搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于多阶邻居壳数的向量中心性度量方法

王凯莉 邬春学 艾均 苏湛

引用本文:
Citation:

基于多阶邻居壳数的向量中心性度量方法

王凯莉, 邬春学, 艾均, 苏湛

Complex network centrality method based on multi-order K-shell vector

Wang Kai-Li, Wu Chun-Xue, Ai Jun, Su Zhan
PDF
HTML
导出引用
  • K-壳分解法在度量复杂网络中节点的重要性方面具有重要的理论意义和应用价值. 但K-壳方法中, 存在大量壳值相等的节点, 从而无法精确地比较这些具有相同壳值节点的相对重要性. 因此, 本文基于网络中节点自身壳值与其多阶邻居的壳值, 设计利用向量的形式来表示节点在复杂网络中的相对重要性程度, 提出了多阶邻居壳数向量中心性方法, 并设计了该中心性向量比较方法. 通过在七个真实网络中进行消息传播与静态攻击实验, 发现基于多阶邻居壳数向量的中心性方法具有计算复杂度低, 能够有效发现具有高传播能力的节点, 在传播实验中具有优越的性能. 并在静态攻击实验过程中倾向于优先破坏网络中的传播核心结构. 多阶邻居壳数向量中心性方法在保留K-壳中心性信息的前提下, 极大提高了节点重要性的区别程度, 平衡了对节点在复杂网络中联通结构的重要性的度量和对传播结构重要性的度量, 因此具有重要理论意义与应用价值.
    The K-shell has important theoretical significance and application value in measuring the importance of nodes in complex networks. However, in the K-shell method, most of nodes possess an identical K-shell value so that the relative importance of the identical K-shell nodes cannot be further compared with each other. Therefore, based on the K-shell value of nodes in the complex network and the K-shell values of multi-order neighbors in complex networks, in this paper we use the vectors to represent the relative importance of node in each of complex networks, which is named multi-order K-shell vector. Multi-order K-shell vector centrality defines a vector indicating the number of multi-order neighbors with different K-shells and groups them into elements of the vector. Each vector infers to not only the original K-shell of the given node but also the number of its multi-order neighbors and their K-shell values, which indicates the propagation capability of the given node. An approach to comparing two multi-order K-shell vectors is also presented, which is used to sort the vectors to evaluate the node importance. The method is explored by comparing several existing centrality methods. Through the experiments of SI propagation and static attack experiments in seven real-world networks, it is found that multi-order K-shell vector centrality provides low computational complexity, effectively evaluates nodes with high propagation capability, which confirms the improved performance in susceptible infected model propagation experiments. On the other hand, the static attack experiments show that the multi-order K-shell vector tends to preferentially select the core structure with powerful propagation capability in the network. The multi-order K-shell vector greatly improves the difference rate of node centrality under the premise of preserving the K-shell structure information, as well as balancing the importance measure of nodes in the complex network and the structure evaluation of propagation capability. The multi-order K-shell vector is not appropriate for all types of networks when considering the result of network attacking. For the networks with low clustering coefficients and high average path lengths, multi-order K-shell vector method is dominant and the effect is relatively obvious. By contrast, multi-order K-shell vector surpasses most of centrality approaches when spreading information is our priority. In a few networks, eigenvector centrality presents a slightly better performance with a larger computational complexity. The proposed centrality measure is therefore of great theoretical and practical importance.
      通信作者: 艾均, aijun@outlook.com
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 61803264)资助的课题.
      Corresponding author: Ai Jun, aijun@outlook.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61803264)
    [1]

    Barabasi A L, Albert R 1999 Science 286 509Google Scholar

    [2]

    Newman M, Girvan M 2004 Phys. Rev. E 69 423

    [3]

    Ai J, Su Z, Li Y, Wu C X 2019 Physica A 527 121155Google Scholar

    [4]

    Ai J, Liu Y Y, Su Z, Zhang H , Zhao F Y 2019 Europhys. Lett. 126 38003Google Scholar

    [5]

    Brin S, Page L 2012 Computer Networks 56 3825Google Scholar

    [6]

    Newman M 2010 Networks: An introduction (Oxford: Oxford University Press) p327

    [7]

    Cohen R, Erez K, Ben-Avraham D, Havlin S 2001 Phys. Rev. Lett. 86 3682Google Scholar

    [8]

