin F H, Frenje J A, Manuel M, Casey D, Sinenian N, Petrasso R D, Amendt P A, Landen O L, Rygg J R, Town R P J, Betti R, Delettrez J, Knauer J P, Marshall F, Meyerhofer D D, Sangster T C, Shvarts D, Smalyuk V A, Soures J M, Back C A, Kilkenny J D, Nikroo A 2009 Phys. Plasmas 16 056304Google Scholar

    [28]

    Borghesi M, Mackinnon A J, Gaillard R, Willi O, Pukhov A, Meyer-ter-Vehn J 1998 Phys. Rev. Lett. 80 5137Google Scholar

    [29]

    Smyth A G, Sarri G, Vranic M, Amano Y, Doria D, Guillaume E, Habara H, Heathcote R, Hicks G, Najmudin Z, Nakamura H, Norreys P A, Kar S, Silva L O, Tanaka K A, Vieira J, Borghesi M 2016 Phys. Plasmas 23 063121Google Scholar

    [30]

    Li C K, Seguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P, Amendt P A, Hatchett S P, Landen O L, Mackinnon A J, Patel P K, Smalyuk V A, Sangster T C, Knauer J P 2006 Phys. Rev. Lett. 97 135003Google Scholar

    [31]

    Li G, Li S, Ain Q, Gao K, Mirzaie M, Hafz N A M 2019 Phys. Plasmas 26 022306Google Scholar

    [32]

    Fonseca R A, Silva L O, Tsung F S, Decyk V K, Lu W, Ren C 2002 Lect. Notes Comput. Sci. 2331 342Google Scholar

  • [1] 杨温渊, 董烨, 孙会芳, 杨郁林, 董志伟. 超宽带等离子体相对论微波噪声放大器的物理分析和数值模拟. 物理学报, 2023, 72(5): 058401. doi: 10.7498/aps.72.20222061
    [2] 王媛媛, 王羡之, 宋贾俊, 张旭, 王兆华, 魏志义. 超强激光在均匀等离子体中的背向拉曼散射放大机制. 物理学报, 2022, 71(5): 055202. doi: 10.7498/aps.71.20211270
    [3] 徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展. 物理学报, 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [4] 赵崇霄, 漆亮文, 闫慧杰, 王婷婷, 任春生. 放电参数对爆燃模式下同轴枪强流脉冲放电等离子体的影响. 物理学报, 2019, 68(10): 105203. doi: 10.7498/aps.68.20190218
    [5] 王剑, 蔡达锋, 赵宗清, 谷渝秋. 激光与近相对论临界密度薄层相互作用产生大电量高能电子束. 物理学报, 2017, 66(7): 075203. doi: 10.7498/aps.66.075203
    [6] 刘明伟, 龚顺风, 李劲, 姜春蕾, 张禹涛, 周并举. 低密等离子体通道中的非共振激光直接加速. 物理学报, 2015, 64(14): 145201. doi: 10.7498/aps.64.145201
    [7] 李时春, 陈根余, 周聪, 陈晓锋, 周宇. 万瓦级光纤激光焊接过程中小孔内外等离子体研究. 物理学报, 2014, 63(10): 104212. doi: 10.7498/aps.63.104212
    [8] 刘玉峰, 丁艳军, 彭志敏, 黄宇, 杜艳君. 激光诱导击穿空气等离子体时间分辨特性的光谱研究. 物理学报, 2014, 63(20): 205205. doi: 10.7498/aps.63.205205
    [9] 刘月华, 陈明, 刘向东, 崔清强, 赵明文. 透镜到靶材的距离对脉冲激光诱导等离子体的影响机理研究. 物理学报, 2013, 62(2): 025203. doi: 10.7498/aps.62.025203
    [10] 王宇, 陈再高, 雷奕安. 等离子体填充0.14 THz相对论返波管模拟. 物理学报, 2013, 62(12): 125204. doi: 10.7498/aps.62.125204
    [11] 李世雄, 白忠臣, 黄政, 张欣, 秦水介, 毛文雪. 激光诱导等离子体加工石英微通道机理研究. 物理学报, 2012, 61(11): 115201. doi: 10.7498/aps.61.115201
    [12] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究. 物理学报, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [13] 夏志林, 郭培涛, 薛亦渝, 黄才华, 李展望. 短脉冲激光诱导薄膜损伤的等离子体爆炸过程分析. 物理学报, 2010, 59(5): 3523-3530. doi: 10.7498/aps.59.3523
    [14] 吴 迪, 宫 野, 刘金远, 王晓钢, 刘 悦, 马腾才. 强流脉冲离子束烧蚀等离子体向背景气体中喷发的数值研究. 物理学报, 2007, 56(1): 333-337. doi: 10.7498/aps.56.333
    [15] 张秋菊, 武慧春, 王兴海, 盛政明, 张 杰. 超短激光脉冲在等离子体中的分裂以及类孤子结构的形成. 物理学报, 2007, 56(12): 7106-7113. doi: 10.7498/aps.56.7106
    [16] 唐昌建, 宫玉彬, 杨玉芷. 二维相对论运动等离子体的介电率张量. 物理学报, 2004, 53(4): 1145-1149. doi: 10.7498/aps.53.1145
    [17] 张秋菊, 盛政明, 张 杰. 周期量级超短激光脉冲在近临界密度等离子体中形成的光孤子. 物理学报, 2004, 53(3): 798-802. doi: 10.7498/aps.53.798
    [18] 张端明, 关 丽, 李智华, 钟志成, 侯思普, 杨凤霞, 郑克玉. 脉冲激光制膜过程中等离子体演化规律的研究. 物理学报, 2003, 52(1): 242-246. doi: 10.7498/aps.52.242
    [19] 傅喜泉, 刘承宜, 郭弘. 等离子体中X射线激光传输与电子密度诊断的理论及数值比较. 物理学报, 2002, 51(6): 1326-1331. doi: 10.7498/aps.51.1326
    [20] 何斌, 常铁强, 张家泰, 许林宝. 超强激光场等离子体中电子纵向运动的研究. 物理学报, 2001, 50(10): 1939-1945. doi: 10.7498/aps.50.1939
计量
  • 文章访问数:  9901
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-24
  • 修回日期:  2019-05-28
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-05

/

返回文章
返回