搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于含时分步积分算法反演单体MgO:APLN多光参量振荡能量场

刘航 于永吉 王宇恒 刘贺言 李渌洁 金光勇

引用本文:
Citation:

基于含时分步积分算法反演单体MgO:APLN多光参量振荡能量场

刘航, 于永吉, 王宇恒, 刘贺言, 李渌洁, 金光勇

Energy conversion of multi-optical parametric oscillation based on time-dependent split-step integration methods in MgO:APLN

Liu Hang, Yu Yong-Ji, Wang Yu-Heng, Liu He-Yan, Li Lu-Jie, Jin Guang-Yong
PDF
HTML
导出引用
  • 针对脉冲抽运机制下多光参量振荡器内1.57 μm和3.84 μm跨周期参量光的能量耦合过程, 利用含时波动方程建立起关于时间的能量转换模型, 并运用分步积分法对模型进行求解, 获得参量光转换效率. 模拟多光参量放大器输出参量光波形, 证实逆转换和模式竞争是影响多光参量振荡的重要因素. 进一步, 模拟外腔多光参量振荡器1.57 μm和3.84 μm跨周期参量光的输出情况. 分别对比不同输出透过率、晶体长度和谐振腔长度下转换效率的模拟值, 证实了输出镜透过率影响1.57 μm和3.84 μm跨周期参量光的转换效率, 同时表明外腔多光参量振荡器存在最佳晶体长度和谐振腔长度. 基于仿真结果, 开展外腔多光参量振荡器实验. 1.57 μm和3.84 μm参量光转换效率实验值与理论值相吻合, 证实此方法能精准地反演多光参量振荡器的能量转换过程, 为优化多光参量振荡器、提高参量光转换效率提供了理论依据.
    In a multi-optical parametric oscillator by pulse pumping, energy conversion process for 1.57 μm and 3.84 μm parametric light can be expressed by time-dependent wave equations. The split-step integration method is used to solve the equations. By analyzing the simulation results of the output waveform for the multi-optical parametric amplifier, it is confirmed that back conversion and mode competition are the important factors affecting the multi-optical parametric oscillation. The 1.57 μm and 3.84 μm parametric light in an external cavity multi-optical parametric oscillator are simulated under different output mirror transmittances, crystal working lengths and cavity lengths. The conversion efficiency of 1.57 μm and 3.84 μm increase with the output mirror transmittance increasing, which means that the conversion efficiency can be adjusted by changing the parametric light transmittance of the output mirror. There exist an optimal crystal working length and a cavity length in the external cavity multi-optical parametric oscillator. The experiment on external cavity multi-optical parametric oscillator is carried out. The conversion efficiency of 1.57 μm and 3.84 μm parametric light are consistent with the theoretical values. The energy conversion process in the multi-optical parametric oscillator can be simulated by this method, which could be used for optimizing the multi-optical parametric oscillator and increasing the parametric conversion efficiency.
      通信作者: 于永吉, yyjcust@163.com ; 金光勇, jgyciom@163.com
    • 基金项目: 国家自然科学基金(批准号: 61505013)、中国博士后科学基金(批准号: 2016M591466)、吉林省科技厅重点科技攻关项目(批准号: 20170204046GX)和吉林省科技厅中青年科技创新领军人才及团队项目(批准号: 20190101004JH)资助的课题
      Corresponding author: Yu Yong-Ji, yyjcust@163.com ; Jin Guang-Yong, jgyciom@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61505013), the Postdoctoral Science Foundation of China (Grant No. 2016 M591466), the Key Science and Technology Program of Jilin Science and Technology Department, China (Grant No. 20170204046GX), and the Young and Middle-aged Science and Technology Innovation Leader and Team of Jilin Science and Technology Department , China (Grant No. 20190101004JH)
    [1]

    Huang H T, He J L, Liu S D, Liu F Q, Yang X Q, Yang H W, Yang Y, Yang H 2011 Laser Phys. Lett. 8 358Google Scholar

    [2]

    Zhang T L, Yao J Q, Zhu X Y, Zhang B G, Li E B, Zhao P, Li H F, Ji F, Wang P 2007 Opt. Commun. 272 111Google Scholar

    [3]

    Breunig I, Sowade R, Buse K 2007 Opt. Lett. 32 1450Google Scholar

    [4]

    Wang P, Shang Y P, Li X, Shen M L, Xu X J 2017 IEEE Photon. J. 9 1500107

    [5]

    常建华, 杨镇博, 陆洲, 董时超 2013 中国激光 40 1002009

    Chang J H, Yang Z B, Lu Z, Dong S C 2013 Chin. J. Lasers 40 1002009

    [6]

    Wei X, Peng Y, Wang W, Chen X, Li D 2011 Appl. Phys. B 104 597Google Scholar

    [7]