    Keeling M J, Rohani P, Pourbohloul B 2008 Clinical Infectious Diseases 47 864Google Scholar

    [9]

    Moreno Y, Nekovee M, Pacheco A F 2004 Phys. Rev. E 69 066130Google Scholar

    [10]

    张彦超, 刘云, 张海峰, 程辉, 熊菲 2011 物理学报 60 050501Google Scholar

    Zhang Y C, Liu Y, Zhang H F, Cheng H, Xiong F 2011 Acta Phys. Sin. 60 050501Google Scholar

    [11]

    Li H, Gao G, Chen R 2019 Int. J. Software Engineer. Knowledge Engineer. 29 93Google Scholar

    [12]

    刘建国, 任卓明, 郭强, 汪秉宏 2013 物理学报 62 178901Google Scholar

    Liu J G, Ren Z M, Guo Q, Wang B H 2013 Acta Phys. Sin. 62 178901Google Scholar

    [13]

    任晓龙, 吕琳媛 2014 科学通报 59 1175

    Ren X L, Lü L Y 2014 Chin. Sci. Bull. 59 1175

    [14]

    Chen D, Lin Y L, Shang M S 2012 Fuel and Energy Abstracts 391 1777

    [15]

    Freeman L C 1977 Sociometry 40 35Google Scholar

    [16]

    Opsahl T, Agneessens F, Skvoretz J 2010 Social Networks 32 245Google Scholar

    [17]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888Google Scholar

    [18]

    罗仕龙, 龚凯, 唐朝生, 周靖 2017 物理学报 66 188902Google Scholar

    Luo S L, Gong K, Tang C S, Zhou J 2017 Acta Phys. Sin. 66 188902Google Scholar

    [19]

    Jiang L C, Zhao X, Ge B, Xiao W, Ruan Y 2019 Physica A 516 58

    [20]

    Gong K, Kang L 2018 J. Syst. Sci. Inf. 6 366

    [21]

    朱晓霞, 赵雪, 刘萌萌 2017 计算机应用研究 34 2582Google Scholar

    Zhu X X, Zhao X, Liu M M 2017 Application Research of Computers 34 2582Google Scholar

    [22]

    李慧嘉, 严冠, 刘志东, 李桂君, 章祥荪 2017 中国科学: 数学 47 16

    Li H J, Yan G, Liu Z D, Li G J, Zhang X S 2017 Scientia Sinica Mathematica 47 16

    [23]

    李慧嘉, 李爱华, 李慧颖 2017 计算机学报 40 15

    Li H J, Li A H, Li H Y 2017 Chinese Journal of Computers 40 15

    [24]

    Zhang J P, Xu H, Yang J, Lun L J 2018 ICPCSEE Zhengzhou, China, September 21−24, 2018 p28

    [25]

    王浩, 张赞, 李磊, 汪萌 2016 电子学报 44 2330Google Scholar

    Wang H, Zhang Z, Li L, Wang M 2016 Acta Electronica Sinica 44 2330Google Scholar

    [26]

    Ai J, Zhao H, Carley K M, Su Z, Li H 2013 Eur. Phys. J. B 86 163Google Scholar

    [27]

    Freeman L C 1979 Social Networks 1 215

    [28]

    Brandes U 2001 Math. Sociology 25

    [29]

    E.Knuth D 1993 The Stanford GraphBase: A Platform for Combinatorial Computing (Vol.1)

    [30]

    Watts D J, Strogatz S H 1998 Nature 393 440Google Scholar

    [31]

    Guimera R, Danon L, Diaz-Guilera A, Giralt F, Arenas A 2003 Phys. Rev. E 68 065103Google Scholar

    [32]

    Newman M 2006 Phys. Rev. E 74 036104Google Scholar

    [33]

    Lusseau D, Schneider K, Boisseau O, Haase P, Slooten E, Dawson S 2003 Behav. Ecol. Sociobiol. 54 396Google Scholar

    [34]

    Duch J, Arenas A 2005 Phys. Rev. E 72 027104Google Scholar

    [35]

    Zachary W W 1977 J. Anthropol. Res. 33 452Google Scholar

    [36]

    汪小帆, 李翔, 陈关荣 2012 网络科学导论 (北京: 高等教育出版社) 第306−307页

    Wang X F, Li X, Chen G R 2012 Network Science: an Introduction (Beijing: Higher Education Press) pp306−307 (in Chinese)

  • 图 1  K-shell分解法的示意图

    Fig. 1.  A diagram of the K-shell.

