搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光与近相对论临界密度薄层相互作用产生大电量高能电子束

王剑 蔡达锋 赵宗清 谷渝秋

引用本文:
Citation:

激光与近相对论临界密度薄层相互作用产生大电量高能电子束

王剑, 蔡达锋, 赵宗清, 谷渝秋

High energetic electron bunches from lasernear critical density layer interaction

Wang Jian, Cai Da-Feng, Zhao Zong-Qing, Gu Yu-Qiu
PDF
导出引用
  • 研究了激光与近相对论临界密度等离子体薄层相互作用时所产生的高能电子束的主要特征,包括平均有效温度以及截止能量等.实验结果表明,电子束的电量超过nC量级,平均有效温度可达8 MeV以上.PIC数值模拟证明,近相对论临界密度等离子体内,相对论自透明效应和激光钻孔效应共同形成一条磁化等离子体通道,电子与激光将在角向磁场的协助下发生Betatron共振.激光可将电子直接加速到很高能量,因此电子束平均有效温度(斜坡温度)远远超过Wilks定标率预计的平均温度.该研究为产生高亮度X射线源提供了一种新的可能途径.
    In this paper, we report our results from interactions between sub-picosecond laser and relativistic near-critical density plasma layer. To create the near-critical density plasma layer, low density foam targets are utilized in our experiments. The foam is comprised of tri-cellulose acetate. Their average densities vary from 1 mg/cm3 to 5 mg/cm3, corresponding to full ionization densities ranging from 0.6nc to 3nc. When laser pulse is incident on the near-critical density plasma, some energetic bunches with a large quantity of charges are measured in most of the shots. The maximum charge quantity reaches to 6.1 nC/sr. Furthermore, the observed electron energy spectrum is Boltzmann-like with a wide plateau at the tail of the energy spectrum, rather than a Maxwell-like. The concept of average temperature is not available any more, and we define average effective temperature instead, namely the slope temperature. Fitting the Boltzmann-like spectrum exponentially, we find that the average effective temperature even exceeds 8 MeV at 7.51019 W/cm2, far beyond the ponderomotive limit. Aiming at analyzing the implication of physics, several two-dimensional particle-in-cell (PIC) simulations are performed. The PIC simulations indicate that the hole-boring effect and relativistic self-transparency play an important role in the electrons heating process. At the earlier stage of heating process, a short plasma channel is created by the hole-boring effect and relativistic self-transparency. The length and the width of the plasma channel are about tens of micrometers and several micrometers respectively. Around the plasma channel, there is an intensive azimuthal magnetic field. The magnitude of the azimuthal magnetic field is 100 MGs. However, the radical electrostatic field is not seen. The possible reason is that the plasma channel would be cavitated by the hole-boring effect. As a result, the electrons will experience Betatron resonance in the magnetized plasma channel. The traverse momentum of the electron would be converted into forward momentum. Assisted by the Betatron resonance, the electrons gain energies from the laser directly and efficiently. Thus, the average effective temperatures of the electron bunches are much higher than predicted by the ponderomotive scaling law. Besides, we also conducte another simulation to instigate the differences by adopting different laser polarizations. Within our expectation, the electron spectrum of the P-polarization accords well with the experimental result, while the electron spectrum of the S-polarization obviously deviates from the experimental result. It also demonstrates that the Betatron resonance heating dominates the electron acceleration process. This research paves the way to generating the highly energetic bunches with a large quantity of charges, and wound also be helpful for producing the high-bright laser bremsstrahlung sources in future.
      通信作者: 蔡达锋, dafeng_cai@aliyun.com
    • 基金项目: 国家自然科学基金(批准号:11375161,11605095)资助的课题.
      Corresponding author: Cai Da-Feng, dafeng_cai@aliyun.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11375161, 11605095).
    [1]

    Jarrott L C, Kemp A J, Divol L, Mariscal D, Westover B, McGuffey C, Beg F N, Suggit M, Chen C, Hey D, Maddox B, Hawreliak J, Park H S, Remington B, Wei M S, MacPhee A 2014 Phys. Plsamas 21 031211

    [2]

    Westover B, MacPhee A, Chen C, Hey D, Ma T, Maddox B, Park H S, Remington B, Beg F N 2010 Phys. Plsamas 17 082703

    [3]

    Kulcsr G, AlMawlawi D, Budnik F W 2000 Phys. Rev. Lett. 84 5149

    [4]

    Nodera Y, Kawata S, Onma N 2008 Phys. Rev. E 78 046401

    [5]

    Hu G Y, Lei A L, et al. 2010 Phys. Plasmas 17 083102

    [6]