    Chou M H, Parameswaran K R, Fejer M M, Brener I 1999 Opt. Lett. 24 1157Google Scholar

    [8]

    Kawase K, Hatanaka T, Takahashi H, Nakamura K, Taniuchi T, Ito H 2000 Opt. Lett. 25 1714Google Scholar

    [9]

    Jin Y W, Cristescu S M, Harren F J M, Mandon J 2014 Opt. Lett. 39 3270Google Scholar

    [10]

    Klingbeil A E, Jeffries J B, Davidson D F, Hanson R K 2008 Appl. Phys. B 93 627

    [11]

    Smith A V, Gehr R J, Bowers M S 1999 J. Opt. Soc. Am. B 16 609Google Scholar

    [12]

    Kong Y, Xu Z, Zhou Y, Deng D, Zhu X, Wu L 1998 IEEE J. Quantum Elect. 34 439Google Scholar

    [13]

    Boller K J, Schroder T 1993 J. Opt. Soc. Am. B 10 1778Google Scholar

    [14]

    Schroder T, Boller K J, Fix A, Wallenstein R 1994 Appl. Phys. B 58 425Google Scholar

    [15]

    Fix A, Wallenstein R 1996 J. Opt. Soc. Am. B 13 2484Google Scholar

    [16]

    Arisholm G 1999 J. Opt. Soc. Am. B 16 117Google Scholar

    [17]

    Yu Y J, Chen X Y, Cheng L B, Li S T, Wu C T, Dong Y, Fu Y G, Jin G Y 2017 IEEE Photon. J. 9 1500908

    [18]

    于永吉, 陈薪羽, 成丽波, 王超, 吴春婷, 董渊, 李述涛, 金光勇 2015 物理学报 64 224215Google Scholar

    Yu Y J, Chen X Y, Cheng L B, Wang C, Wu C T, Dong Y, Li S T, Jin G Y 2015 Acta Phys. Sin. 64 224215Google Scholar

    [19]

    于永吉, 陈薪羽, 王超, 吴春婷, 董渊, 李述涛, 金光勇 2015 物理学报 64 044203Google Scholar

    Yu Y J, Chen X Y, Wang C, Wu C T, Dong Y, Li S T, Jin G Y 2015 Acta Phys. Sin. 64 044203Google Scholar

    [20]

    Yu Y J, Chen X Y, Cheng L B, Dong Y, Wu C T, Li S T, Fu Y G, Jin G Y 2017 Opt. Laser Technol. 97 187Google Scholar

  • 图 1  MgO:APLN的极化结构和相位失配量

    Fig. 1.  Polarization structure and phase mismatch of MgO:APLN.

    图 2  外腔MOPO示意图

    Fig. 2.  Schematic diagram of external cavity MOPO.

    图 3  多光参量放大器输出波形 (a), (b)抽运光能量为2.25 mJ; (c), (d)抽运光能量为10 mJ

    Fig. 3.  Output waveform simulation of multi-optical parametric amplifier when the pump energy is 2.25 mJ (a), (b) or 10 mJ (c), (d)

    图 4  不同输出透过率下外腔MOPO输出波形 (a) M4-1 (1.47 μm@T = 80%); (b) M4-2 (1.47 μm@T = 60%); (c) M4-3 (1.47 μm@T = 40%); (d) M4-4 (1.47 μm@T = 20%)

    Fig. 4.  Output waveform simulation of external cavity MOPO with different output transmittance: (a) M4-1 (1.47 μm@T = 80%); (b) M4-2 (1.47 μm@T = 60%); (c) M4-3 (1.47 μm@T = 40%); (d) M4-4 (1.47 μm@T = 20%).

    图 5  不同输出透过率下外腔MOPO转换效率模拟值 (a)输出1.57 μm参量光; (b) 输出3.84 μm参量光

    Fig. 5.  Conversion efficiency simulation values of external cavity MOPO with different output transmittance: (a) Output 1.57 μm parametric light; (b) output 3.84 μm parametric light.

    图 6  不同晶体长度下外腔MOPO转换效率模拟值 (a)输出1.57 μm参量光; (b) 输出3.84 μm参量光

    Fig. 6.  Conversion efficiency simulation values of external cavity MOPO with different crystal length: (a) Output 1.57 μm parametric light; (b) output 3.84 μm parametric light.

    图 7  不同谐振腔长度下外腔MOPO转换效率模拟值 (a)输出1.57 μm参量光; (b) 输出3.84 μm参量光

    Fig. 7.  Conversion efficiency simulation values of external cavity MOPO with different cavity length: (a) Output 1.57 μm parametric light; (b) output 3.84 μm parametric light.