    图 2  MKV算法实现流程图

    Fig. 2.  MKV algorithm implementation flow chart.

    图 3  向量比较大小算法流程图

    Fig. 3.  Flow chart of vector comparison size algorithm.

    图 4  美国电力网power在静态攻击实验中最大连通子团变化情况

    Fig. 4.  Largest connected component during static attack experiment on power.

    图 5  美国电力网power在蓄意攻击实验中子团数量变化情况

    Fig. 5.  Total component number during static attack experiment on power.

    图 6  七个网络受到蓄意攻击中最大连通子团的统计情况(越小越好) (a) 最大连通子团平均值情况; (b) 最大连通子团最值情况

    Fig. 6.  Largest connected component during static attack experiments on the seven networks(the smaller, the better)

    图 7  七个网络静态攻击重要节点的子团数量的统计情况(越大越好) (a) 子团数量平均值情况; (b) 子团数量最值情况

    Fig. 7.  The number of components during static attack experiments on the seven networks (the larger, the better)

    图 8  SI传播模型图

    Fig. 8.  SI propagation model diagram.

    图 9  美国电力网power在SI传播模型下感染节点的变化情况

    Fig. 9.  Change of infected nodes in Power of American Electric Power network under SI propagation model.

    图 10  大肠杆菌代谢网络C. Elegans在SI传播模型下感染节点的变化情况

    Fig. 10.  Changes of infection nodes in C. Elegans network under SI propagation model.

    图 11  七个网络传播感染节点的统计情况(越大越好) (a) SI传播节点数量比较平均值; (b) SI传播节点数量比较最值

    Fig. 11.  The statistical result of infected nodes of seven network (the larger, the better)

    表 1  本文中用到的几个网络基本信息

    Table 1.  Several basic network information used in this paper.

    网络节点数量边数量平均度值聚集系数平均路径长度同配系数
    LesMiserables772546.5970.7362.641–0.4756
    PowerGrid494165942.6690.10718.9890.4616
    Email1134655611.5630.5261.992–0.0436
    Coauthor158927423.4510.8785.8230.0035
    Dolphin621595.1290.3033.357–0.1652
    C.Elegans45345969.0070.6572.664–0.1085
    Club34782.290.5882.408–0.2145
    下载: 导出CSV

    表 2  中心性的区分度在不同网络中的取值情况(越大越好)

    Table 2.  Value of Centrality Distinction in Different Networks(the larger, the better).

    DRBCECDegreeK-shellMKV
    C.Elegans66.225%88.962%8.830%2.208%40.839%
    Club61.765%79.412%32.353%11.765%47.059%
    Coauthors9.880%29.264%1.447%0.692%9.880%
    Dolphin87.097%96.774%19.355%6.452%70.968%
    Email62.346%94.533%4.586%0.970%53.263%
    Power59.279%86.217%0.324%0.101%8.561%
    LesMiserables41.558%67.532%23.377%10.390%37.662%
    下载: 导出CSV
  • [1]

    Barabasi A L, Albert R 1999 Science 286 509Google Scholar

    [2]

    Newman M, Girvan M 2004 Phys. Rev. E 69 423

    [3]

    Ai J, Su Z, Li Y, Wu C X 2019 Physica A 527 121155Google Scholar

    [4]

    Ai J, Liu Y Y, Su Z, Zhang H , Zhao F Y 2019 Europhys. Lett. 126 38003Google Scholar

    [5]

    Brin S, Page L 2012 Computer Networks 56 3825Google Scholar

    [6]

    Newman M 2010 Networks: An introduction (Oxford: Oxford University Press) p327

    [7]

    Cohen R, Erez K, Ben-Avraham D, Havlin S 2001 Phys. Rev. Lett. 86 3682Google Scholar

    [8]

    Keeling M J, Rohani P, Pourbohloul B 2008 Clinical Infectious Diseases 47 864Google Scholar

    [9]

    Moreno Y, Nekovee M, Pacheco A F 2004 Phys. Rev. E 69 066130Google Scholar

    [10]

    张彦超, 刘云, 张海峰, 程辉, 熊菲 2011 物理学报 60 050501Google Scholar

    Zhang Y C, Liu Y, Zhang H F, Cheng H, Xiong F 2011 Acta Phys. Sin. 60 050501Google Scholar

