-
半导体激光器是现代通讯领域的核心器件. 研究和开发具有高稳定性、高功率、高光束质量、窄线宽的单模半导体激光器是目前半导体激光器研究领域的一个重要的研究方向. 本文在窄脊型边发射半导体激光器的结构基础上, 提出并研制了一种在980 nm波段附近的利用有源多模干涉波导结构作为激光器的主要增益区, 利用增益耦合式分布反馈光栅对激光器的纵向模式进行调制的新型边发射半导体激光器芯片结构. 通过对比实验可以看出, 这种激光器相较于一般的分布反馈式半导体激光器, 其具有更高的斜率效率和输出功率; 而相较于一般的多模干涉波导激光器, 这种激光器具有更高的光束质量和更好的稳定性. 同时, 由于在芯片设计和制造过程中采用了表面刻蚀形成的高阶分布反馈光栅, 这种激光芯片的制造无需二次外延, 只需要微米量级精度的i线光刻即可实现, 是一种制备工艺较为简单、制造成本较低、利于商用量产的芯片结构.Semiconductor laser is one of the most critical components in the field of modern communication. Research and development of single-mode semiconductor laser with high stability, high power, high beam quality and narrow line width is an important research area in this field. In this paper, A novel edge-emitting semiconductor laser diode structure is proposed. In the structure an active multimode interference waveguide structure serves as a main gain region. To modulate the longitudinal mode of the laser, a gain-coupled distributed feedback(DFB) laser based on high order surface gain coupled grating is introduced into the structure as well. The novel structure is then fabricated and compared with an conventional DFB laser. The experimental results show that higher slope efficiency and output power are achieved with the proposed structure than those with the conventional distributed feedback semiconductor lasers. The novel structure is also compared with conventional MMI laser with only Fabry-Parot(FP) cavity. The result shows that the proposed structure has higher beam quality and better stability than the FP cavity multimode interference waveguide lasers. To enhance the gain contrast in the quantum wells without introducing the effective index-coupled effect, the groove length and depth are well designed. Our device provides a single longitudinal mode with the maximum CW output power up to 53.8 mW/facet at 981.21 nm and 400 mA without facet coating, 3 dB linewidth < 13.6 pm, and SMSR > 32 dB. Optical bistable characteristic is observed with a threshold current difference. Meanwhile, by using high-order distribution feedback grating formed by shallow surface etching in the process of chip design and fabrication, the proposed structure of laser diode can realize regrowth freely and only micron-scale precision i-line lithography is required. Such a structure with simple fabrication process and low manufacturing cost has great potential for commercial mass production.
-
Keywords:
- distributed feedback grating /
- active multimode interference waveguide /
- edgeemitting semiconductor laser diode
[1] Paschotta R, Nilsson J, Tropper A C, Hanna D C 1997 IEEE J. Quantum Electron. 33 1049Google Scholar
[2] Jeon H, Verdiell J M, Ziari M, Mathur A 1998 IEEE J. Sel. Topics Quantum Electron. 3 1344
[3] Dieckmann A 1994 Electron. Lett. 30 308Google Scholar
[4] Tilma B W, Mangold M, Zaugg C A, et al. 2015 Light Sci. Appl. 4 e310Google Scholar
[5] Zhou Z, Yin B, Michel J 2015 Light Sci. Appl. 4 e358Google Scholar
[6] Garciıa-Meca C et al. 2017 Light Sci. Appl. 6 e17053Google Scholar
[7] Nehrir A R, Repasky K S, Carlsten J L, Atmos J 2011 Ocean. Technol. 28 131Google Scholar
[8] Jeon H, Verdiell J M, Ziari M, Mathur A 1998 IEEE J. Sel. Top. Quantum Electron. 3 1344
[9] Zimmerman J W, Price R K, Reddy U, Dias N L, Coleman J J 2013 IEEE J. Sel. Top. Quantum Electron. 19 1503712Google Scholar