    Huang K, Li D Z, Yan W C, Li M H, Tao M Z, Chen Z Y, Ge X L, Liu F, Ma Y, Zhao J R, Hafz N M, Zhang J, Chen L M 2014 Appl. Phys. Lett. 105 204101

    [7]

    Cao L H, Gu Y Q, Zhao Z Q 2010 Phys. Plasmas 17 043103

    [8]

    Haines M G, Wei M S, Beg F N, Stephens R B 2009 Phys. Rev. Lett. 102 045008

    [9]

    Wilks S C, Kruer W L, Tabak M 1992 Phys. Rev. Lett. 69 1383

    [10]

    Glinec Y, Faure J, Le Dain L, Darbon S, Hosokai T, Santos J J, Lefebvre E, Rousseau J P, Burgy F 2005 Phys. Rev. Lett. 94 025003

    [11]

    Cipiccia S, Islam M, Ersfeld B, Shanks R P, Brunetti E, Vieux G, Yang X, Issac R C, Wiggins S, Welsh G H, Anania M P, Maneuski D, Montgomery R, Smith G, Hoek M, Hamilton D J, Lemos N R C, Symes D, Rajeev P P, Shea V O, Dias J M, Jaroszynski D A 2011 Nature Phys. 7 867

    [12]

    Courtois C, Edwards R, Compant La Fontaine A, Aedy C, Barbotin M, Bazzoli S, Biddle L, Brebion D, Bourgade J L, Drew D, Fox M, Gardner M, Gazave J M, Lagrange J, Landoas O, Le Dain L, Lefebvre E, Mastrosimone D, Pichoff N, Pien G, Ramsay M, Simons A, Sircombe N, Stoeck C, Thorp K 2011 Phys. Plsamas 18 023101

    [13]

    Kalmykov S Y, Gorburov L M, Mora P 2005 Phys. Plasmas 12 033101

    [14]

    Pukhov A, Gordienko S 2006 Phil. Trans. R. Soc. A 364 623

    [15]

    Lu W, Huang C, Zhou M 2006 Phys. Plasmas 13 056709

    [16]

    Esaresy E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229

    [17]

    Atzeni S, Meyer-ter-Vehn J 2008 The Physics of Inertial Fusion (in Chinese) (Beijing:Science Press)[Atzeni S, Meyer-ter-Vehn J 2008惯性聚变物理(北京:科学出版社)]

    [18]

    Kruer W L, Estabrook K 1985 Phys. Fluids 28 430

    [19]

    Scott R H H, Perez F, Santos J J, Ridgers C P, Davies J R, Lancaster K L, Baton S D, Nicolai Ph, Trines R M G M, Bell A R, Hulin S, Tzoufras M, Rose S J, Norreys P A 2012 Phys. Plasmas 19 053104

    [20]

    Pukhov A, Sheng Z M, Meyer-Ter-Vehn J 1999 Phys. Plasmas 6 2847

    [21]

    Willingale L, Nagel S R, Thomas A G R, Bellei C, Clarke R J, Dangor A E, Heathcote R, Kaluza M C, Kamperidis C, Kneip S, Krushelnick K, Lopes N, Mangles S P D, Nazarov W, Nilson P M, Najmudin Z 2009 Phys. Rev. Lett. 102 105002

    [22]

    Kemp A, Sentoku Y, Tabak M 2008 Phys. Rev. Lett. 101 075004

    [23]

    Kemp A, Sentoku Y, Tabak M 2009 Phy. Rev. E 79 066406

    [24]

    Pukhov A, Sheng Z M, Meyer-ter-Vehn J 1999 Phys. Plasmas 6 2847

  • [1]

    Jarrott L C, Kemp A J, Divol L, Mariscal D, Westover B, McGuffey C, Beg F N, Suggit M, Chen C, Hey D, Maddox B, Hawreliak J, Park H S, Remington B, Wei M S, MacPhee A 2014 Phys. Plsamas 21 031211

    [2]

    Westover B, MacPhee A, Chen C, Hey D, Ma T, Maddox B, Park H S, Remington B, Beg F N 2010 Phys. Plsamas 17 082703

    [3]

    Kulcsr G, AlMawlawi D, Budnik F W 2000 Phys. Rev. Lett. 84 5149

    [4]

    Nodera Y, Kawata S, Onma N 2008 Phys. Rev. E 78 046401

    [5]

    Hu G Y, Lei A L, et al. 2010 Phys. Plasmas 17 083102

    [6]

    Huang K, Li D Z, Yan W C, Li M H, Tao M Z, Chen Z Y, Ge X L, Liu F, Ma Y, Zhao J R, Hafz N M, Zhang J, Chen L M 2014 Appl. Phys. Lett. 105 204101

    [7]