    [11]

    Li H, Gao G, Chen R 2019 Int. J. Software Engineer. Knowledge Engineer. 29 93Google Scholar

    [12]

    刘建国, 任卓明, 郭强, 汪秉宏 2013 物理学报 62 178901Google Scholar

    Liu J G, Ren Z M, Guo Q, Wang B H 2013 Acta Phys. Sin. 62 178901Google Scholar

    [13]

    任晓龙, 吕琳媛 2014 科学通报 59 1175

    Ren X L, Lü L Y 2014 Chin. Sci. Bull. 59 1175

    [14]

    Chen D, Lin Y L, Shang M S 2012 Fuel and Energy Abstracts 391 1777

    [15]

    Freeman L C 1977 Sociometry 40 35Google Scholar

    [16]

    Opsahl T, Agneessens F, Skvoretz J 2010 Social Networks 32 245Google Scholar

    [17]

    Kitsak M, Gallos L K, Havlin S, Liljeros F, Muchnik L, Stanley H E, Makse H A 2010 Nat. Phys. 6 888Google Scholar

    [18]

    罗仕龙, 龚凯, 唐朝生, 周靖 2017 物理学报 66 188902Google Scholar

    Luo S L, Gong K, Tang C S, Zhou J 2017 Acta Phys. Sin. 66 188902Google Scholar

    [19]

    Jiang L C, Zhao X, Ge B, Xiao W, Ruan Y 2019 Physica A 516 58

    [20]

    Gong K, Kang L 2018 J. Syst. Sci. Inf. 6 366

    [21]

    朱晓霞, 赵雪, 刘萌萌 2017 计算机应用研究 34 2582Google Scholar

    Zhu X X, Zhao X, Liu M M 2017 Application Research of Computers 34 2582Google Scholar

    [22]

    李慧嘉, 严冠, 刘志东, 李桂君, 章祥荪 2017 中国科学: 数学 47 16

    Li H J, Yan G, Liu Z D, Li G J, Zhang X S 2017 Scientia Sinica Mathematica 47 16

    [23]

    李慧嘉, 李爱华, 李慧颖 2017 计算机学报 40 15

    Li H J, Li A H, Li H Y 2017 Chinese Journal of Computers 40 15

    [24]

    Zhang J P, Xu H, Yang J, Lun L J 2018 ICPCSEE Zhengzhou, China, September 21−24, 2018 p28

    [25]

    王浩, 张赞, 李磊, 汪萌 2016 电子学报 44 2330Google Scholar

    Wang H, Zhang Z, Li L, Wang M 2016 Acta Electronica Sinica 44 2330Google Scholar

    [26]

    Ai J, Zhao H, Carley K M, Su Z, Li H 2013 Eur. Phys. J. B 86 163Google Scholar

    [27]

    Freeman L C 1979 Social Networks 1 215

    [28]

    Brandes U 2001 Math. Sociology 25

    [29]

    E.Knuth D 1993 The Stanford GraphBase: A Platform for Combinatorial Computing (Vol.1)

    [30]

    Watts D J, Strogatz S H 1998 Nature 393 440Google Scholar

    [31]

    Guimera R, Danon L, Diaz-Guilera A, Giralt F, Arenas A 2003 Phys. Rev. E 68 065103Google Scholar

    [32]

    Newman M 2006 Phys. Rev. E 74 036104Google Scholar

    [33]

    Lusseau D, Schneider K, Boisseau O, Haase P, Slooten E, Dawson S 2003 Behav. Ecol. Sociobiol. 54 396Google Scholar

    [34]

    Duch J, Arenas A 2005 Phys. Rev. E 72 027104Google Scholar

    [35]

    Zachary W W 1977 J. Anthropol. Res. 33 452Google Scholar

    [36]

    汪小帆, 李翔, 陈关荣 2012 网络科学导论 (北京: 高等教育出版社) 第306−307页

    Wang X F, Li X, Chen G R 2012 Network Science: an Introduction (Beijing: Higher Education Press) pp306−307 (in Chinese)