    图 8  不同输出透过率下外腔MOPO输出功率及转换效率 (a) M4-1 (1.47 μm@T = 80%); (b) M4-2 (1.47 μm@T = 60%)

    Fig. 8.  Output power and conversion efficiency of external cavity MOPO with different output transmittance: (a) M4-1 (1.47 μm@T = 80%); (b) M4-2 (1.47 μm@T = 60%).

    图 9  不同谐振腔长度下外腔MOPO输出功率及转换效率 (a)腔长160 mm; (b)腔长180 mm

    Fig. 9.  Output power and conversion efficiency of external cavity MOPO with different cavity length: (a) Cavity length of 160 mm; (b) cavity length of 180 mm.

    表 1  腔镜膜系参数

    Table 1.  Cavity mirror parameters.

    腔镜膜系
    腔镜M31064 nm@HT, 1.47 μm/
    1.57 μm/3.3 μm/
    3.84 μm@HR
    腔镜M4
    (1064 nm/3.3 μm
    @HR, 1.57 μm@T=40%,
    3.84 μm@HT)
    1) 1.47 μm@T = 80%;
    2) 1.47 μm@T = 60%;
    3) 1.47 μm@T = 40%;
    4) 1.47 μm@T = 20%
    下载: 导出CSV
  • [1]

    Huang H T, He J L, Liu S D, Liu F Q, Yang X Q, Yang H W, Yang Y, Yang H 2011 Laser Phys. Lett. 8 358Google Scholar

    [2]

    Zhang T L, Yao J Q, Zhu X Y, Zhang B G, Li E B, Zhao P, Li H F, Ji F, Wang P 2007 Opt. Commun. 272 111Google Scholar

    [3]

    Breunig I, Sowade R, Buse K 2007 Opt. Lett. 32 1450Google Scholar

    [4]

    Wang P, Shang Y P, Li X, Shen M L, Xu X J 2017 IEEE Photon. J. 9 1500107

    [5]

    常建华, 杨镇博, 陆洲, 董时超 2013 中国激光 40 1002009

    Chang J H, Yang Z B, Lu Z, Dong S C 2013 Chin. J. Lasers 40 1002009

    [6]

    Wei X, Peng Y, Wang W, Chen X, Li D 2011 Appl. Phys. B 104 597Google Scholar

    [7]

    Chou M H, Parameswaran K R, Fejer M M, Brener I 1999 Opt. Lett. 24 1157Google Scholar

    [8]

    Kawase K, Hatanaka T, Takahashi H, Nakamura K, Taniuchi T, Ito H 2000 Opt. Lett. 25 1714Google Scholar

    [9]

    Jin Y W, Cristescu S M, Harren F J M, Mandon J 2014 Opt. Lett. 39 3270Google Scholar

    [10]

    Klingbeil A E, Jeffries J B, Davidson D F, Hanson R K 2008 Appl. Phys. B 93 627

    [11]

    Smith A V, Gehr R J, Bowers M S 1999 J. Opt. Soc. Am. B 16 609Google Scholar

    [12]

    Kong Y, Xu Z, Zhou Y, Deng D, Zhu X, Wu L 1998 IEEE J. Quantum Elect. 34 439Google Scholar

    [13]

    Boller K J, Schroder T 1993 J. Opt. Soc. Am. B 10 1778Google Scholar

    [14]

    Schroder T, Boller K J, Fix A, Wallenstein R 1994 Appl. Phys. B 58 425Google Scholar

    [15]

    Fix A, Wallenstein R 1996 J. Opt. Soc. Am. B 13 2484Google Scholar

    [16]

    Arisholm G 1999 J. Opt. Soc. Am. B 16 117Google Scholar

    [17]

    Yu Y J, Chen X Y, Cheng L B, Li S T, Wu C T, Dong Y, Fu Y G, Jin G Y 2017 IEEE Photon. J. 9 1500908

    [18]

    于永吉, 陈薪羽, 成丽波, 王超, 吴春婷, 董渊, 李述涛, 金光勇 2015 物理学报 64 224215Google Scholar

    Yu Y J, Chen X Y, Cheng L B, Wang C, Wu C T, Dong Y, Li S T, Jin G Y 2015 Acta Phys. Sin. 64 224215Google Scholar

    [19]

    于永吉, 陈薪羽, 王超, 吴春婷, 董渊, 李述涛, 金光勇 2015 物理学报 64 044203Google Scholar

    Yu Y J, Chen X Y, Wang C, Wu C T, Dong Y, Li S T, Jin G Y 2015 Acta Phys. Sin. 64 044203Google Scholar

    [20]

    Yu Y J, Chen X Y, Cheng L B, Dong Y, Wu C T, Li S T, Fu Y G, Jin G Y 2017 Opt. Laser Technol. 97 187Google Scholar