[10] Burrows E C, Liou K Y 1990 Electron. Lett. 26 577Google Scholar
[11] Kim I et al. 1994 Appl. Phys. Lett. 64 2764Google Scholar
[12] Ishii H, Tohmori Y, Yamamoto M, Tamamura T, Yoshikuni Y 1994 IEEE Photon. Technol. Lett. 5 1683
[13] Oberg M, Nilsson S, Streubel K, Wallin J 1993 IEEE Photon. Technol. Lett. 5 735Google Scholar
[14] Kikuchi K, Tomofuji H 1990 IEEE J. Quantum Electron. 26 1717Google Scholar
[15] Nawrocka M et al. 2014 Opt. Exp. 22 018949Google Scholar
[16] Guo R J et al. 2016 IEEE Photon. J. 81 503007
[17] Hong J, Kim H, Makino T 1998 J. Lightwave. Technol. 16 1323Google Scholar
[18] Fricke J, John W, Klehr A, Ressel P, Weixelbaum L, Wenzel H, Erbert G 2012 Semicond. Sci. Technol. 27 055009Google Scholar
[19] Nichols D T, Lopata J, Hobson W S, Sciortino P F 1993 Electron. Lett. 29 2035Google Scholar
[20] Hamamoto K, De Merlier J, Ohya M, Shiba K, Naniwae K, Sudo S, Sasaki T 2005 IEICE Electron. Exp. 13 399
[21] Hamamoto K, Gini E, Holtmann C et al. 2000 Quebec, Canada OMC. 2-1 27
[22] Hinokuma Y, Yuen Z, Fukuda T 2013 IEICE Trans. Electron. 96 1413
[23] Gao F et al. 2018 Opt. Comm. 410 936Google Scholar
[24] Soldano L B, Pennings E C M 1995 J. Light. Technol. 13 615Google Scholar
-
-
[1] Paschotta R, Nilsson J, Tropper A C, Hanna D C 1997 IEEE J. Quantum Electron. 33 1049Google Scholar
[2] Jeon H, Verdiell J M, Ziari M, Mathur A 1998 IEEE J. Sel. Topics Quantum Electron. 3 1344
[3] Dieckmann A 1994 Electron. Lett. 30 308Google Scholar
[4] Tilma B W, Mangold M, Zaugg C A, et al. 2015 Light Sci. Appl. 4 e310Google Scholar
[5] Zhou Z, Yin B, Michel J 2015 Light Sci. Appl. 4 e358Google Scholar
[6] Garciıa-Meca C et al. 2017 Light Sci. Appl. 6 e17053Google Scholar
[7] Nehrir A R, Repasky K S, Carlsten J L, Atmos J 2011 Ocean. Technol. 28 131Google Scholar
[8] Jeon H, Verdiell J M, Ziari M, Mathur A 1998 IEEE J. Sel. Top. Quantum Electron. 3 1344
[9] Zimmerman J W, Price R K, Reddy U, Dias N L, Coleman J J 2013 IEEE J. Sel. Top. Quantum Electron. 19 1503712Google Scholar
[10] Burrows E C, Liou K Y 1990 Electron. Lett. 26 577Google Scholar
[11] Kim I et al. 1994 Appl. Phys. Lett. 64 2764Google Scholar
[12] Ishii H, Tohmori Y, Yamamoto M, Tamamura T, Yoshikuni Y 1994 IEEE Photon. Technol. Lett. 5 1683
[13] Oberg M, Nilsson S, Streubel K, Wallin J 1993 IEEE Photon. Technol. Lett. 5 735Google Scholar
[14] Kikuchi K, Tomofuji H 1990 IEEE J. Quantum Electron. 26 1717Google Scholar
[15] Nawrocka M et al. 2014 Opt. Exp. 22 018949Google Scholar
[16] Guo R J et al. 2016 IEEE Photon. J. 81 503007
[17] Hong J, Kim H, Makino T 1998 J. Lightwave. Technol. 16 1323Google Scholar
[18] Fricke J, John W, Klehr A, Ressel P, Weixelbaum L, Wenzel H, Erbert G 2012 Semicond. Sci. Technol. 27 055009Google Scholar
[19] Nichols D T, Lopata J, Hobson W S, Sciortino P F 1993 Electron. Lett. 29 2035Google Scholar
[20] Hamamoto K, De Merlier J, Ohya M, Shiba K, Naniwae K, Sudo S, Sasaki T 2005 IEICE Electron. Exp. 13 399
[21] Hamamoto K, Gini E, Holtmann C et al. 2000 Quebec, Canada OMC. 2-1 27
[22] Hinokuma Y, Yuen Z, Fukuda T 2013 IEICE Trans. Electron. 96 1413
[23] Gao F et al. 2018 Opt. Comm. 410 936Google Scholar
[24] Soldano L B, Pennings E C M 1995 J. Light. Technol. 13 615Google Scholar
计量
- 文章访问数: 14268
- PDF下载量: 230
- 被引次数: 0