    Cao L H, Gu Y Q, Zhao Z Q 2010 Phys. Plasmas 17 043103

    [8]

    Haines M G, Wei M S, Beg F N, Stephens R B 2009 Phys. Rev. Lett. 102 045008

    [9]

    Wilks S C, Kruer W L, Tabak M 1992 Phys. Rev. Lett. 69 1383

    [10]

    Glinec Y, Faure J, Le Dain L, Darbon S, Hosokai T, Santos J J, Lefebvre E, Rousseau J P, Burgy F 2005 Phys. Rev. Lett. 94 025003

    [11]

    Cipiccia S, Islam M, Ersfeld B, Shanks R P, Brunetti E, Vieux G, Yang X, Issac R C, Wiggins S, Welsh G H, Anania M P, Maneuski D, Montgomery R, Smith G, Hoek M, Hamilton D J, Lemos N R C, Symes D, Rajeev P P, Shea V O, Dias J M, Jaroszynski D A 2011 Nature Phys. 7 867

    [12]

    Courtois C, Edwards R, Compant La Fontaine A, Aedy C, Barbotin M, Bazzoli S, Biddle L, Brebion D, Bourgade J L, Drew D, Fox M, Gardner M, Gazave J M, Lagrange J, Landoas O, Le Dain L, Lefebvre E, Mastrosimone D, Pichoff N, Pien G, Ramsay M, Simons A, Sircombe N, Stoeck C, Thorp K 2011 Phys. Plsamas 18 023101

    [13]

    Kalmykov S Y, Gorburov L M, Mora P 2005 Phys. Plasmas 12 033101

    [14]

    Pukhov A, Gordienko S 2006 Phil. Trans. R. Soc. A 364 623

    [15]

    Lu W, Huang C, Zhou M 2006 Phys. Plasmas 13 056709

    [16]

    Esaresy E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229

    [17]

    Atzeni S, Meyer-ter-Vehn J 2008 The Physics of Inertial Fusion (in Chinese) (Beijing:Science Press)[Atzeni S, Meyer-ter-Vehn J 2008惯性聚变物理(北京:科学出版社)]

    [18]

    Kruer W L, Estabrook K 1985 Phys. Fluids 28 430

    [19]

    Scott R H H, Perez F, Santos J J, Ridgers C P, Davies J R, Lancaster K L, Baton S D, Nicolai Ph, Trines R M G M, Bell A R, Hulin S, Tzoufras M, Rose S J, Norreys P A 2012 Phys. Plasmas 19 053104

    [20]

    Pukhov A, Sheng Z M, Meyer-Ter-Vehn J 1999 Phys. Plasmas 6 2847

    [21]

    Willingale L, Nagel S R, Thomas A G R, Bellei C, Clarke R J, Dangor A E, Heathcote R, Kaluza M C, Kamperidis C, Kneip S, Krushelnick K, Lopes N, Mangles S P D, Nazarov W, Nilson P M, Najmudin Z 2009 Phys. Rev. Lett. 102 105002

    [22]

    Kemp A, Sentoku Y, Tabak M 2008 Phys. Rev. Lett. 101 075004

    [23]

    Kemp A, Sentoku Y, Tabak M 2009 Phy. Rev. E 79 066406

    [24]