  • [1] 姚晓岱, 吴爽, 赵锐, 吴淼鑫, 刘航, 金光勇, 于永吉. 基于台阶声光调Q外腔泵浦MgO:PPLN光参量振荡器的3.4 μm中红外脉冲串激光器. 物理学报, 2024, 73(4): 044206. doi: 10.7498/aps.73.20231348
    [2] 陈浩, 田建民, 孙雪健, 吕可真, 徐莉华, 李宏荣. 光合作用多色素捕光模型中光激发对能量传输的影响. 物理学报, 2022, 71(10): 104203. doi: 10.7498/aps.71.20211960
    [3] 李妤晨, 陈航宇, 宋建军. 用于提高微波无线能量传输系统接收端能量转换效率的肖特基二极管. 物理学报, 2020, 69(10): 108401. doi: 10.7498/aps.69.20191415
    [4] 廖天军, 吕贻祥. 热光伏能量转换器件的热力学极限与优化性能预测. 物理学报, 2020, 69(5): 057202. doi: 10.7498/aps.69.20191835
    [5] 周利, 王取泉. 等离激元共振能量转移与增强光催化研究进展. 物理学报, 2019, 68(14): 147301. doi: 10.7498/aps.68.20190276
    [6] 于永吉, 陈薪羽, 成丽波, 王超, 吴春婷, 董渊, 李述涛, 金光勇. 基于MgO:QPLN的多光参量振荡器电场调谐特性理论与实验研究. 物理学报, 2015, 64(16): 164208. doi: 10.7498/aps.64.164208
    [7] 于永吉, 陈薪羽, 成丽波, 王超, 吴春婷, 董渊, 李述涛, 金光勇. 基于MgO:APLN的1.57m/3.84m连续波内腔多光参量振荡器研究. 物理学报, 2015, 64(22): 224215. doi: 10.7498/aps.64.224215
    [8] 于永吉, 陈薪羽, 王超, 吴春婷, 董渊, 李述涛, 金光勇. 基于MgO:APLN的多光参量振荡器实验研究及其逆转换过程演化分析. 物理学报, 2015, 64(4): 044203. doi: 10.7498/aps.64.044203
    [9] 谢辰, 胡明列, 张大鹏, 柴路, 王清月. 基于多通单元的高能量耗散孤子锁模光纤振荡器. 物理学报, 2013, 62(5): 054203. doi: 10.7498/aps.62.054203
    [10] 朱开成, 李绍新, 郑小娟, 唐慧琴. 对相干态在通过参量转换中的演化与量子化光涡态的实现. 物理学报, 2012, 61(19): 194206. doi: 10.7498/aps.61.194206
    [11] 刘建辉, 柳强, 巩马理. 光参量过程中的逆转换问题. 物理学报, 2011, 60(2): 024215. doi: 10.7498/aps.60.024215
    [12] 辛 萍, 孙成伟, 秦福文, 文胜平, 张庆瑜. 反应磁控溅射ZnO/MgO多量子阱的光致荧光光谱分析. 物理学报, 2007, 56(2): 1082-1087. doi: 10.7498/aps.56.1082
    [13] 尹增谦, 万景瑜, 黄明强, 王慧娟. 介质阻挡放电中的能量转换过程研究. 物理学报, 2007, 56(12): 7078-7083. doi: 10.7498/aps.56.7078
    [14] 李培丽, 黄德修, 张新亮, 朱光喜. 基于多电极单端耦合半导体光放大器的交叉增益调制型波长转换器. 物理学报, 2006, 55(6): 2746-2750. doi: 10.7498/aps.55.2746
    [15] 郑世旺, 贾利群. Birkhoff系统的局部能量积分. 物理学报, 2006, 55(11): 5590-5593. doi: 10.7498/aps.55.5590
    [16] 邓诚先, 李正佳, 朱长虹. 具有腔内光放大的单共振光参量振荡器. 物理学报, 2005, 54(10): 4754-4760. doi: 10.7498/aps.54.4754
    [17] 陈宏平, 王 箭, 何国光. 光脉冲传输数值模拟的分步小波方法. 物理学报, 2005, 54(6): 2779-2783. doi: 10.7498/aps.54.2779
    [18] 宁 成, 杨震华, 丁 宁. Z箍缩内爆过程中的能量转换机制研究. 物理学报, 2003, 52(2): 415-420. doi: 10.7498/aps.52.415
    [19] 刘政威, 阳效良, 肖思国. 提高能量上转换效率的实验探讨. 物理学报, 2001, 50(9): 1795-1779. doi: 10.7498/aps.50.1795
    [20] 祝家清. 自由电子激光的能量转换. 物理学报, 1996, 45(1): 52-57. doi: 10.7498/aps.45.52
计量
  • 文章访问数:  7535
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-30
  • 修回日期:  2019-09-03
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-01

/

返回文章
返回