  • [1] 孙皓宸, 刘肖凡, 许小可, 吴晔. 基于连续感染模型的新冠肺炎校园传播与防控策略分析. 物理学报, 2020, 69(24): 240201. doi: 10.7498/aps.69.20201106
    [2] 汪筱阳, 王瑛, 朱参世, 朱琳, 傅超琦. 具有跨邻居传播能力的信息辐射模型研究. 物理学报, 2017, 66(3): 038901. doi: 10.7498/aps.66.038901
    [3] 苏臻, 高超, 李向华. 节点中心性对复杂网络传播模式的影响分析. 物理学报, 2017, 66(12): 120201. doi: 10.7498/aps.66.120201
    [4] 王红胜, 徐子言, 张阳, 陈开颜, 李宝晨, 吴令安. 基于Hamming weight和泄漏光子数的高级加密标准密码芯片光辐射分析攻击. 物理学报, 2016, 65(11): 118901. doi: 10.7498/aps.65.118901
    [5] 宋玉萍, 倪静. 网络集聚性对节点中心性指标的准确性影响. 物理学报, 2016, 65(2): 028901. doi: 10.7498/aps.65.028901
    [6] 陈丽娟, 鲁世平. 地球磁层电磁场中粒子引导中心漂移运动模型的周期轨. 物理学报, 2014, 63(19): 190202. doi: 10.7498/aps.63.190202
    [7] 苑卫国, 刘云, 程军军, 熊菲. 微博双向关注网络节点中心性及传播 影响力的分析. 物理学报, 2013, 62(3): 038901. doi: 10.7498/aps.62.038901
    [8] 陶建军, 胡向辉. 热带低层弱涡旋中扰动的快速发展及其向中心传播的特征. 物理学报, 2012, 61(16): 169202. doi: 10.7498/aps.61.169202
    [9] 李泽荃, 张瑞新, 杨曌, 赵红泽, 于健浩. 复杂网络中心性对灾害蔓延的影响. 物理学报, 2012, 61(23): 238902. doi: 10.7498/aps.61.238902
    [10] 宋玉蓉, 蒋国平. 节点抗攻击存在差异的无尺度网络恶意软件传播研究. 物理学报, 2010, 59(2): 705-711. doi: 10.7498/aps.59.705
    [11] 宋玉蓉, 蒋国平. 具有非均匀传输和抗攻击差异的网络病毒传播模型. 物理学报, 2010, 59(11): 7546-7551. doi: 10.7498/aps.59.7546
    [12] 马 军, 蒲忠胜, 冯旺军, 李维学. 旋转中心力场消除螺旋波和时空混沌. 物理学报, 2005, 54(10): 4602-4609. doi: 10.7498/aps.54.4602
    [13] 杨旭东, 徐仲英, 罗向东, 方再历, 李国华, 苏荫强, 葛惟昆. ZnS中Te等电子中心的时间分辨光谱研究. 物理学报, 2005, 54(5): 2272-2276. doi: 10.7498/aps.54.2272
    [14] 谷 娟, 梁九卿. 施主中心量子点能谱分析. 物理学报, 2005, 54(11): 5335-5338. doi: 10.7498/aps.54.5335
    [15] 李晓苇, 李新政, 江晓利, 于 威, 田晓东, 杨少鹏, 傅广生. S+Au增感中心的电子陷阱效应对光电子行为的影响. 物理学报, 2004, 53(6): 2019-2023. doi: 10.7498/aps.53.2019
    [16] 张元常, 黄启圣, 康俊勇, 吴正云, 余辛. GaAsP混晶中的DX中心. 物理学报, 1995, 44(8): 1256-1262. doi: 10.7498/aps.44.1256
    [17] 孙宗琦, 韩明辉. 晶体位错的离散弹性模型——位错中心结构和P-N力. 物理学报, 1989, 38(2): 183-192. doi: 10.7498/aps.38.183
    [18] 巫光汉, 卢兆启. 用多中心变分模型研究Be8和Li6的集团结构. 物理学报, 1977, 26(6): 459-466. doi: 10.7498/aps.26.459
    [19] 李国栋, 王新麟, 萧孚筐. 少量稀土元素氧化物对于一种矩磁铁氧体磁心性能的影响. 物理学报, 1960, 16(5): 272-280. doi: 10.7498/aps.16.272
    [20] 胡海昌. 论圣维南问题中的位移以及弯曲中心与扭转中心. 物理学报, 1956, 12(4): 350-359. doi: 10.7498/aps.12.350
计量
  • 文章访问数:  9641
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-05
  • 修回日期:  2019-07-17
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-05

/

返回文章
返回