    Pukhov A, Sheng Z M, Meyer-ter-Vehn J 1999 Phys. Plasmas 6 2847

  • [1] 吴钟书, 赵耀, 翁苏明, 陈民, 盛政明. 非均匀等离子体中1/4临界密度附近受激散射的非线性演化. 物理学报, 2019, 68(19): 195202. doi: 10.7498/aps.68.20190883
    [2] 张晓辉, 董克攻, 华剑飞, 朱斌, 谭放, 吴玉迟, 鲁巍, 谷渝秋. 相对论皮秒激光在低密度等离子体中直接加速的电子束的横向分布特征研究. 物理学报, 2019, 68(19): 195203. doi: 10.7498/aps.68.20191106
    [3] 李曜均, 岳东宁, 邓彦卿, 赵旭, 魏文青, 葛绪雷, 远晓辉, 刘峰, 陈黎明. 相对论强激光与近临界密度等离子体相互作用的质子成像. 物理学报, 2019, 68(15): 155201. doi: 10.7498/aps.68.20190610
    [4] 梁亦寒, 胡广月, 袁鹏, 王雨林, 赵斌, 宋法伦, 陆全明, 郑坚. 纳秒激光烧蚀固体靶产生的等离子体在外加横向磁场中膨胀时的温度和密度参数演化. 物理学报, 2015, 64(12): 125204. doi: 10.7498/aps.64.125204
    [5] 刘明伟, 龚顺风, 李劲, 姜春蕾, 张禹涛, 周并举. 低密等离子体通道中的非共振激光直接加速. 物理学报, 2015, 64(14): 145201. doi: 10.7498/aps.64.145201
    [6] 张喆, 柳倩, 祁志美. 基于金银合金薄膜的近红外表面等离子体共振传感器研究. 物理学报, 2013, 62(6): 060703. doi: 10.7498/aps.62.060703
    [7] 邹帅, 唐中华, 吉亮亮, 苏晓东, 辛煜. 悬浮型微波共振探针在电负性容性耦合等离子体中电子密度的测量. 物理学报, 2012, 61(7): 075204. doi: 10.7498/aps.61.075204
    [8] 高碧荣, 刘悦. 电子回旋共振等离子体密度均匀性的数值研究. 物理学报, 2011, 60(4): 045201. doi: 10.7498/aps.60.045201
    [9] 令维军, 董全力, 张蕾, 张少刚, 董忠, 魏凯斌, 王首钧, 何民卿, 盛政明, 张杰. 高密度平面靶等离子体中激光驱动冲击波加速离子的能谱展宽. 物理学报, 2011, 60(7): 075201. doi: 10.7498/aps.60.075201
    [10] 栾仕霞, 张秋菊, 桂维玲. 交叉传播激光脉冲与等离子体相互作用产生的等离子体密度光栅. 物理学报, 2008, 57(11): 7030-7037. doi: 10.7498/aps.57.7030
    [11] 陈 卓, 何 威, 蒲以康. 电子回旋共振氩等离子体中亚稳态粒子数密度及电子温度的测量. 物理学报, 2005, 54(5): 2153-2157. doi: 10.7498/aps.54.2153
    [12] 张秋菊, 盛政明, 张 杰. 周期量级超短激光脉冲在近临界密度等离子体中形成的光孤子. 物理学报, 2004, 53(3): 798-802. doi: 10.7498/aps.53.798
    [13] 顾震宇, 季沛勇. 等离子体密度对多光子电离的影响. 物理学报, 2002, 51(5): 1022-1025. doi: 10.7498/aps.51.1022
    [14] 刘明海, 胡希伟, 邬钦崇, 俞国扬. 电子回旋共振等离子体源的数值模拟. 物理学报, 2000, 49(3): 497-501. doi: 10.7498/aps.49.497
    [15] 赖国俊, 季沛勇. 基于激光等离子体的光子加速. 物理学报, 2000, 49(12): 2399-2403. doi: 10.7498/aps.49.2399
    [16] 李毅. 热等离子体中的尾波加速. 物理学报, 1996, 45(4): 601-607. doi: 10.7498/aps.45.601
    [17] 王德真, 马腾才, 宫野. 等离子体源离子注入球形靶的蒙特-卡罗模拟. 物理学报, 1995, 44(6): 877-884. doi: 10.7498/aps.44.877
    [18] 张家泰, 许林宝, 常铁强, 张书贵, 聂小波, 王世红, 汪卫星. 激光靶等离子体受激Raman散射. 物理学报, 1991, 40(10): 1642-1651. doi: 10.7498/aps.40.1642
    [19] 沈文达, 朱莳通. 激光等离子体波纹临界面的共振吸收和二次谐波产生. 物理学报, 1981, 30(7): 945-952. doi: 10.7498/aps.30.945
    [20] 康寿万, 蔡诗东. 磁化等离子体中逃逸电子的临界速度. 物理学报, 1980, 29(3): 311-319. doi: 10.7498/aps.29.311
计量
  • 文章访问数:  3132
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-16
  • 修回日期:  2016-12-11
  • 刊出日期:  2017-04-05

激光与近相对论临界密度薄层相互作用产生大电量高能电子束

  • 1. 内江师范学院物理学与电子信息工程学院, 内江 641110;
  • 2. 中国工程物理研究院激光聚变研究中心, 绵阳 621900
  • 通信作者: 蔡达锋, dafeng_cai@aliyun.com
    基金项目: 国家自然科学基金(批准号:11375161,11605095)资助的课题.

摘要: 研究了激光与近相对论临界密度等离子体薄层相互作用时所产生的高能电子束的主要特征,包括平均有效温度以及截止能量等.实验结果表明,电子束的电量超过nC量级,平均有效温度可达8 MeV以上.PIC数值模拟证明,近相对论临界密度等离子体内,相对论自透明效应和激光钻孔效应共同形成一条磁化等离子体通道,电子与激光将在角向磁场的协助下发生Betatron共振.激光可将电子直接加速到很高能量,因此电子束平均有效温度(斜坡温度)远远超过Wilks定标率预计的平均温度.该研究为产生高亮度X射线源提供了一种新的可能途径.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回